
Journal of Software Engineering and Applications, 2012, 5, 375-384
http://dx.doi.org/10.4236/jsea.2012.56044 Published Online June 2012 (http://www.SciRP.org/journal/jsea)

375

xSPIDER_ML: Proposal of a Software Processes
Enactment Language Compliant with SPEM 2.0

Carlos Portela1, Alexandre Vasconcelos1, Antônio Silva2, Elder Silva2, Mariano Gomes2,
Maurício Ronny2, Wallace Lira2, Sandro Oliveira2

1Informatics Center, Federal University of Pernambuco, Recife, Brazil; 2Institute of Exact and Natural Sciences, Federal University
of Pará, Belém, Brazil.
Email: {csp3, amlv}@cin.ufpe.br, {aandrecunhas, elderferreirass, mauricio.ronny, wallace.lira}@gmail.com,

{marianogomes, srbo}@ufpa.br

Received March 8th, 2012; revised April 3rd, 2012; accepted April 12th, 2012

ABSTRACT

SPEM (Software Process Engineering Metamodel Specification) is the software processes modeling standard defined
by OMG (Object Management Group). However, the process enactment support provided by this standard has many
deficiencies. Therefore, the main objective of this paper is to propose a language for software process enactment based
upon SPEM 2.0 concepts. First, we will present a critical analysis of the SPEM standard approach for enactment. Then,
we will present xSPIDER_ML, an enactment language, and describe its structure, components and associated rules. In
order to evaluate the proposed language, a case study is performed through a RUP (Rational Unified Process) process
instantiation. The language presented in this paper is part of a support set of tools for flexible software process enact-
ment. Additionally, this set of tools is in compliance with software process quality models.

Keywords: Software Process; Enactment Language; SPEM; RUP

1. Introduction

Software process is the main object of study in Software
Engineering and can be defined as the set of activities
that aims to build software from a set of requirements [1].
The software development organizations must be able to
define, use and improve their software development
process. Thus, an organization must define a standard
process which consists of a set of necessary tasks that
can be instantiated in any software development project.

This standard process is a basis for defining the proc-
esses that are adopted for each project the company.
These processes are known as instantiated processes that
define how development projects will be executed [2]. It
is necessary to use a modeling language for the construc-
tion of these process models. The OMG (Object Man-
agement Group) [3] defined the SPEM (Software & Sys-
tems Process Engineering Meta-Model) standard [2] for
process modeling. The SPEM uses the notations of UML
(Unified Modeling Language) [4] to define a specific set
of stereotypes to support process modeling. SPEM 2.0
states to partially support the process enactment [2]. A
major advantage of executable models is that they can be
implemented, monitored, validated and improved [5].

However, the SPEM is the OMG standard language
for process modeling, there are few organizations that

use it [6]. Most process modeling tools are incorporated
into PSEEs (Process-Centered Software Engineering En-
vironments) being produced in academic environments
and adopting its own language [5]. Furthermore, it was
observed that only a subset of stereotypes and diagrams
provided by SPEM is actually used by organizations that
adopt this standard [6]. Moreover, the support the proc-
ess enactment has many deficiencies [7]. Thus, the SPI-
DER Project [8], acronym standing for Software Process
Improvement: DEvelopment and Research, opted for a
definition of SPEM profile, called SPIDER_ML (Mod-
eling Language) [9].

SPIDER_ML was developed to assist the modeling of
software processes from a limited set of notations suffi-
cient to model any software process [6]. However, SPI-
DER_ML does not offer native mechanisms for software
process simulation and enactment similarly to SPEM.

This paper has two main objectives. The first objective
is to introduce the SPEM 2.0 standard to support the en-
actment of software processes and to perform a critical
analysis of this approach. The second objective is to pre-
sent xSPIDER_ML that is an extension of the modeling
language SPIDER_ML which allows the enactment of
SPEM 2.0 processes.

