
Journal of Software Engineering and Applications, 2012, 5, 395-401
http://dx.doi.org/10.4236/jsea.2012.56046 Published Online June 2012 (http://www.SciRP.org/journal/jsea)

395

A Model for Software Product Quality Prediction

Brijendra Singh, Suresh Prasad Kannojia

Department of Computer Science, University of Lucknow, Lucknow, India.
Email: drbri_singh@hotmail.com, spkannojia@gmail.com

Received March 28th, 2012; revised April 25th, 2012; accepted May 2nd, 2012

ABSTRACT

When the expression “Software Quality” is used, we usually think in terms of an excellent software product that fulfills
our expectations. These expectations are based on the intended use. Number of models has been proposed for evaluation
of software quality based on various characteristics. In this paper quality of software product is defined in terms of basic
components as constituent part of any program or software and proposed a software quality prediction model based on
basic components. It has been justified with example that if any software quality model uses the tacit knowledge that
will be better than any other model in terms of quality.

Keywords: Software Product; Software Quality; Quality Model; Quality Attributes

1. Introduction

If we are to talk intelligently about the quality of thing or
the quality of product, we must have in mind a clear pic-
ture of what we mean by quality. Quality defined by the
various quality gurus in various ways, depending on the
user perspective [1-7].
 Dr. Barry Boehm thinks of quality as Achieving high

levels of user satisfaction, portability, maintainability,
robustness, and fitness for use.

 Phil Crosby has created the definition with the cur-
rency because of its publication in his famous book
“Quality is free”. He states that quality means “con-
formance to user requirements”.

 Tom McCabe, the software complexity specialist, de-
fines quality as “High levels of user satisfaction and
low defect levels, often associated with low complex-
ity”.

 John Musa of Bell Laboratories states that quality
means combination of “low defect level, adherence of
software functions to users needs, and high reliabi-
lity”.

Traditionally, the quality of product is defined in terms
of its fitness of purpose. Although fitness of the purpose
is satisfactory definition of quality for hardware products,
but it is not satisfactory for software products.

To give an example of why this is so consider a soft-
ware product that is functionally correct. That is, it cor-
rectly performs all the functions that have been specified
in its SRS documents. Even though it may functionally
correct, we cannot consider it to be a quality product, if it
has an almost unusable user interface. Therefore, the tra-
ditional concept of quality as fitness of purpose for soft-

ware products is not wholly satisfactory.
The concept of software quality is not as easily defin-

able. There are various possible quality characteristics of
software, and there is even an international standard for
this [8,9].

For each quality characteristics, a set of attributes,
which can be measured, is determined such a definition
helps in evaluating the quality of software [10].

Effective software quality evaluation and assurance re-
quires models that describe what the software quality is
and how can it be traced back to the development process.
Two approaches can be followed to ensure software
quality. One is focused on direct specification and evalu-
ation of the quality of software product [10], while the
other is focused on assuring high quality of process by
which the product is developed.

Number of models [5-7,10-12] has been proposed to
evaluate the quality of software product, based on vari-
ous quality characteristics.

McCall quality model [5] attempts to bridge the gap
between users and developers by focusing, on a number
of software quality factors. The evaluation of software
has been done by Boehm’s quality model [7,10], uses a
given set of attributes and metrics. More recently, model
has been developed by Dromey’s [11,12], which is fo-
cusing on the relationship between the quality attributes
and the sub attributes, as well as attempting to connect
software product properties with software quality attrib-
utes.

As we have seen number of attributes reliability, us-
ability, efficiency, maintainability and portability are com-
mon in number of models [5-7,10-12].

Copyright © 2012 SciRes. JSEA

A Model for Software Product Quality Prediction 396

This paper proposed, a quality model based on basic
components. Basic components have been chosen based
on the five quality attributes: reliability, usability, effi-
ciency, maintainability and portability. This model fo-
cused on direct specification & evaluation of quality of
software product, which satisfies to the user. Tacit know-
ledge is having very critical role to choose the basic com-
ponents, that reflect the quality of model, and it has been
proved in this paper.

Quality experts and the application of recognized qua-
lity references, especially ISO9000 standards and perfor-
mance excellence models [8,9], have traditionally empha-
sized explicit knowledge, e.g. documentation, written de-
scriptions and procedures, specifications, arguments, and
information records. Tacit knowledge has not been con-
sidered as consistency and in the same details and im-
portant part of knowledge from the business point of
view is tacit. Proposed model has been illustrated with
example and shown the importance of tacit knowledge
for software product quality prediction.

1.1. Definitions

 Software Reliability: The ability of a program to per-
form a required function under stated conditions for a
stated period of time.

