
Applied Mathematics, 2012, 3, 750-754
http://dx.doi.org/10.4236/am.2012.37111 Published Online July 2012 (http://www.SciRP.org/journal/am)

A Hybrid Genetic Scheduling Algorithm to Heterogeneous
Distributed System

Yan Kang1, Defu Zhang2
1Department of Software Engineering, Yunnan University, Kunming, China

2Department of Computer Science, Xiamen University, Xiamen, China
Email: kangyan@ynu.edu.cn

Received April 25, 2012; revised May 29, 2012; accepted June 6, 2012

ABSTRACT

In parallel and distributed computing, development of an efficient static task scheduling algorithm for directed acyclic
graph (DAG) applications is an important problem. The static task scheduling problem is NP-complete in its general
form. The complexity of the problem increases when task scheduling is to be done in a heterogeneous environment,
consisting of processors with varying processing capabilities and network links with varying bandwidths. List schedul-
ing algorithms are generally preferred since they generate good quality schedules with less complexity. But these list
algorithms leave a lot of room for improvement, especially when these algorithms are used in specialized heterogeneous
environments This paper presents an hybrid genetic task scheduling algorithm for the tasks run on the network of het-
erogeneous systems and represented by Directed Acyclic Graphs (DAGs). First, the algorithm assigns a coupling factor
to each task to present the tasks should be scheduled onto the same processor by avoiding the large communication time.
Second, the algorithm generate some high quality initial solution by scheduling the tasks which are strongly coupled
with each other onto the same processor, and improve the quality of the solution by using coupling initial solutions,
random solution, near optimal solutions obtained by the list scheduling algorithm in the crossover and mutation operator.
The performance of the algorithm is illustrated by comparing with the existing effectively scheduling algorithms.

Keywords: Scheduling; Genetic Algorithm; Heterogeneous; Distributed System

1. Introduction

Optimal scheduling of parallel tasks with precedence is
critical for achieving high performance in heterogeneous
computing system. The application scheduling is known
to be NP-complete in general cases [1]. Although optimal
solutions are known for restricted cases of this problem,
such restrictions prevent the static task scheduling prob-
lem from being applicable to general computing envi-
ronments. The search space of task scheduling solutions
becomes extremely large and the task scheduling prob-
lem becomes more complicated for the system which has
both processor heterogeneity and network heterogeneity.
For this reason, there has been considerable research into
heuristic static task scheduling algorithms [2]. These
heuristics are classified into a variety of categories such
as list scheduling algorithms [3-5], clustering algorithms
[6], task duplication based algorithms [7-8] and Genetic
algorithms [9-12].

The list-based heuristics are widely used due to their
high performance and low time complexity. But there is
always room for improvement, especially when they are
used in heterogeneous environments. GA generally starts

with a randomly generated initial population, which con-
tains all individuals (chromosomes also called feasible
solutions). Through a pre-specified generation number,
quality of the solutions is augmented by the crossover
and mutation operators designed to mimic the evolution-
ary theory. Algorithm aims at keeping the fittest solu-
tions at the end of each generation. GAs have been ap-
plied to the task scheduling problem in a number of ways.
The two main approaches appear to be: methods that use
a GA in combination with other list scheduling tech-
niques and methods that use a GA to evolve the actual
assignment and order of tasks into processors.

We introduce a hybrid genetic (HG) algorithm to the
problem of heterogeneous multiprocessor task scheduling.
Two unique features distinguish this GA from a tradi-
tional GA algorithm. First, a coupling factor is assigned
to each task to show the relation among the tasks. List
scheduling algorithm is incorporated in the generation of
the initial population of a GA to represent feasible high
quality operation sequences and diminish coding space
when compared to permutation representation. Second,
high quality initial solutions are generated by scheduling
the highly coupled task onto the same processor, which

Copyright © 2012 SciRes. AM

Y. KANG, D. F. ZHANG 751

can largely decrease the communication cost among the
heterogeneous environment.