In addition to this introductory section, this paper pre-
sents in Section 2 a critical analysis on enactment approa-

Copyright © 2012 SciRes. JSEA

xSPIDER_ML: Proposal of a Software Processes Enactment Language Compliant with SPEM 2.0 376

ches proposed by SPEM 2.0, highlighting its limitations
to support the process enactment. Section 3 defines an
extension of SPIDER_ML that allows the specification
of executable process models, compliant to the SPEM
2.0 standard. A case study of a RUP Process instantiation
[10] is presented in Section 4 to evaluate and ensure that
processes can be enacted regarding the structure and
rules defined in the xSPIDER_ML behavioral semantics.
Finally, the conclusions and future works of this research
are presented in Section 5.

2. SPEM 2.0 and the Process Enactment

The SPEM 2.0 is the OMG standard dedicated to soft-
ware process modeling. It is defined both as a meta-
model and as a UML 2 profile [4]. Its main objective is
to provide organizations with the means to define a con-
ceptual framework. It does so providing the concepts
necessary for modeling, interactions, documentation,
management and presentation of their methods and de-
velopment processes [2]. This structure is shown through
a meta-model, composed of seven packages, as shown in
Figure 1.

Each of these packages is composed by a set of spe-
cific stereotypes for modeling processes. These stereo-
types are used with other UML notation aiming the ex-
tension of the semantic of their elements and relation-
ships. This extension must comply with the rules estab-
lished by the SPEM standard [2]. In general, these ste-
reotypes allow us to link a special semantics with instan-
ces of the UML elements. Therefore, the SPEM allows its
users (process modelers) to utilize the UML, defining
stereotypes that can be used in basic UML diagrams,
including the class, package, activity, use case, sequence
and state transition diagrams.

The Core package introduces classes and abstraction
and sets the basis for all other metamodel packages. The

building block of this package is the class Work Defini-
tion that generalizes any work in compliance with SPEM
2.0 [5]. The Process Structure package defines elements
to represent models of basic processes through a stream
of Activities with their Work Product Uses and Role Uses.
The possibility of describing textually these elements (i.e.
add properties that describe the element) is supplied by
the Managed Content package, which provides the man-
agement concepts of textual description of process ele-
ments. An example of such is the Guidance class. The
Method Content package, defines key concepts for the
specification of elements such as Roles, Tasks and Work-
Products. The Process with Methods package defines the
set of elements necessary for integration of processes.
These processes are defined through the intersection of
concepts from the Process Structure and Method Content
packages. The Method Plugin package provides mecha-
nisms for the management and reuse of method and pro-
cess content libraries. Finally, the Process Behavior packa-
ge provides a way to relate the SPEM 2.0 elements with
external behavior model, such as UML [4] or BPMN
(Business Process Modeling Notation) [11].

Although the process enactment has been a main de-
mand when it was issued the RFP (Request For Proposal)
[12] for the definition of SPEM 2.0 specification, the
specification approved did not satisfy the enactment re-
quirements [7]. There are two suggested approaches for
process enactment models [2]. In the following subsec-
tion, these approaches are described and we present some
observations regarding the viability of each of these ap-
proaches.

2.1. SPEM 2.0 Recommendations for Enactment

In the first approach [2], the SPEM 2.0 standard proposes
the mapping of its processes into project plans through
project planning and enactment systems such as IBM

Figure 1. SPEM 2.0 structure [2].

Copyright © 2012 SciRes. JSEA

xSPIDER_ML: Proposal of a Software Processes Enactment Language Compliant with SPEM 2.0 377

Rational Portfolio Manager or Microsoft Project. After
the mapping with project plans, these can be instantiated
through planning tools where resources can be allocated.
However, despite this approach being very useful for
project planning, it does not meet the process enactment
requirements that are: automatic changes in the tasks for
responsible roles; automatic artifact forwarding; automa-
tic control of the state of work products after each acti-
vity; among other features [7]. Besides, this approach
biggest disadvantage is its strong dependence on a pro-
ject planning tool.

The second approach [2] provides a way to relate
SPEM 2.0 process elements with external behavior mo-
dels, through the Process Behavior package. The objec-
tive is enable the process modeler the possibility of
choosing an execution method that best fits their needs,
in which case this approach authors claims greater flexi-
bility. For example, the SPEM 2.0 elements can be
mapped to the execution language BPEL (Business Proc-
ess Execution Language) [11] aiming to reuse BPEL
execution mechanism. This mechanism is a standard exe-
cution language in the business processes area.

