
Journal of Software Engineering and Applications, 2012, 5, 367-374
http://dx.doi.org/10.4236/jsea.2012.56043 Published Online June 2012 (http://www.SciRP.org/journal/jsea)

367

The Success Factors of Running Scrum: A Qualitative
Perspective

Rich C. Lee1,2

1System Technology Group, IBM, Chinese Taipei; 2Department of Computer Science, National Taipei University of Technology,
Chinese Taipei.
Email: rich.chih.lee@gmail.com

Received April 15th, 2012; revised May 9th, 2012; accepted May 18th, 2012

ABSTRACT

Scrum—Agile programming—is getting more attention in Software Engineering practices. Many software projects be-
gan with small and were not certain about the requirements until projects have completed; this makes Scrum more ap-
propriate than other development methodologies. This paper reintroduced Scrum from qualitative perspective by apply-
ing ethnography and in-depth interview to two different types of project teams to articulate what the success factors are
for running Scrum framework. It clearly demonstrated how qualitative research could help in disclosing the essence of
facts during the Scrum adaptation in depth. It also articulated how these successful factors mutually affect to one an-
other from System Dynamics perspective and to give further recommendations to Scrum teams and those who tend to
apply Scrum development methodology.

Keywords: Software Engineering; Scrum; Qualitative Research; System Dynamics

1. Introduction

Software development is a process of communication [1].
There are many approaches [2] helping the development
to produce qualified software to stakeholders. Many soft-
ware projects began with small and were not certain
about the requirements until projects have completed.
The requirements are sensitive and volatile to environ-
ment changed. Stakeholders did not have a clear picture
of what software features were in the early stage of de-
velopment. Therefore Agile Programming approach was
called since early-planned approaches cannot answer well
to the nature of software development—the software
changes and evolves all the time. Each software develop-
ment project has its uniqueness and varies to others. The
variance may root from the nature of the requirements,
the capability of development team, the difference of de-
velopment approaches, and other organizational culture-
wise factors.

Scrum is an innovative approach to getting work done.
Scrum is an agile framework for completing complex
projects. Scrum originally was formalized for software
development projects, but works well for any complex,
innovative scope of work. The possibilities are endless.
The Scrum framework illustrated on Figure 1 is decep-
tively simple.

There are several key roles in Scrum framework: 1)
Stakeholders: the mission owners, possess the idea about

why to build, what to build, and how processes should be;
2) Product owner: the product development owner,
closely working with stakeholders, creates a prioritized
wish list-stories—called a Product Backlog; 3) Scrum
Master: the facilitator, closely working with product
owner, makes sure the stories in the product backlog will
successfully delivered as workable sub-products; 4) Sc-
rum Team: the developers, closely working with Scrum
Master, deliver workable sub-products according to the
product backlog.

Scrum Master with the team invites the product owner
to debrief the stories in product backlog. Scrum Master
leads a Sprint Planning with the team to disassemble the
story into tasks, a Sprint Backlog. It is a Scrum team ef-
fort to decide how to implement and who should do the
tasks. Daily-Scrum is a group meeting to discuss the pro-
gress of task implementation and technical issues. Scrum
Master keeps the team focused on its goal. At the end of
the sprint, the process of development, the work should be
potentially shippable, as in ready to hand to stakeholders.
The sprint ends with a sprint review and retrospective. As
the next sprint begins, the team chooses another chunk of
the product backlog and begins working again. The cycle
repeats until enough items in the product backlog have
been completed, the budget is depleted, or a deadline
arrives. Which of these milestones marks the end of the
work is entirely specific to the project. No matter which
impetus stops work, Scrum ensures that the most

Copyright © 2012 SciRes. JSEA

The Success Factors of Running Scrum: A Qualitative Perspective 368

Figure 1. Scrum framework. Courtesy from “the Scrum primer” [3].

valuable work has been completed when the project ends.