2. Task Scheduling Problem

The general task scheduling problem includes the prob-
lem of assigning the tasks with required precedence rela-
tionship to suitable processors and the problem of order-
ing task executions on each resources. The characteristics
of the application program is represented by a Directed
Acyclic Graph (DAG), G = (V, E), where V is the set of v
tasks nodes, and E is the set of e directed communication
edges between the tasks. Each edge ei,j represents the
precedence constraint that vj cannot be scheduled until
task vi has been completed, hence vi is a predecessor of vj
and vj is a successor of vi. Without loss of generality, it is
assumed that there is one entry task to the DAG and one
exit task from the DAG. A heterogeneous computing
system P consists of a set of p independent different
types of processors which are assumed to be fully inter-
connected by an arbitrary network. The estimated execu-
tion cost time wi,j to complete task vi on processor pi may
be different on different processor depending on the
processors computational capability.

D is a n × n matrix of communication data, where di,j
is the amount of data required to be transmitted from task
vi to task vj. The communication cost of edge ei,k which is
for transferring data from task vi (scheduled on processor
pm) to task vk (scheduled on processor pn) is

, ,i k i k m nc d r ,





 (1)

where rm,n is the link communication speed between two
processors pm and processor pn. In this study, the channel
initialization time is assumed to be negligible. Otherwise,
di,k = 0 when both the tasks vi and vk are scheduled on the
same processor. Further, for illustration, we assumed that
the data transfer rate for each link is 1.0 and hence com-
munication cost and amount of data to be transferred will
be the same.

EST(vi, pj) and EFT(vi, pj) are the Earliest Start Time
and Earliest Finish Time of task vi, on pj, respectively.
For the entry task v0, EST(v0, pj) = 0 and for the other
tasks in the graph, the EST and EFT values are computed
recursively, starting from the entry task, as shown in (2)
and (3). In order to compute the EFT and EST of a task vi,
all immediate predecessor tasks of vi must have been
scheduled.

      ,EST , max , , EFT ,i j i j k l k iv p A v p v p c (2)

  ,EFT , EST ,i j i j i jv p w v p  (3)

where vk is the immediate predecessor tasks of task vi and
A(vi, pj) is the earliest time that processor pj completed
the execution of the last assigned task, or the idle slot

between the assigned tasks with an insertion-based
scheduling policy.

The objective of task scheduling is to assign tasks to
available processors such that precedence requirements
between tasks are satisfied and the overall length of time
required to execute the entire program, the schedule
length or makespan, is minimized.

3. Hybrid Genetic Scheduling Algorithm

3.1. The Problem and Related Work

In list scheduling algorithms, the tasks in a list are as-
sumed priorities and are assigned to the different proces-
sors based on descending order of priorities. List sched-
uling algorithms are generally preferred since they gen-
erate good quality schedules with less complexity. Sev-
eral variant list scheduling algorithms have been pro-
posed to deal with heterogeneous system, for example
Mapping Heuristic (MH) [3], Levelized-MinTime (LMT)
[4], Dynamic-Level Scheduling (DLS), Heterogeneous
Earliest Finish Time (HEFT) [5] and Critical Path On a
processor (CPOP). The HEFT algorithm significantly
outperforms the DLS algorithm, MH, LMT and CPOP
algorithm in terms of average schedule length ratio,
speedup, etc. The HEFT algorithm selects the task with
the so-called highest upward rank value at each step and
assigns the selected task to the processor which mini-
mizes its earliest finish time with an insert-based policy.

We noted that the list scheduling algorithms just con-
sider the local optimal solution by scheduling the current
task onto processor that gives the earliest finish time for
the current task. In this way, the list scheduling algorithm
cannot obtain the optimal solution for the scheduling
problem. Figure 1 shows a DAG with four tasks and 4
edges. There are two processors available in the hetero-
geneous computing system. Table 1 shows the computa-
tion time of each task on every processor. For simplicity,
we assume homogeneous communication and the com-
munication times are as labeled on the edges in Figure 1.
Table 2 shows the start time and finish time of all the
tasks that are obtained by the HEFT algorithm. The op-
timal schedule length showed in Table 3 is 48 which is
less than the schedule length obtained by HEFT algo-
rithm is 59. And the optimal schedule length cannot be
obtained by changing the order of the tasks.

The global minimum schedule length cannot be ob-
tained by the above list scheduling algorithms since these
methods were developed for fast execution on general
heterogeneous environments. These list algorithms leave
a lot of room for improvement, especially when these
algorithms are used in specialized heterogeneous envi-
ronments.

Genetic algorithms (GAs) are known as the most
popular and widely used random guided search technique

Copyright © 2012 SciRes. AM

Y. KANG, D. F. ZHANG 752

1

3

4

12

2

23

18

19

Figure 1. A sample task graph with 4 tasks.