However, this second approach offers flexibility re-
garding the representation of behavioral aspects of the
SPEM 2.0 processes, it has some deficiencies. For in-
stance, the standard is unclear about how the relationship
of the process elements with behavior models must be
addressed [7]. It just provides proxy classes that refer-
ence other elements in an external behavioral model. The
second deficiency is that the mapping of SPEM 2.0
process elements on a specific model of behavior can be
done differently in an organization depending on the in-
terpretation of the process modeler. Thus, a standardize-
tion effort may be necessary in order to adjust the map-
ping rules between SPEM 2.0 concepts and a specific
behavior model.

In order to address these deficiencies in the standard,
there are some studies that propose to automate the en-
actment of software processes modeled using SPEM no-
tations. These studies are presented in the following sub-
section.

2.2. Works Related to the SPEM Enactment

In [7], it is proposed a SPEM 2.0 extension called xSP-
EM (eXecutable SPEM) which provides the required
concepts to enact a process model. A subset of the SPEM
2.0 notation is used, then other characteristics are added
such as the definition of project assigned resources and
activities to determine work product and task attributes.
It also defines ways to store the process status during the
enactment. Since both the process model and project
model were defined, it is proposed to validate these
models using formal methods, such as model-checking
available in the Petri Nets area. Finally, it is presented

the mapping rules between a subset of the SPEM 2.0
concepts and BPEL that allow them to be executed.

The approach presented in [13] proposes that the soft-
ware development activities specified in SPEM should be
transformed into a specification of the BPMN subprocess.
This transformation is made through a Relations Lan-
guage defined using the QVT approach (Query/Views/
Transformations). Then the BPMN subprocess obtained
is transformed into a language standard specification. It
is necessary to define a process workflow language, such
as BPEL4WS (Business Process Execution Language for
Web Services) or XPDL (XML Process Definition Lan-
guage). Afterwards, the procedure according to the se-
lected language will be the input to a workflow engine
such as Open Business engine (which supports XPDL)
and BPEL Process Manager (which supports BPEL).

These approaches have deficiencies regarding the pre-
paration and maintenance of process enactment, such as:
 The main SPEM elements that provide appropriate

semantics for process modeling have no equivalents
in BPMN. This causes the loss of appropriate seman-
tics for software process modeling;

 The transformations between models are necessary
for some refinement stages before they can be exe-
cuted;

 These approaches require a great effort in maintaining
the mapping between models in the case of any
change in the process during enactment. This creates
the problem of traceability and how these changes
may impact on the SPEM 2.0 initial model.

Therefore, it is known that the SPEM standard does
not provide by default any concepts or formalisms for
process enactment [7] and that the approaches that allow
the enactment of these processes from the models trans-
formation define transformation specific standards that
demand a great effort to keep the correspondence be-
tween the initial model (SPEM) and the final model
(BPMN). In this scenario, we present a proposal in Sec-
tion 3 of a process enactment language which aims to
support the implementation of these SPEM models with-
out the need to use transition models.

3. xSPIDER_ML: Processes Enactment
Language

The SPIDER_ML language was created based upon a
survey and an analysis of several modeling languages
both performed in [14]. Furthermore, it was also based
upon observations made during the implementation of
organizational process improvement programs [6]. Thus
it was established a set of the software industry most
used practices regarding the processes definition and
modeling. This language main objectives are [6]: to in-
corporate and to formalize the process modeling prac-
tices used by software industry; refining and reusing the

Copyright © 2012 SciRes. JSEA

xSPIDER_ML: Proposal of a Software Processes Enactment Language Compliant with SPEM 2.0 378

set of SPEM and UML elements; and to make the proc-
ess modeling easier by using a reduced set of elements
when compared with the number of SPEM elements.
This language is adopted by the process modeling tool
Spider-PM1 [15], developed by the SPIDER Project, un-
der GPL (General Public License).

SPIDER_ML can represent any organizational soft-
ware process despite presenting a reduced set of elements
[6]. This is possible because these elements are enough
to represent the structures of Standard Processes and In-
stantiated Processes. These structures are described using
UML diagrams, in which: the package diagram describes
the Standard Process; the activity diagram represents the
Instantiated Process; and the class diagram presents the
associations between the elements.