The success of Scrum framework requires mature ca-
pabilities such as technical and communication. Project
teams are formed to achieve the strategic objectives of
the organization, such as increasing market share, laun-
ching a next generation product, improving quality, en-
hancing customer relationships and for other purposes.
Previous research on project management stressed the
technical dimension of the project, such as project sche-
duling, resource leveling, risk mitigation and project con-
trol. However, the human side of the project, such as
finding the optimal combination of team member’s per-
sonality has been ignored. Unfortunately, project mem-
bers play extremely important roles in achieving the pro-
ject objectives and it is believed project members must
be assigned based on the project needs not only techni-
cally, but also mentally. In other words, it is critical to
discover if the structure of the project team can accom-
plish project objectives before the project begins. After
adjusting the team members to meet the project require-
ments, project performance can be significantly im-
proved; and if adjustment is made to the best possible
balance condition, the team performance can even be
upgraded to the highest level [4].

Software projects are different to one and another. It is
not easy to generalize theories and to deliver tangible
lesson-learn to the practitioners. The practitioners are
looking for answers to improve their software develop-
ment under similar culture and scenarios. To generate
useful knowledge, it requires retrospection on what had
not considered and what had done well from empirical
cases in depth [5]. Qualitative research is a type of scien-
tific research. In general terms, scientific research con-
sists of an investigation that: 1) seeks answers to a ques-
tion; 2) systematically uses a predefined set of proce-
dures to answer the question; 3) collects evidence; 4)
produces findings that were not determined in advance;

4) produces findings that are applicable beyond the im-
mediate boundaries of the study.

To understand the project performance applying Scrum
framework in depth, particular in resource capability ar-
bitration among multiple Scrum teams, qualitative re-
search can disclose the complexity of project activities
and interaction among team members. This research was
designed and trying to answer the following questions:
 What are the critical factors of success team commu-

nication in running Scrum?
 How Scrum Master alleviates the challenge when

team members lack of skills to complete the assigned
task?

 Should Scrum Masters exchange resources for spe-
cific skill required tasks?

 What are the criterions of resource exchange among
Scrum teams?

2. Research Design

Qualitative research is especially effective in obtaining
culturally specific information about the values, opinions,
behaviors, and social contexts of particular populations.
The strength of qualitative research is its ability to pro-
vide complex textual descriptions of how people experi-
ence a given research issue. It provides information about
the “human” side of an issue—that is, the often contra-
dictory behaviors, beliefs, opinions, emotions, and rela-
tionships of individuals. Qualitative methods are also
effective in identifying intangible factors, such as social
norms, socioeconomic status, gender roles, ethnicity, and
religion, whose role in the research issue may not be
readily apparent. When used along with quantitative me-
thods, qualitative research can help us to interpret and
better understand the complex reality of a given situation
and the implications of quantitative data. Although find-
ings from qualitative data can often be extended to peo-
ple with characteristics similar to those in the study po-

Copyright © 2012 SciRes. JSEA

The Success Factors of Running Scrum: A Qualitative Perspective 369

pulation, gaining a rich and complex understanding of a
specific social context or phenomenon typically takes
precedence over eliciting data that can be generalized to
other geographical areas or populations [6].

Figure 2 illustrated the research process. This research
process takes advantage of two powerful methods in
deep disclosing phenomenon, qualitative research and
system dynamics. In system dynamics, a causally-closed
system is one in which the causes creating the behavior
of interest lie within the system. A causally-closed sys-
tem still is open in the sense that it can receive material,
energy, random disturbances, and test inputs from out-
side the boundary [7]. This research relies on qualitative
research to form the conceptual model—system dyna-
mics model—for further phenomenon articulation. Most
of all, by using the system dynamics tool, the researcher
can give conditional parameters to see what the model
behaves later to form the recommendations r policy to
move the outcome towards more positive direction.