 Usability: Usability is concerned with the quality of
the user interface, its design and performance charac-
teristics, ease of reusing software in a different con-
text or the extent that it is reliable, efficient and human-
engineered.

 Efficiency: The position taken is that computational
and logical redundancy is important factors that affect
the efficiency of a program. Ensuring that there is a
match between program control structure and data
structure also makes a contribution. Efficiency also
can be defined in terms of execution efficiency and
storage efficiency means use of resources (processor
time, storage) or the extent that it fulfills its purpose
without waste of resources.

 Maintainability: There is a widely held belief that
software, which is very easy to maintain, is software
of high quality. If the minimum effort required to lo-
cate and fix a fault in the program. It leads to easily
maintainable.

 Portability: The effort required to transfer a program
from one environment to another or the extent that it
can be operated easily and well on computer configu-
ration other than its current one.

1.2. Proposed Model

Proposed model emphasis is to connect the basic com-
ponent with common quality attributes and product func-
tionality, which yield to predict the quality of s/w prod-

uct. The basic component is defined as the constituent
part of any program or software, such as NLOC, NHDL,
NVERd, NinputFUN, NcommL, NLOOP, NoutputFUN,
Nclass, Nfunct/CL. The basic components of software
product is used as a metrics; on the basis of these metrics
one can answer the following general questions of cus-
tomer/user’s:

1) How well can I use it?
2) How easy is it to understand, modify and retest?
3) Can I still use it if I change my environment?
These metrics lead to the quality attribute namely re-

liability, usability, efficiency, maintainability and port-
ability. In this paper quality of software product is de-
fined in terms of its basic components via which it’s con-
structed, and each component of product is uniquely cha-
racterized.

In this model we also uses the conformance to appli-
cable specification & standard that is agreement between
user and software product developer. Quality of confor-
mance refers to the extent to which the software product
complies with the specifications, standards, and work-
manship criteria (tacit knowledge) imposed upon its de-
veloper such as:

1) Software must be use for specific purpose for ex-
ample: calculation of factorial of a number;

2) Input of software must be specific based on user,
and software must be tested for input data;

3) Software must produce the correct output as desire
by user based on his input data;

4) Software should be User friendly to satisfy user.
The most important quality attributes of a software

product can poses is usefulness; i.e. the software must
satisfy user needs.

Software developer used to claim the various qualities
attributes for specific quality of product as—reliability,
usability, efficiency, maintainability and portability. Fig-
ure 1 shows the block diagram of proposed model for
prediction of quality. With the help of proposed model, it

Prediction of the
Quality of finished

product

 P/Sw
Product

Checks with common
Quality Attributes
1) Reliability
2) Usability
3) Efficiency
4) maintainability
5) Portability

Functions

Basic
Components

Figure 1. Block diagram of proposed model for prediction
of quality.

Copyright © 2012 SciRes. JSEA

A Model for Software Product Quality Prediction

Copyright © 2012 SciRes. JSEA

397

is possible to predict the quality of conformance based on
the agreement between user and software developer. In
next section, model has been illustrated and satisfies the
various attributes for specific quality of product.

2. Illustration of the Proposed Model

For the illustration purpose we have taken a very simple
program, which is developed by the two different pro-
grammers (in C, C++ programming language) indepen-
dently. For example program: calculation of the factorial
of a number, the code of taken example is listed in an-
nexure-I and II. Assume finished software product taken
as a input developed by the programmer-I and programm-
er-II separately.

The basic components chosen from the program as
shown in annexure-I, and metrics of the basic compo-
nents has been shown in Table 1.

Figure 2 Shows the graphical representation of the
Table 1, in this graph there are two series line dark and
light, the dark lines indicate the basic metrics of the pro-
gram developed by programmer-I. Similarly light lines
indicate that basic components metrics of the program
developed by programmer-II, in this graph there are one
trends lines corresponding to each series lines. Pro-
grammer-II having the tacit knowledge to develop the
program but programmer-I have no tacit knowledge. On
the basis of these trends lines we are able to predict the
quality of software, so program developed by program-
mer-II is more reliable, usable, efficient, maintainable
and portable.

The basic components chosen from the program as
shown in annexure-II and metrics of the basic compo-
nents has been shown in Table 2.

Figure 3 Shows the graphical representation of the
Table 2, in this graph there are two series line dark and
light, the dark lines indicate the basic metrics of the pro-
gram developed by programmer-I. Similarly light lines
indicate that basic components metrics of the program
developed by programmer-II, in this graph there are one

trends lines corresponding to each series lines. Program-
mer-II having the tacit knowledge to develop the pro-
gram but programmer-I have no tacit knowledge. On the
basis of these trends lines we are able to predict the qua-
lity of software, so program developed by programmer-
II is more reliable, usable, efficient, maintainable and
portable.