The Table 1 shows some elements of SPIDER_ML
that refers to Instantiated Process. These elements will be
used in the Section 4 case study. The details of these
elements as well as the complete SPIDER_ML structure
are available in its technical specification [9].

However, as mentioned in Section 1, both SPIDER_
ML and SPEM have no native mechanisms for auto-
mated enactment of the software processes. Therefore, it
is proposed the xSPIDER_ML approach (eXecutable
SPIDER_ML). This is a SPIDER_ML extension created
in order to allow SPIDER_ML modeled processes to be
executed. For this purpose, we defined a formalism that
added new components and attributes, as well as incor-
porating enactment rules to SPIDER_ML.

In addition, xSPIDER_ML aims to allow that the en-
actment is performed in a flexibly manner, semi-auto-
mated in compliance with the major process maturity
models adopted in the Brazilian scenario: CMMI-DEV
[16] and MR-MPS [17]. This compliance is related to the
process capacity as specified in these two models. Proc-
ess capability is defined as the refinement degree and
institutionalization that the process is executed in the
organization or in the organizational unit [17].

The xSPIDER_ML language is one of the Spider-PE
tools. Spider-PE [18] is a support set of tools designed in
order to support the software process enactment. The
other tools that complement the Spider-PE include: 1) a
best practices mapping between the CMMI-DEV and
MR-MPS models. This mapping is performed consider-
ing the process capacity in order to identify which best
practices related to the process enactment; 2) a frame-
work that combines the practices identified in the map-
ping and in the xSPIDER_ML formalism enactment.
This framework defines generic activities that can be
adopted by any organization that wants to enact its soft-
ware process; and 3) a free software tool that imple-
ments the framework activities and the xSPIDER_ML
enactment formalism. This software tool was conceived in

Table 1. Instantiated process elements [9].

Notation Element Description

Process

A Standard Process instance for a
specific project.

Phase

A significant period of an Instanti-
ated Process.

Iteration

A set of Activities and Tasks that
are repeated in a Phase.

Milestone

A significant event in an Instanti-
ated Process.

Activity

A work to be performed during an
Instantiated Process and that can be
decomposed.

Task Use A work that cannot be decomposed.

order to systematize the flexible and semi-automated
process enactment. Furthermore, this tool is designed in
order to validate the proposed language and framework.

The study presented in [5] was the Spider-PE main re-
ference regarding the flexibility concept during enact-
ment. This referenced study defines the conceptual basis
for the WebAPSEE environment definition which uses a
visual language called WebAPSEE-PML (Process Mo-
deling Language). This environment adopts the formal
specification with graph grammars approach to assist the
enactment of the processes modeled in this language. In
the SPIDER Project context, with respect to life cycle
processes research, we developed a tool for software proc-
ess simulation, called SPSM (Software Process Simula-
tor Machine) [19]. This simulation tool adopts the SPI-
DER_ML syntax as basis for simulating the enactment of
process models.

Based upon the premises presented in this section, the
xSPIDER_ML was designed as an SPIDER_ML exten-
sion that adds to the later some components (described in
Subsection 3.1) and implements rules (described in Sub-
section 3.2). Both characteristics combined add a beha-
vioral semantic to the SPIDER_ML language (therefore
adds to SPEM 2.0). This formal enactment only occurs
on the elements that compose the Instantiated Processes
structure (shown in Table 1). This occurs because these
processes are enacted by an organization considering the
resources available and the specific characteristics of
software that will be produced [14].

3.1. Language Structure

Considering that the xSPIDER_ML objective is to enact
SPIDER_ML models (characterized as SPEM profile), 1Available at http://spider.ufpa.br/index.php?id=resultados.

Copyright © 2012 SciRes. JSEA

xSPIDER_ML: Proposal of a Software Processes Enactment Language Compliant with SPEM 2.0 379

we chose to define its structure based upon the structure
proposed by xSPEM [7]. This choice was made because
both approaches aim at making the SPEM 2.0 executable.
The purpose of this packets structure is to provide or-
ganizations with the means to define a conceptual struc-
ture and the necessary concepts for the semi-automated
enactment of their development processes. The xSPI-
DER_ML structure was divided in: xSPIDERML_Core,
Process Parameters, Project Variables, Event Types and
Process Trace.