The research process begins with interesting pheno-
menon observed, reviewing the literature to see if previ-
ous studies could explain the phenomenon or not, a more
clearer picture of research questions are formed, choos-
ing appropriate research subjects and explain why and
how the research will be conducted, undertaking a series
of qualitative activities, confirming the theoretical foun-
dation of observed artifacts via further literature review,
forming theoretical models to answer the research ques-
tions, developing causal-loop analytical model, simulat-
ing various scenarios for research implication and re-
commendations to practitioners.

3. Data Gathering

3.1. Theoretical Background for Data Gathering

Scrum teams are self-organized, are facilitated by rich
communication and a collaborative environment and are
usually considered effective for colocated projects with a
small team size [8]. Office layout often determines the

effectiveness of team communications, it plays a power-
ful role in shaping a diverse range of psychological and
behavioral outcomes, including individual work motiva-
tion, job satisfaction, and patterns of interactions [9]. The
effective leadership of self-managing teams requires
strong interpersonal and group process skills as well as
external skills of information seeking and giving—plus
advocacy and negotiation [10]—which is the cornerstone
of makes Scrum process success. Agile Development
Framework such as Scrum, requires a daily face to face
communication with customers and co-workers to under-
stand and fulfill their requirements [11]. Collaboration
tools can play significant role in facilitating the team in-
tensive communication, they are used to mitigate the
communication cost. Individual leadership can help Scrum
team making development decisions swiftly during the
Scrum processes [12]. Although making decision swiftly
does not imply the quality of outcome, but holding up
issue certainly will be more devastated than need-to-
readjusted decision, because Scrum process is all about
embrace changes.

3.2. Data Gathering Context

Table 1 illustrated how and what information should be
gathered from the informants to disclose the research
questions. There were four categories of data, namely
environment, communication, project, and retrospection.
The major research tools were observation and interview.
Collecting the data from multiple perspectives were to
clarify whether these contexts having influences to the
success of Scrum. The retrospection in Scrum is to create
the “inspect and adapt” cycle for how a team works to-
gether and alters their practices to improve how they
work by constantly asking three questions: 1) what do we
need to continue doing; 2) what didn’t work; 3) what do
we need to start doing [13]. It is not feasible to compare
the software development performance across teams. The
complexity of the projects was not identical, and the cap-

Figure 2. Qualitative research design.

Copyright © 2012 SciRes. JSEA

The Success Factors of Running Scrum: A Qualitative Perspective 370

Table 1. Data gathering context.

Source of Data Research Tools Context

Office Layout
Environment Observation

Culture and Atmosphere

Individual Leadership

Interpersonal Skills

Tools Used
Communication

Observation and
Interview

Vendors and External Experts

Complexity
Project

Observation and
Interview Sprint Performance

Framework Enhancement
Retrospection

Observation and
Interview Technological Barriers

Overcome

abilities of development team were also varied. In Scrum,
the burn-down chart—illustratedin Figure 3—is used to
show, each day, a new estimate of how much work
(measured in person hours) remains until all tasks are fin-
ished. Ideally, this is a downward sloping graph that is on
a trajectory to reach “zero effort remaining” by the last
day of the Sprint [3].

3.3. Research Subjects and Working
Environment

Two Scrum teams of different companies were sampled
for Qualitative Research subjects. Both teams were new-
bies in running Scrum. Team A is a development team in
maintaining in-house developed Manufacture Execution
System (MES). Team B is a small software company de-
livering commercial applications to various line of busi-
ness.

Team A: There were several slogans placed on the
walls about performance and efficiency. Team members
were scattered sitting in their cubicles. The office was
very quiet, people kept their voice low in conversation.
They are required to use system to reserve meeting
rooms before team discussion. The meeting rooms are
usually fully booked. They cannot post unauthorized
wallpapers in the office. Managers usually hesitate in
approving posters to keep the office clean in appearance.
The company does not allow employees to use instant
manager tools such as MSN and Gtalk. They use emails
as their major communication channels.