On the basis of graphical analysis of the basic compo-
nents of the product program or s/w, we analyze that:

1) Software Reliability: On the basis of trends lines of
the graph as shown in Figures 2 and 3 shows that pro-
gram developed by programmer-II is more reliable as
compared to the program developed by programmer-I. In
ordinary case program developed by programmer-I give
the correct out put, but some times its fail to give the
correct result where as program developed by program-
mer-II always gives a correct result.

2) Usability: Compared the programs/software, which
is developed for the same purpose by two independent
developers. The program/software developed by pro-
grammer-I is compact less readable, useful, not easy to
handle. It means less users friendly. Because number of
code lines is less, number of comment line is less, where
as comment is used to give the detail of program how
they work, how user can go on to perform the desired
task. Usability of software/program developed by pro-
grammer-II is higher than programmer-I.

3) Efficiency: Program/software developed by pro-
grammer-II program/software developed by program-
mer-I has no computational and logical redundancy. In
this program it has the power to take the range of inputs
integer to float. But it is not in case of program/software
developed by programmer-I. Therefore program/software
developed by programmer-II is more efficient than the
program/software developed by programmer-I.

4) Maintainability: Program developed by program-
mer-I is constructed/coded in compact form in terms of
the numbers of lines of code, that’s why some times it is
very easy to locate and correct the error, but some times

Table 1. The basic components of annexure-1 program is tabulated.

Small program
Developed by

NLOC NHDL NVERd NinputFUN NoutputFUN NcommL NLOOP

Programmer-I 21 02 4 01 05 0 01

Programmer-II 34 02 4 01 05 3 01

Table 2. The basic components of annexure-2 object oriented program are tabulated.

Small program
Developed by

NLOC NHDL NVERd NinputFUN NoutputFUN NcommL NLOOP NClass NFunction/CL

Programmer-I 30 02 03 01 04 0 01 01 02

Programmer-II 50 02 03 01 04 7 01 01 02

A Model for Software Product Quality Prediction 398

Figure 2. Basic components vs index as per Table 1.

Figure 3. Basic components vs index as per Table 2.

its tedious task. Where as program developed by pro-
grammer-II is constructed in detailed form, so normal
user can understand easily and easy to modify. It mean
easy to maintain. Therefore maintainability of program/
software developed by programmer-II is higher than pro-
grammer-I.

5) Portability: The programs i.e. as shown in annex-

ure-I & II can run on the MS-DOS or windows environ-
ments. Therefore portability of the both program/soft-
ware is good in the availability of the common environ-
ment.

Proposed model satisfies the agreement between the
user & software product developer, which has been shown
through illustration.

3. Conclusion

We have defined quality of software product in terms of
basic components as constituent part of any program or
software. Model for software product quality prediction
has been proposed. Model has been illustrated with ex-
ample that the program/software developed by the pro-
grammer-II is more reliable, usable, efficient, maintain-
able and portable. As compared to the program/software
developed by the programmer-I. Model has been tested
on various example’s that shows any program is deve-
loped having tacit knowledge, program/software have
good quality. It has been illustrated with example in pa-
per & result shows that program/software developed by
programmer-II is having better quality than program/
software developed by programmer-I.

REFERENCES
[1] S. Brijendra, “Quality Control & Reliability Analysis,” 3rd

Edition, Khanna Pub, Delhi, 2011.

[2] N. S. Godbole, “Software Quality Assurance Principles and
Practice,” Alpha Science International Limited, 2004.

[3] A. K. Rae, H. L. Hausen and P. Robert, “Software Eva-
luation for Certification: Principles, Practice and Legal
Liability,” McGraw Hill, New York, 2007.

[4] J. D. Musa, “Software Reliability Engineering,” 2nd Edi-
tion, Author House, Bloomington, 2004.

[5] J. A. McCall, P. K. Richards and G. F. Walters, “Factors
in Software Quality,” National Technical Information Ser-
vice, Vol. 1-3, 1977.

[6] B. Kitchenham and S. L. Pfleeger, “Software Quality: The
Elusive Target [Special Issues Section],” IEEE Software,
Vol. 13, No. 1, 1996, pp. 12-21. doi:10.1109/52.476281

[7] B. W. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G. Mc-
Leod and M. Merritt, “Characteristics of Software Qua-
lity,” North-Holland, Amsterdam, 1978.

[8] International Standards Organization, “Information Tech-
nology—Software Product Evaluation—Quality Charac-
teristics and Guidelines for Their Use,” ISO/IEC is 9126,
Geneva, 1991.