For a better understanding, it will be presented only a
subset of these language concepts, selected according to
their relevance for understanding the case study (pre-
sented in Section 4). The details of the other concepts
that compose the xSPIDER_ML are available in its tech-
nical specification [20].

The SPIDER_ML elements related to the Instantiated
Processes (see Table 1) are grouped in the xSPIDERML_
Core package. In addition, the xSPIDERML_Core pack-
age reuses concepts and xSPEM [7] and SPEM 2.0 [2]
elements to provide all the necessary elements means for
defining and structuring a software process suitable for
process enactment. These elements determine the basis
for all other xSPIDER_ML packages, as shown in Fig-
ure 2.

In this package we highlight the importance of the Ac-
tivity component. This is a Work Breakdown Element and
Work Definition specialization which defines the general
unit of work within a process as well as a process itself.
It relates to Work Product Use through Process Parame-
ter class instances and Role Use through Process Per-
former Map instances. The Process class represents a set
of work definitions partially ordered with the intention of
achieving development goals, such as the specific soft-
ware system delivery. These processes are characterized
as Phases and Milestones sequences and expressing the
product development life cycle.

Phase represents a significant period of time for a
project. Usually there are events that occur in the phase
end, such as a control point, a milestone or the delivery
of a product to the customer. Milestone is a Work Break-
down Element that represents a significant event for a
development project. Events usually occur in the Mile-
stone such as an important decision-making or the deli-
very of a working version of the software. Iteration con-
sists of a set of activities and tasks that should be exe
cuted in a loop. At the iteration end a Milestone can oc-
cur. Finally, the Task Use class in this package was also
highlighted. This class must provide information related
to the resources involved during the enactment of a re-
presented task.

The process will evolve from one state to another dur-
ing the enactment. In this context, state means the situa-
tion in which the process is in relation to the enactment:

not started, enacting, paused, finalized. Through these
states, it is possible to determine the current stage of the
project development. Thus, it is necessary to define con-
cepts for the characterization of all these process states
during the enactment. This is the Process Parameters
package goal. Therefore, the Process Parameters pack
age defines properties for the xSPIDERML_Core basic
structural elements that enables the enactment. The con-
cepts regarding the process states types (Process State
and State Type classes), task types (Task Type class) and
flexibility in process enactment (Feedback Connection
class) originated from the WebAPSEE approach [5]. Fur-
thermore, we used concepts of states related to the en-
actment time of process elements (Time State class) from
the xSPEM approach [7]. Finally, this package used ele-
ments from the SPSM approach [19]. These elements
regard the connection and specialization of the Task Use
class (Dependency Connection, Stochastic Task and Con-
tinous Task classes).

These properties contained in the Process Parameters
package can be classified as universal and existential.
The universal properties are those which must be com-
pleted in each enactment. For instance, every activity
must start and end; once an activity is finalized, it has to
stay in this state. These states are defined in the State
Type and Process State classes. The existential properties
are those that must be true at least for an enactment. As
an example, each activity must be performed in a time
between the expected Start Time and the expected End
Time.

Additional resources are necessary in order to adjust
the process of a project. This involves to define specific
properties for activity scheduling and resource allocation.
These properties are introduced in the Project Variables
package that covers: the concepts of classification and
resource states by Web APSEE [5]; estimated and real
required workload to perform SPEM tasks [7] through
the Process Performer Map class and through Resource
and Task Use attributes; and the Human Resource attri-
butes were added to empower the expressiveness of the
xSPIDER_ML language. In this package it is redefined
the Activity class, adding to its definition the expected
time interval during which an activity must be enacted
(expected Start Time and expected End Time) and the real
time in which this activity occurs (real Start Time and
real End Time) so that comparisons could be made.

Based upon xSPEM [7] and WebAPSEE [5] appro-
aches the states and transitions were defined. These allow
the process enactment evolution through the Event Types
package. These actions are triggered by events (Start
Task, Pause Task, Resume Task, Cancel Task, Fail Task
and Finish Task) modeled as specializations of the Task
Event class (an abstract event that involves a target task).