Team B: The office was in an over thirty-year build-
ing. Books and magazines were scattered in different
places. Cafeteria area was full of foods and drinks. Pro-
ject milestone charts were posted on various walls. Team
members communicated thoughts via voices and with
eye-contacts. The office was full of multi-channel of
communication about technical discussions and require-
ment clarification. The team members use Internet free
tools as their communication carriers. Google Chrome is

Figure 3. Burn-down chart sample. Courtesy from “crystal
clear” [14].

their major workbench. There was a rather large open
space in the center of the office, members frequently sat
on the floor and drew ideas on large size papers. They
use Group Note software as a Kanban system [15] to
facilitate the software development process; the system
becomes a good alternative for managers who need an
easy-to-follow set of guidelines for their project man-
agement without having to resort to weeks of training
[16].

3.4. Requirements and Challenges

Successfully eliciting the software requirements from
stakeholders is a challenge. Requirements are considered
to be a set of knowledge that facilitates business proc-
esses or help organization achieving business goals, and
they are about: 1) Customer Perspective where the re-
quirements regarding the quality of service desired are
defined, also the knowledge concerning their perception
of the service delivered; 2) Business Perspective where
the requirements regarding the structure of the business
process are defined; 3) Employee Perspective where the
requirements concerning the skills and experiences are
defined and also the knowledge used in the processing of
activities based on the knowledge gathered during the
previous processing steps; 4) Product Perspective where
the requirements regarding the specification of the final
product are defined [17]. Intensive communication am-
ong stakeholders, product owners, and team members are
the effective approach in gathering such knowledge [18].

Team A: The software project was to migration their
MES to new tentative use database. There were thou-
sands programs in various types: 1) web applications
using J2EE platform; 2) batch programs running on the
database server using C++/C language; 3) database na-
tive SQL scripts. This was the first time of migrating
applications from different brand of database as they

Copyright © 2012 SciRes. JSEA

The Success Factors of Running Scrum: A Qualitative Perspective 371

used currently. They relied on external expert to guide
them go through the migration process. The company
wished the project could close within three months.

Team B: The software project was an inventory sys-
tem running on a cloud computing environment—Google
App Engine. The stakeholder wanted the system to help
them managing visibility of inventory for their business
partners. This was the first journey of developing appli-
cations on the platform; many required technical skillsets
were not built among the team members. After serious
evaluation, they chose Python as their programming lan-
guage. The contract stated a penalty term if the project
did not complete within six months.

3.5. Field Notes in Summary

Field Notes refer to transcribed notes or the written ac-
count derived from data collected during observations
and interviews. The field notes generally consist of two
parts: 1) descriptive in which the observer attempts to
capture a word-picture of the setting, actions and con-
versations; 2) reflective in which the observer records
thoughts, ideas, questions and concerns based on the ob-
servations and interviews [19]. This Participant Observa-
tion used a semi-structural field note covering important
aspects of the critical successful factors of applying
Scrum from literature review as follows:

1) Personal attributes of Product Owner, Scrum Mas-
ter, and Team Members may change their reactions and
decisions when team skills do not meet the project re-
quires [20];

2) Characteristics of user stories—the requirements
—are allocated to a sprint and then implemented and
delivered to the stakeholders [21];

3) Project required team competence—team might not
possess all skills that the project requires;

4) Team autonomy—the team had discretion, free-
dom, and independence in making project-related deci-
sions, such as choosing tools/technologies, setting goals,
and handling user requirement changes, and assigning
personnel to the team [22];

5) Team diversity—the diversity and heterogeneity of
team members’ expertise areas, skills, prior work ex-
periences, and functional backgrounds [22];

6) Team response extensiveness—how much a soft-
ware team incorporates changing requirements in system
scope, input data, output data, business rules/processes,
data structure, and user interfaces [22];

7) Team response efficiency—the relative level of
time, cost, personnel, and resources needed by the soft-
ware team to respond to and incorporate a given require-
ment change [22];

8) Software development performance—on-time com-
pletion, on-budget completion, and software functionality

are important dimensions of evaluating the software de-
velopment performance [22].