[9] ISO, International Organization for Standardization, “ISO
9126-1:2001, Software Engineering—Product Quality, Part
1: Quality Model,” 2001.

[10] B. W. Boehm, J. R. Brown and M. Lipow, “Quantitative
Evaluation of Software Quality,” Proceedings of the 2nd
International Conference on Software Engineering, Los
Alamitos, 13-15 October 1976, pp. 592-605.

Copyright © 2012 SciRes. JSEA

http://dx.doi.org/10.1109/52.476281

A Model for Software Product Quality Prediction 399

[11] R. G. Dromey, “Concerning the Chimera [Software Qual-
ity],” IEEE Software, Vol. 13, No. 1, 1996, pp. 33-43.
doi:10.1109/52.476284

[12] R. G. Dromey, “A Model for Software Product Quality,”
IEEE Transactions on Software Engineering, Vol. 21, No.
2, 1995, pp. 146-162. doi:10.1109/32.345830

Notations:

NLOC: Number of lines of code.
NHDL: Number of hidden file used.
NVERd: Number of variable declared.
NinputFUN: Number of input function used for data en-
try.

NcommL: Number of comment lines.
NLOOP: Number of Loop used (process repetition).
NoutputFUN: Number of out put functions used (for dis-
play the intermediate result or final Result).
Nclass: Number of class defined.
Nfunct/CL: Number of function/class.

Copyright © 2012 SciRes. JSEA

http://dx.doi.org/10.1109/52.476284
http://dx.doi.org/10.1109/32.345830

A Model for Software Product Quality Prediction 400

Annexure-1

Case I: Program developed in C Language for the cal-
culation of factorial of a number.

Program developed by programmer-I
#include <stdio.h>
#include <conio.h>
main ()
{ int n,f,i;
print (“Please Enter the Number”);
scanf(“%d’’, &n);
if (n<0)
{ printf(“Try Again”);
}
else if (n= =1)
{f=1;
printf(“factorial is=%d”,f);
}
else
{ f=1;
for (i=1; i<n; i++)
{ f=f*i;
}
printf(“%d”,f); }
return(0);

}
Program developed by programmer – II

#include <stdio.h>
#include <conio.h>
main ()
{
// Declare the variable
int i;
int f,n;
clrscr();
//Take the input value from the user
printf (“Please Enter the Number”);
scanf (“%d’’, &n);
//check the input value whether it is positive or
Negative
if (n<0)
{
printf(“factorial is not possible”);
printf(“Try Again”);
}
elseif (n= =1)
{
f=1;
printf(“factorial is=%d”,f);
}
else
{
f=1;
for (i=1; i<n; i++)

{
f=f*i;
}
printf(“%d”,f);
}
return(0);

}

Annexure-2

Case II: Program developed in Object Oriented Pro-
gramming Language (C++) for the calculation of facto-
rial of a number.

Program developed by programmer-I
#include <iostream.h>
#include <conio.h>
class factorial
{ private:
int i,n,f;
public:
void enterdata (void)
{ cout<<” Please Enter the Number”;
 cin>>n;
}
void calculation (void)
{ if (n<0)
cout<<”factorial is not possible”;
elseif (n==1)
{ f=1;
cout<<”factorial is=”<<f;
}
else
{f=1;
for (i=1; i<n; i++)
{f=f*i;
}
cout<<”factorial of”<<n<<”=”<<f;
}
}
void main(void)
{ factorial s1,s2;
 s1.enterdata (void);
 s2.calculation (void);

 }
Program developed by programmer-II

// Include the supporting file
#include <iostream.h>
#include <conio.h>
// Define the class
class factorial
{
private:
int i,f;
int n;

Copyright © 2012 SciRes. JSEA

A Model for Software Product Quality Prediction

Copyright © 2012 SciRes. JSEA

401

public:
void enterdata (void);
void calculation (void);
}
// Define the class member functions
void factorial: : enterdata(void)
{
cout<<” Please Enter the Number”;
cin>>n;
}
// Do the calculation
void factorial : :calculation (void)
{
// check the number whether it is positive or nega-
tive
if (n<0)
{
cout<<”factorial is not possible”;
}
elseif (n==1)
{
f=1

cout<<”factorial of given no. is=”<<f;
}
else
{
f=1;
for (i=1; i<n; i++)
{
f=f*i;
}
cout<<”factorial of given no. is=”<<f;
}
}
void main (void)
{
// Create the object of the class
factorial m1,m2;
clrscr();
// Calls the class members functions
m1.enterdata (void);
m2.calculation (void);
}