Finally, we identified the need to record these events

Copyright © 2012 SciRes. JSEA

xSPIDER_ML: Proposal of a Software Processes Enactment Language Compliant with SPEM 2.0

Copyright © 2012 SciRes. JSEA

380

Figure 2. xSPIDER_ML packages structure [20].

xSPIDER_ML: Proposal of a Software Processes Enactment Language Compliant with SPEM 2.0 381

performed during the process enactment that triggers
transitions between states. We defined the Process Trace
package based upon the xSPEM [7] because this ap-
proach has the same purpose as the approach proposed in
this paper: to record the process enactment. These events
may be produced by the process (Exogenous Event) or
produced in the process (Endogenous Event).

3.2. Enactment Rules

After defining the xSPIDER_ML components structure,
it was necessary to define rules to be applied on these
elements and their relationships. In this context, rules
define pre and post-conditions in a manner similar to an
inference engine of a specialist system [5]. These rules
allow you to extend the SPIDER_ML semantics (and
consequently the SPEM 2.0 semantics), in order to rep-
resent dynamic information, inherent in properties de-
fined in Subsection 3.1. This section presents only a
subset of rules, selected according to their relevance to
the case study, described in Section 4. Full details of
these rules base comprising the xSPIDER_ML are avail-
able in its technical specification [20].

The rules that compose the xSPIDER_ML formalism
relate to state and time transition of the process elements.
To present these rules, formal specification will be used
based upon the xSPEM [7] and SPSM [19] approaches.
This specification indicates a step-by-step enactment
rule application on defined scenarios. Thus, we have: s
 ∀ws—represents the Work Sequence class instantia-

tion (contained in the xSPIDERML_Core package),
indicating the relation between process elements (base
and predecessor);

 predecessor—represents a Work Sequence class at-
tribute that indicates which element precedes the en-
actment of the base element;

 link type—represents a Work Sequence class attribute
that indicates the relationship type between elements
(these types are present in Work Sequence Kind class
of the xSPIDERML_Core package);

 link to predecessor state—represents a Work Sequen-
ce class attribute that indicates the possible connection
state between the related elements (these states are
present in State Type and Process State classes of the

Process Parameters package);
 clock—represents the internal clock associated to the

concept of enactment time of a specific Work Break-
down Element.

According to the xSPIDER_ML structure, it is possi-
ble to identify two aspects common to the Task Use com-
ponents. First, a task can assume the states: not Started,
started, paused and finished. Secondly, there is a time
sense and clock associated with each task that can be
represented from the set {too Early, on Time, too Late}.
In order to apply rules to these aspects, it is necessary to
extend the Task Use element in order to introduce attri-
butes that reflect the dynamic information (the current
task state and the internal clock concept). This clock con-
cept is abstract and not represented in the xSPIDER_ML
structure. However, this concept should be taken into
consideration by the enactment mechanism to adopt this
language.

An abstract observation of the operational semantics of
processes enactment in relation to these properties can be
performed. Considering t as the task to be performed,
whose initial state is not Started, the state transitions re-
lations are presented in the Figure 3.

Attached to each task, there is the concept of internal
clock to check its enactment time status. Thus, for a task
t with initial state started and status on Time has the fo-
llowing possibilities are represented in the Figure 4.

4. Case Study: Small RUP Instantiation

In order to evaluate the enactment language proposed in
this paper and to clarify the use of its components and
associated rules, we present (from the modeling in the
Figure 5) an instantiation of a RUP (Rational Unified
Process) profile for small projects, available at [10].

The case study objective is to demonstrate that xSPI-
DER_ML language can be applied in a real process eva-
luating the enactment formalism proposed by this lan-
guage. Supposing that the RUP Process instance (shown
in Figure 5) consists of four phases: Inception, Elabora-
tion, Construction and Transition. First, it is presented
the model of this process using the SPIDER_ML nota-
tions (Table 1).

This process modeling was performed with the Spider-

Figure 3. Transition states of a task.