Tables 2 and 3 were the field note summaries for both
teams.

4. Research Propositions and Conclusion

To evaluate software development performance is com-
plex and full of tangled factors with the characteristics of:
1) constantly changing—software requirements are vo-
latile; 2) tightly coupled—factors are mutually affected
with one another; 3) governed by feedback—the influ-
enced factor often affects the source; 4) nonlinear—the
compound behavior of a factor may have nonlinearity
due to feedback loop; 5) history-dependent—factors are
subject to change by their previous states [23]. Stock-
Flow diagram is used to describe the complexity among
these factors. The factor in box shape is called Stock
which accumulates the outcome of its influenced factors.
The arrow means where the influenced factor is pointed.
The double-lined arrow means that the influencing factor
has continuous impact on the target factor with a speed.
The link means which factor is influenced. Positive sign
on the link means reinforcing the impact, while negative
sign means balancing the impact.

Based on the analysis from the research notes, Figure
4 illustrated the Stock-Flow diagram of Scrum perform-
ance dynamics. The Stocks were labeled in box shapes
with yellow color background. Software Development
Performance was influenced by: 1) On-Time Comple-
tion—fewer schedules delayed implied greater perform-
ance; 2) On-Budget Completion—less budget consumed
implied greater performance; 3) Software Functiona-
lities—more complex functionalities implied poor perfor-
mance; 4) Development Efficiency—more efficient in
development implied greater performance. Software
Team Characteristics was influenced by: 1) Personal
Attributes—more willingness to collaborate with others
implied positive attitude; 2) Software Team Autonomy—
more freedom to collaborate implied positive attitude; 3)
Software Team Diversity—more relevant skills to the
project implied positive attitude. Team Competence was
influenced by: 1) Prior Experiences—more relevant ex-
periences from similar previous projects implied greater
competence; 2) External Experts—more external help-
ers implied greater competence; 3) Learning Curve—
more difficult in skillsets building implied less compe-
tence. Software Development Agility was influenced by:
1) Team Attitude—more positive in attitude implied better
agility; 2) Software Team Response Extensiveness—
more communications among the team implied better
agility; 3) Software Team Response Efficiency—more
effective communications implied better agility; 4) Team
Skills—better team capability implied better agility; 5)

Copyright © 2012 SciRes. JSEA

The Success Factors of Running Scrum: A Qualitative Perspective

Copyright © 2012 SciRes. JSEA

372

Table 2. Field note summary of team A.

Field Note Summary of Team A

Product
Owner

He has been in the company for over ten years. He often looked into the details of works and asked sharp
questions. He used to argue the purpose of the software to business objectives with stakeholders.

Scrum
Master

He often goes out with members for pleasures. He usually has lunch with members if no further meeting ahead.
He stressed on the details of technologies used and broke down User Stories to small tasks for members to
complete.

Personal
Attributes

Team
Members

They spent much time in testing software before update version. Members were very skeptical about new
technologies and always asked for proven references in their sector.

Characteristics
of User Stories

The User Stories were much elaborated and well planned based on the MES they had been maintained for years. Stakeholders
were the key users of operations. The bottom line was to keep MES as it was before the migration. Each story was broken
down to small tasks that could be completed within a short period of time, usually a day.

Team
Competence

The migration project required deep understanding about the features of new database. It also required extensive experience in
migrating software over the database change. Both competences were inadequate within the team. Team spent much time in
finding the appropriate solutions during the migration. They invited external experts to participate their Daily Scrum whenever
it was needed.