Table 1. Computation time of Figure 1.

V 1 2 3 4

P1 16 13 11 8

P2 9 19 19 17

Table 2. Schedule of Figure 1 by HEFT algorithm.

V 1 2 3 4

P1 21 - 32 47 - 55

P2 0 - 9 9 - 28

Table 3. Optimal schedule of Figure 1.

V 1 2 3 4

P1 0 - 16 16 - 29 29 - 40 40 - 48

P2

for many types of combinatorial problems. One problem
with the random guided search strategy is that this “ran-
domness” prevents the search from proceeding in the
proper search direction quickly. The optimal solution for
the scheduling problem described in Figure 1 is obtained
by the general genetic algorithm after 20 iterative of 50
individuals. Thus, we combine the genetic and the HEFT
algorithm to improve the efficiency of the algorithm.
And we improve the solution quality by scheduling the
task onto the processor by using the coupling factor.

3.2. Coupling Factor

If a task has more than one predecessor and the commu-
nication cost between the task and its predecessors is
relatively larger, we think that the tasks are coupled with
each other strongly.

The coupling factor is given as:

 
 ,

prec
max

j i
i j i j i

v v
cf c NS NP






 (4)

where prec (vi) is the set of immediate predecessors of
task vi, NSi is the number of the successors of task vj, and

NPi is the number of the predecessors of the task vi.
Obviously, if two tasks with high coupling factor are

scheduled onto different processors, the communication
cost is large and influence the quality of the solution.

3.3. Initial Population

Task scheduling problem actually is a combination of
machine assignment and operation scheduling decisions,
so any solution can be defined by the assignment of op-
erations on machines and processing sequence of opera-
tions on the machines. Thus, a chromosome is composed
of two parts: 1) machine assignment vector (called here
V1) and 2) operation sequence vector (called here V2).
Both V1 and V2 are vectors of length n where n is the
number of tasks to be scheduled. The elements of a vec-
tor V1 represent the tasks themselves and the order of the
tasks gives the relative task priorities. A specific number
of initial solutions are generated at random by sticking to
two vector representation.

For avoiding generate infeasible solutions and improve
the quality of the solution, we generate the initial solu-
tions by using two different ways.

First, we use the strategy of HEFT algorithm, an effec-
tive list scheduling algorithm to generate feasible random
initial population effectively. The HEFT algorithm se-
lects the task with the so-called highest upward rank
value at each step and assigns the selected task to the
processor which minimizes its earliest finish time with an
insert-based policy. We firstly assign a random execution
time to each task and assume the communication time is
zero, and then use the task-prioritizing phase of the
HEFT algorithm to assign the priority to all tasks, i.e.,
generate V1, based on upward rank priority. To assign
priority, the upward rank of each task is computed. The
upward rank of a task is computed as the critical path of
that task, which is the highest sum of execution time
starting from that task to exit task. The priority of task vi
is

 
 , ,

prec
max

j i
i i j i i j

v v
pr w pr c


   (5)

where succ(vi) is the set of immediate successors of task
vi, wi is the average execution time of task vi

,
1

p

i i j
j

w rw p


 
  
 
 (6)

where rwi is the random execution time of task vi.
V2 is generated by randomly select the processor from

the processors. Based on upward rank priority will be
assigned to each task, we randomly schedule the task vi
in V1 onto processor pj in V2 according to the same or-
der, and obtains the earliest finish time for the task vi on
processor pj. It uses an insertion based policy which con-

Copyright © 2012 SciRes. AM

Y. KANG, D. F. ZHANG 753

siders the possible insertion of task vi in an earliest idle
time slot between the already scheduled tasks on the
same processor pj, if it satisfies the precedence restric-
tion.

Second, we generate coupling initial solution. V1 is
generated by assigning the priority to all tasks based on
strategy described above which now uses the average
execution time and actual communication time. We ran-
domly schedule the task vi in V1 onto processor pj in V2,
or schedule the task vi in V1 onto processor where is
scheduled the task vj which is strong coupled with task vi,
and obtains the earliest finish time for the task vi on
processor pj. In this way, the strongly coupled tasks are
scheduled onto the same processor in a high probability.