Copyright © 2012 SciRes. JSEA

xSPIDER_ML: Proposal of a Software Processes Enactment Language Compliant with SPEM 2.0 382

Figure 4. Transition status of a task.

Figure 5. RUP process modeling.

PM tool [15]. Since this tool applies the process hierar-
chy settings, it does not allow the relationship between
elements of different hierarchical levels (i.e. a direct con-
nection between Process Level elements and Phases Le-
vel elements).

Assuming that this process is in the Elaboration Phase
in a given moment of his enactment, we chose to adopt
the UML object diagram [4] to represent this situation.
This diagram allows to instantiate the classes defined in
the Process Parameters package (Subsection 3.1), as shown
in Figure 6.

For this process, enacting (state = enacting) according
to the expected time (time = On Time), the Inception Ph-
ase was completed late in relation to the plan (state =
enacting and time = too Late). The Construction and
Transition Phases have not started (state = not Started).

The Elaboration Phase profile of RUP Process con-
sists of three iterations. By the end of the third interaction

the Elaboration Milestone occurs, from which only the
first iteration (Iteration 1) was initiated (state = started
and time = on Time).

For this iteration, the Prepare Environment For AnIt-
eration activity is represented composed by the Manage
Iteration activity. These activities are represented in the
started state and in compliance with the expected time
(state = started and time = on Time). This later activity is
composed by Acquire Staff, Identify And Assess Risks
and Initiate Iteration tasks.

Suppose that the Acquire Staff task was initially fin-
ished on Time. Subsequently, according to the classifica-
tion of the dependency connection established between
tasks (AND), the Initiate Iteration and Identify And As-
sess Risks tasks are performed simultaneously. In the
example, the Identify And Assess Risks task was com-
pleted earlier than the expected time (time = too Early).
However, there was a need to pause (state = paused) the
Initiate Iteration task because it requires the allocation of
more human resources for its implementation (state De-
scription = “Is Necessary to allocate more staff”). The
allocation of human resources was carried out before the
Acquire Staff task. Therefore, in order to remove the ob-
struction in the Initiate Iteration task accomplishing, we
used a Feedback Connection (FC1) to return to the proc-
ess enactment. This return allows us to rerun the Acquire
Staff task.

It is important to highlight that the case study pre-
sented in this paper has some limitations because it pre-
sents only a certain enactment stage and only instances of
Process Parameters package elements described in Sub
section 3.1. However, the full details of this case study
are available in [20].

5. Final Thoughts

In this paper, we proposed an extension for the SPI-
DER_ML [9] language, which is characterized as a pro-
file of the SPEM 2.0. This extension aims to provide the
needed concepts to enact a process model. This enact-
ment language proposed, xSPIDER_ML, adds elements
and rules that allow the representation of dynamic infor-
mation of these elements during the enactment, thus es-
tablishing a behavioral semantics so that processes mo-
deled using SPIDER_ML notations can be enacted with

Copyright © 2012 SciRes. JSEA

xSPIDER_ML: Proposal of a Software Processes Enactment Language Compliant with SPEM 2.0 383

Figure 6. RUP process instantiation.

the aid of an execution machine. After describing the
structure of components and rules, we presented a case
study that instantiates a RUP [10] process. This case
study, despite its limitations, allowed us to evaluate
xSPIDER_ML from the use of its components and asso-
ciated rules in a real process.

There are other approaches that allow the SPEM 2.0
processes enactment [7,13], as described in Subsection
2.2. However, these approaches have restrictions, such as:
the appropriate semantics loss for software processes
modeling in the transformation between models; the ne-
cessity of refinement steps before the process can be en-
acted; and a great effort in maintaining the mapping be
tween models if any changes are made to the process
during the enactment. These deficiencies are not present
in xSPIDER_ML since it does not use any transforma-
tion process between models in its approach.

The xSPIDER_ML objective is to provide mechani-
sms that allow the flexible and semi-automated processes
enactment in compliance with major quality models
adopted in the Brazilian industry. As mentioned in Sec-
tion 3, this language is part of a set of support tools for
process enactment, proposed in [18]. In addition to this
language, a Mapping between CMMI-DEV and MR-MPS

Models and the Process Enactment Framework have
been designed [21], which helped the language to address
the compliance to best practices of these quality models.
Currently, a free software tool that implements the lan-
guage xSPIDER_ML from an execution engine is under
development in the Project SPIDER laboratory.