Team
Autonomy

Scrum Master played a technical lead role rather than a facilitator in Scrum process. When there was a dispute among team
members, Scrum Master made the final decision. Sometimes, team members just followed what Scrum Master implied about
how to do the tasks. In the Scrum Retrospection, most discussions were laid on technical issues; as to the process improvement
recommendation was rarely brought out. They needed to schedule each discussion and reserving meeting room. Many issues
had been accumulated in team members’ unsolved pipeline before next meeting began.

Team Diversity
Team members have been working together for at least three years. They were trained for mastering their MES with required
competences. Each member had been assigned to maintain different modules of MES before Scrum initiated.

Team Response
Extensiveness

Team members did not use any holistic software tool to manage the Scrum processes, they used spreadsheets instead. Scrum
Master kept complaining about the responsiveness of updating the spreadsheets.

Team Response
Efficiency

Scrum Master asked members to bring their issues to the next Daily Scrum meeting. The meeting rooms were competing
resource of the company. If the meeting room could not be booked, Scrum Master had to postpone the Daily Scrum meeting
until the meeting room was available again. Team member used emails and short chats to clarify development issues with
others. Keeping office quiet was a part of the company’s culture and a required discipline for every employee.

Software
Project

Performance

The software functionalities were clear but the team members were not familiar with the core technologies and previous
experiences in new database migration. The project was delayed and exhausted extra budget for hiring external experts.
External experts had no experience in running Scrum framework. They took the lead of as soon as they joined the development.
They often rejected the requests of explanation why from Team members due to limitation of remaining time of the project. The
project had further delayed; more budgets were consumed, because team members were reluctant to report the complexity of
the system to external experts. Product Owner had disputes with the external experts about the progress of the development
especially during the final phase of testing. External experts complained about the team did not report the missing links of the
suggested implementation.

Table 3. Field note summary of team B.

Field Note Summary of Team B

Product
Owner

She played a System Analyst role to the project. She was busy in eliciting the application requirements from
stakeholders. She called Scrum Master several times a day asking about the progress of the project. Some
stakeholders complained to General Manager of the company about her persistence in maintaining the original
requirements from changing. She frequently asked team to enhance the working software to meet her standard
of acceptance. Team received less requests of modifying the software from the stakeholders after her
acceptance of the software.

Scrum
Master

He was a certified Scrum Master and a believer of Agile programming. He often complained Product Owner
did not have enough time of explaining what requirement was in detail to the team. He had coffee meetings
with the team at least twice a week. Occasionally, he invited team members to Karaoke and drinking beers
together.

Personal
Attributes

Team
Members

Team often went out together for pleasure during the weekends. They shared thoughts and personal experience
on Facebook from time to time. Team members used Planning Poker [24] to arbitrate the argued development
approaches.

Characteristics of
User Stories

The project was the first time for both stakeholders and the Scrum Team taking advantage of cloud computing. Scrum Master
changed the deliverables of tasks derived from stories frequently in the early phase of the project before external experts
came in. Many tasks were dropped because the wrong approaches had been taken.

Team
Competence

Team members’ former experiences were majorly on Microsoft technologies; few had developed application using
open-source technologies before join the company. Python was chosen based on Google document suggestion. Team spent
much time in learning Google Application Programming Interfaces (API).

The Success Factors of Running Scrum: A Qualitative Perspective 373

Continued

Team Autonomy

Scrum Master encouraged team members to have short chat whenever there was a doubt about how to proceed next.
Team members posted their sample codes on the wall for technology exploration sharing. Planning Poker was not used as
frequently as in their previous projects because too much uncertainty in the mastering Google APIs. Team meetings for
technologic discussion were held twice a day in the early phase of development before external experts joined in the
project. Scrum Master broke down the stories into tasks; some tasks were serving the same purpose because best-practice
had not explored yet.

Team Diversity
Team members were hired for their expertise on Microsoft technologies. They all were familiar with database, web, and ob-
ject oriented programming in using Microsoft technologies.