3.4. Crossover Operator

In the paper, GA has been used to directly evolve task
assignment and order in processors. We use a GA to
evolve individuals consisting of multiple lists, with list
representing each task’s priority and the assigned proc-
essor. Crossover exchanges tasks between corresponding
processors from two different individuals. Individuals are
again vectors of length n, where n is the number of tasks
to be scheduled. We select the crossover point based on
the random probability.

For completing the unassigned positions on the opera-
tion sequence of the offspring, check all the operations of
second parent from left to right. If corresponding opera-
tion is already assigned in the substring from first parent,
skip to the next operation in operation sequence of sec-
ond parent. Otherwise, place corresponding operation of
the second parent for the position in offspring. The op-
erations taken from second parent are the ones that proto-
child needs.

3.5. Mutation Operator

For machine assignment vectors, activity-based mutation
randomly decides whether a task (1 ··· n) should be se-
lected for mutation in a certain probability.

3.6. Selection

In the proposed GA approach, selection process is per-
formed on an enlarged sampling space, where both par-
ents and offsprings have the same chance of competing
for survival. In order to cope with the scaling problem of
the direct fitness-based approach, ranking selection is
introduced. The idea is simple: sort solutions in the popu-
lation from the best to the worst according to their per-
formance on the scheduling length, and assign the selec-
tion probability based on the ranking. And the second
generation is generated by selecting the solution sepa-
rately from the solutions obtained by HEFT algorithm,

random initial solution, and coupling initial solution.
The proposed framework of the GA is shown as fol-

lows.
procedure: Hybrid Genetic algorithm
input: Problems dataset, GA parameters
output: a near-optimal schedule
begin
t = 0, assign the coupling factors to all tasks;
generate initialize P(t) which includes random initial
solutions, coupling initial solution;
represent initialize P(t) with two vectors;
obtain fitness (P(t)) by the decoding method;
while (not termination condition) do
crossover P(t) to yield C(t) by crossover operator;
mutation P(t) to yield C(t) by mutation;
obtain fitness (P(t), C(t)) by the decoding method;
select P(t + 1)from P(t) and C(t) by scheduling length;
t < −t + 1;
end while
output a near-optimal schedule;
end

4. Performance Analyses and Discussion

We have used Intel Xeon processors with 1 GHz speed
for our experiments. We present the comparative evalua-
tion of HG algorithm and the existing algorithms for het-
erogeneous system such as HEFT and GA algorithm [12]
for DAGs with various characteristics by simulation. For
our experiments, a variety of synthetic DAGs and het-
erogeneous systems were generated using a random
graph generator and a random heterogeneous system
generator. The generation of a random DAG requires five
parameter inputs: the number of tasks, out-degree of a
task, shape, deviation of task size and data size. The task
size was randomly selected from the values between 1
and 100 and the data size was randomly set to a value
between 1 and 100. The random heterogeneous generator
produces a random computing environment based on two
parameters: network heterogeneity, and processor het-
erogeneity.

The performances and cost of the algorithms were
compared with respect to set of experiments with various
graph characteristics. We investigate how the various
parameters of the algorithm will impact the degree to
which the schedules are improved through HG algorithm.

The experiments show that our GA exhibits the best
performance on these problems. The results show that the
HG algorithm is more effective when communication
cost over execution time ratio is large.

5. Conclusion

In this paper the hybrid genetic algorithm for the hetero-
geneous distributed computing systems is proposed and

Copyright © 2012 SciRes. AM

Y. KANG, D. F. ZHANG

Copyright © 2012 SciRes. AM

754

studied. We use the coupling factor and assigning policy
to schedule the tasks which are strongly coupled onto the
same processor. The hybrid genetic algorithm generates
high quality initial solution by using the strategy of the
HEFT algorithm. The hybrid genetic algorithm can pro-
duce shorter schedule length than HEFT and genetic
based on obtained schedule. We observe the percentage
of cases that result in an improved final schedule and the
average improvement ratio with randomly generated task
graphs under various parameters and two real applica-
tions. It is observed that when the communication cost
over execution time ratio is small, the hybrid genetic
algorithm does not perform well; but when communica-
tion cost over execution time ratio is greater than some
value, an improvement in the final schedule is obtained
in most cases that were simulated. And it is also observed
that the percentage of final schedule length is less than
the initial one and the average improvement ratio are
both sensitive to the graph structure and the initial one.
Generally, hybrid genetic algorithm makes larger im-
provements on the problem with long communication
cost, and the algorithm is more effectively with the graph
structure is more flexible.