6. Acknowledgements

The authors would like to thank CNPq (Conselho Na-
cional de Desenvolvimento Científico e Tecnológico—
National Counsel of Technological and Scientific Deve-
lopment), for financial support through the DTI grant of
the MCT/CNPq/FNDCT No. 19/2009 announcement for
the development of this work.

REFERENCES
[1] W. Humphrey, “Managing the Software Process,” Addi-

son-Wesley, Boston, 1989.

[2] http://www.omg.org/spec/SPEM/2.0/PDF

[3] http://www.omg.org/

[4] http://www.omg.org/spec/UML/

[5] C. Reis, “A Flexible Approach to Evolvable Software Pro-

Copyright © 2012 SciRes. JSEA

xSPIDER_ML: Proposal of a Software Processes Enactment Language Compliant with SPEM 2.0 384

cess Enactment,” Ph.D. Thesis, Universidade Federal do
Rio Grande do Sul, Porto Alegre, 2003.

[6] R. Barros and S. Oliveira, “SPIDER_ML: A Software Pro-
cess Modeling Language,” 2nd Escola Regional de Infor-
matics, Manaus, 6-8 October 2010.

[7] R. Bendraou, B. Combemale, X. Crégut and M. P. Ger-
vais, “Definition of an Executable SPEM 2.0,” 14th Asia-
Pacific Software Engineering Conference, Aichi, 4-7 De-
cember 2007, pp. 390-397. doi:10.1109/ASPEC.2007.60

[8] S. Oliveira, et al., “SPIDER: A Proposal for Systemic So-
lution of Free Software Suite Tools to Support Imple-
mentation of the MPS.BR Model,” Journal of the Brazil-
ian Program of Quality and Productivity Software, 2nd
Editon, MCT/SEPIN, Brasilia, 2011, pp. 103-107.

[9] http://www.spider.ufpa.br/projetos/spider_pm/SPIDER_
ML%5B1.1%5D.pdf

[10] http://www.wthreex.com/rup/smallprojects/index.htm

[11] http://www.omg.org/spec/BPMN/2.0/PDF

[12] http://www.omg.org/cgi-bin/doc?ad/2004-11-04

[13] F. Zorzán and D. Riesco, “Transformation in QVT of Soft-
ware Development Process Based on SPEM to Work-
flows,” Journal Latin America Transactions, Vol. 6, No.
7, 2008, pp. 655-660.

[14] S. Oliveira, “Software Process: Principles, Environments
and Mechanisms Enactment,” Ph.D. Thesis, Federal Uni-
versity of Pernambuco, Recife, 2006.

[15] R. Barros and S. Oliveira, “Spider-PM: Uma Ferramenta
de Apoio à Modelagem de Processos de Software,” 8th
Encontro Anual de Computação, Catalão, 26-28 October
2010.

[16] http://www.sei.cmu.edu/reports/10tr033.pdf

[17] http://www.softex.br/mpsbr/_guias/guias/MPS.BR_Guia_
Geral_2011.pdf

[18] C. Portela, A. Vasconcelos and S. Oliveira, “Spider-PE:
A Tooling Support to Process Enactment adherent to the
Quality Models,” 9th Workshop of Theses and Disserta-
tions of Software Quality, Curitiba, 6 June 2011.

[19] R. Chaves, E. Tavares, S. Oliveira and E. Favero, “A Soft-
ware Process Simulator Machine for Software Enginee-
ring Simulation Games,” Brazilian Symposium on Games
and Digital Entertainment, Florianopolis, 8-10 November
2010, pp. 49-58. doi:10.1109/SBGAMES.2010.35

[20] http://www.spider.ufpa.br/projetos/spider_pe/xSPIDER_
ML_Especificacao_Tecnica.pdf

[21] http://www.spider.ufpa.br/projetos/spider_pe/SPIDER-PE
_Framework_Execucao_Processos.pdf

Copyright © 2012 SciRes. JSEA