Team Response
Extensiveness

Team members often delayed their tasks because spending too much time in discussions and answering questions from oth-
ers. In order to make effective communication, they used software tools for knowledge sharing. They changed their previous
behavior—ask-before-do—to check-before-ask after many best-practices had been explored. They posted important sample
codes of using Google important APIs on the walls of the office. Some team members used ear sets to block the noises while
working but remained alert for messages.

Team Response
Efficiency

Team used Group Note software for pending issues and short conclusions of discussions. Google’s Instant Messenger, Gtalk,
was extensively used in communication among team members. Scrum Master asked members to clean up pending requests
before off as possible; members did their best in answering the requested issues. For those unsolved requests, team members
would leave them to the next Daily Scrum meeting.

Software Project
Performance

The project was not severely delayed because the company had decided to hire external experts in the early phase of the
development. The company allocated budget for external experts as a part of the quotation to stakeholders. The external ex-
perts had no experience in Scrum practice before. Scrum Master trained Scrum framework to external experts first before
they devoted to the project. The software functionalities were delivered within budget.

Figure 4. Scrum performance dynamics.

Characteristics of Stories—more complicated User Sto-
ries implied less agility.

Case study is a suitable research methodology for
software engineering research since it studies contempo-
rary phenomena in its natural context. This paper fol-
lowed a criteria about what a good qualified qualitative
research on software engineering should contain [25].
These criteria ask for the research to have clear cases
with research objectives, applying theories; it must be
relevant to the research questions, and making implica-
tions to the practitioners.

REFERENCES
[1] A. Gopal, T. Mukhopadhyay and M. S. Krishnan, “The

Role of Software Processes and Communication in Off-
shore Software Development,” Communications of the
ACM, Vol. 45, No. 4, 2002, pp. 193-200.
doi:10.1145/505248.506008

[2] M. Aoyama, “New Age of Software Development: How
Component-Based Software Engineering Changes the Way
of Software Development,” 1998 International Workshop
on CBSE, Kyoto, 25-26 April 1998, pp. 124-128.

[3] http://assets.scrumtraininginstitute.com/downloads/1/scru

Copyright © 2012 SciRes. JSEA

http://dx.doi.org/10.1145/505248.506008

The Success Factors of Running Scrum: A Qualitative Perspective 374

mprimer121.pdf

[4] J. Y. Yeh, C. C. Wei, C. S. Wei and D. F. Lei, “The Im-
pact of Team Personality Balance on Project Perform-
ance,” African Journal of Business Management, Vol. 6,
No. 4, 2012, pp. 1674-1684.

[5] G. Cugola and C. Ghezzi, “Software Processes: A Retro-
spective and a Path to the Future,” Software Process: Im-
provement and Practice, Vol. 4, No. 3, 1998, pp. 101-123.
doi:10.1002/(SICI)1099-1670(199809)4:3<101::AID-SPI
P103>3.0.CO;2-K

[6] http://www.fhi360.org/en/RH/Pubs/booksReports/QRM_
datacoll.htm

[7] J. W. Forrester, “System Dynamics, Systems Thinking,
and Soft OR,” System Dynamics Review, Vol. 10, No. 2-3,
1994, pp. 245-256. doi:10.1002/sdr.4260100211

[8] P. Abrahamsson, O. Salo, J. Ronkainen and J. Warsta,
“Agile Software Development Methods: Review and
Analysis,” VTT Publications, Espoo, 2002.

[9] M. C. Davis, D. J. Leach and C. W. Clegg, “The Physical
Environment of the Office: Contemporary and Emerging
Issues,” International Review of Industrial and Organiza-
tional Psychology, Vol. 26, 2011, pp. 193-237.

[10] V. U. Druskat and J. V. Wheeler, “Managing from the
Boundary: The Effective Leadership of Self-Managing
Work Teams,” Academy of Management Journal, Vol. 46,
No. 4, 2003, p. 435. doi:10.2307/30040637

[11] Y. L. Chen, “Analysis of the Agile Deployment,” Mas-
ter’s Thesis, University of Gothenburg, Gothenburg, 2010.