6. Acknowledgements

This work has been supported by the Open Foundation of
Key Laboratory in Software Engineering of Yunnan Pro-
vince under Grant No. 2011SE03, National Natural Sci-
ence Foundation of China (Grant No. 60763008), “CDIO-
based software system modeling and design research and
implementation” (Grant No. Rj14).

REFERENCES
[1] R. L. Graham, L. E. Lawler, J. K. Lenstra and A. H. Kan,

“Optimization and Approximation in Deterministic Se-
quencing and Scheduling: A Survey,” Annals of Discrete
Mathematics, Vol. 5, 1979, pp. 287-326.

[2] H. Topcuoglu, S. Harir and M.-Y. Wu, “Performance
Effective and Low-Complexity Task Scheduling for Het-
erogeneous Computing,” IEEE Transactions on Parallel
and Distributed Systems, Vol. 13, No. 3, 2002, pp. 260-
274. doi:10.1109/71.993206

[3] H. EI-Rewini and T. G. Lewis, “Scheduling Parallel Pro-
gram Tasks onto Arbitrary Target Machines,” Journal of
Parallel and Distributed Computing, Vol. 9, No. 2, 1990,
pp. 138-153. doi:10.1016/0743-7315(90)90042-N

[4] M. Iverson, F. Ozguner and G. Follen, “Parallelizing
Existing Applications in a Distributed Heterogeneous En-
vironments,” Proceedings of the Heterogeneous Comput-
ing Workshop, 1995, pp. 93-100.

[5] H. Topcuoglu, S. Hariri and M. Y. Wu, “Performance
Effective and Low-Complexity Task Scheduling for Het-
erogeneous Computing,” IEEE Transactions on Parallel
and Distributed Systems, Vol. 13, No. 3, 2002, pp. 260-
274.

[6] C. Boeres, J. V. Filho and V. E. F. Rebello, “A Cluster-
Based Strategy for Scheduling Task on Heterogeneous
Processors,” Proceedings of the 16th Symposium on
Computer Architecture and High Performance Comput-
ing (SBAC-PAD), Brazil, October 2004.

[7] S. Basker and P. C. SaiRanga, “Scheduling Directed
A-Cyclic Task Graphs on Heterogeneous Network of
Workstations to Minimize Schedule Length,” Proceed-
ings of the ICPPW, Taiwan, October 2003.

[8] R. Bajaj and D. P. Agrawal, “Improving Scheduling of
Tasks in a Heterogeneous Environments,” IEEE Transac-
tions on Parallel and Distributed Systems, Vol. 15, No. 2,
2004, pp. 107-118. doi:10.1109/TPDS.2004.1264795

[9] L. Wang, H. J. Siegel, V. P. Rowchoudhry and A. A.
Maciejewski, “Task Matching and Scheduling in Hetero-
geneous Computing Environments Using a Genetic Algo-
rithm-Based Approach,” Journal of Parallel and Distrib-
uted Computing, Vol. 47, No. 1, 1997, pp. 8-22.
doi:10.1006/jpdc.1997.1392

[10] M. K. Dhodhi, I. Ahmad and A. Yatama, “An Integrated
Technique for Task Matching and Scheduling onto Dis-
tributed Heterogeneous Computing Systems,” Journal of
Parallel and Distributed Computing, Vol. 62, No. 9, 2002,
pp. 1338-1361. doi:10.1006/jpdc.2002.1850

[11] S. C. Kim and S. Lee, “Push-Pull: Guided Search DAG
Scheduling for Heterogeneous Clusters,” Proceedings of
the International Conference on Parallel Processing,
Oslo, June 2005.

[12] S. W. Annie, H. Yu, S. Jin and K.-C. Lin, “An Incre-
mental Genetic Algorithm Approach to Multiprocessor
Scheduling,” IEEE Transactions on Parallel and Distrib-
uted Systems, Vol. 15, No. 9, 2004, pp. 824-834.
doi:10.1109/TPDS.2004.38

http://dx.doi.org/10.1109/71.993206
http://dx.doi.org/10.1016/0743-7315(90)90042-N
http://dx.doi.org/10.1109/TPDS.2004.1264795
http://dx.doi.org/10.1006/jpdc.1997.1392
http://dx.doi.org/10.1006/jpdc.2002.1850
http://dx.doi.org/10.1109/TPDS.2004.38