[12] N. B. Moe, T. Dingsoyr and T. Dyba, “Overcoming Bar-
riers to Self-Management in Software Teams,” Software,
Vol. 26, No. 6, 2009, pp. 20-26. doi:10.1109/MS.2009.182

[13] C. Keith, “An Agile Retrospective,” Game Developer Con-
ference, February 2008.

[14] A. Cockburn, “Crystal Clear: A Human-Powered Methodo-
logy for Small Teams,” Addison-Wesley, Boston, 2005.

[15] M. Ikonen, P. Kettunen, N. Oza and P. Abrahamsson,
“Exploring the Sources of Waste in Kanban Software
Development Projects,” 36th Euromicro Conference on
Software Engineering and Advanced Applications, Lille,
1-3 September 2010, pp. 376-381.

[16] L. D. Rola, “Kanban for Small Software Projects,” Pro-
ject Background Report, The University of Manchester,
Manchester, 2011.

[17] A. E. Roger, F. N. Marcel and A. C. Lopez, “Business
Process Requirement Engineering,” International Journal
on Computer Science and Engineering, Vol. 2, No. 9, 2010,
pp. 2890-2899.

[18] M. R. Haas, “Knowledge Gathering, Team Capabilities,
and Project Performance in Challenging Work Environ-
ments,” Management Science, Vol. 52, No. 8, 2006, pp.
1170-1184. doi:10.1287/mnsc.1060.0530

[19] E. Fossey, C. Harvey, F. McDermott and L. Davidson,
“Understanding and Evaluating Qualitative Research,” Aus-
tralian & New Zealand Journal of Psychiatry, Vol. 36,
No. 6, 2002, pp. 717-732.
doi:10.1046/j.1440-1614.2002.01100.x

[20] M. Luz, D. Gazineu and M. Teófilo, “Challenges on
Adopting Scrum for Distributed Teams in Home Office
Environments,” World Academy of Science, Engineering
and Technology, No. 59, 2009, pp. 308-311.

[21] J. Highsmith and A. Cockburn, “Agile Software Devel-
opment: The Business of Innovation,” Computer, Vol. 34,
No. 9, 2001, pp. 120-127. doi:10.1109/2.947100

[22] G. Lee and W. Xia, “Toward Agile: An Integrated Analy-
sis of Quantitative and Qualitative Field Data on Software
Development Agility,” MIS Quarterly, Vol. 34, No. 1, 2010,
pp. 87-114.

[23] J. D. Sterman, “System Dynamics Modeling,” California
Management Review, Vol. 43, No. 4, 2001, pp. 8-25.

[24] J. Grenning, “Planning Poker or How to avoid Analysis
Paralysis while Release Planning,” Hawthorn Woods: Re-
naissance Software Consulting, Vol. 3, 2002.

[25] P. Runeson and M. Höst, “Guidelines for Conducting and
Reporting Case Study Research in Software Engineer-
ing,” Empirical Software Engineering, Vol. 14, No. 2, 2009,
pp. 131-164. doi:10.1007/s10664-008-9102-8

Copyright © 2012 SciRes. JSEA

http://dx.doi.org/10.1002/(SICI)1099-1670(199809)4:3%3C101::AID-SPIP103%3E3.0.CO;2-K
http://dx.doi.org/10.1002/(SICI)1099-1670(199809)4:3%3C101::AID-SPIP103%3E3.0.CO;2-K
http://dx.doi.org/10.1002/sdr.4260100211
http://dx.doi.org/10.2307/30040637
http://dx.doi.org/10.1109/MS.2009.182
http://dx.doi.org/10.1287/mnsc.1060.0530
http://dx.doi.org/10.1046/j.1440-1614.2002.01100.x
http://dx.doi.org/10.1109/2.947100
http://dx.doi.org/10.1007/s10664-008-9102-8

