
Journal of Software Engineering and Applications, 2012, 5, 472-476
http://dx.doi.org/10.4236/jsea.2012.57054 Published Online July 2012 (http://www.SciRP.org/journal/jsea)

Quality-Oriented Software Product Line Architecture
Design

Lei Tan, Yuqing Lin, Huilin Ye

School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, Australia.
Email: lei.tan@uon.edu.au, {yuqing.lin, huilin.ye}@newcastle.edu.au

Received April 10th, 2012; revised May 17th, 2012; accepted May 28th, 2012

ABSTRACT

Software architecture design is a critical step of software development. Currently, there are various design methods
available and each is focusing on certain perspective of architecture design. Especially, quality-based methods have
received a lot of attentions and have been well developed for single system architecture design. However, the use of
quality-based design methods is limited in software product line (SPL) because of the complexity and variabilities ex-
isting in SPL architecture. In this paper, we introduce an extra view to the Quality-Driven Architecture Design and
Quality Analysis (QADA) method, in order to provide a more effective quality-based architecture design framework for
SPL. In this framework, the quality attributes of a software system will be taken into account in the early stage of archi-
tecture design and the reference architecture of SPL will be elicited based on quality-related consideration.

Keywords: Software Architecture; Software Product Line (SPL); Quality-Oriented; Requirement Traceability

1. Introduction

The software architecture is the structure of a software
system. It contains software elements, visible properties
of these elements, and the relationships among them [1].
The visible properties refer to the behaviors of elements
such as providing services, performance characteristics,
fault handling, and so on. The architecture of a system is
the overall abstraction to illustrate how software ele-
ments relate to each other and how do they work together.
Software architecture is able to scope overall system, to
provide a blueprint for system construction.

Software architecture design is one of the most impor-
tant phases in the software development life cycle, so it
attracts a lot of attentions. It is a comprehensive process
involving multiple activities. For instance, system de-
composition, specifying structural components, and qual-
ity attributes tradeoff. A good software architecture is
able to address products requirements sufficiently and
leads to less costly implementations.

The challenges of architecture design are: 1) how to
evaluate the quality of software architecture and how to
design high quality architectures; 2) how to cope with
non-functional requirements and quality restrictions. There
are many methods have been proposed to deal with the
first challenge, but developing methods for quality re-
quirements realization are more difficult. Without con-
sidering software architecture qualities at design stage
could bring negative impact to the later product deve-

lopment due to economic concerns, such as time to mar-
ket and return on investment.

The architecture design methods are to explore the de-
sign options from different perspectives. For example,
the “4 + 1” view model [2] aims to describe software
architecture in multiple views. A design concern is a fea-
ture or behavior of a system, for instance, performance
and security are design concerns of most software sys-
tems. The purpose of using multiple views is to separate
design concerns and each of the multiple views describes
the software system from a specific aspect. Separating
concerns is a common approach in computer science to
break a complex problem into easier subproblems [3].
The “4 + 1” model contains multiple views, namely, logi-
cal view, the process view, the development view and the
physical view. In the logical view, system is decomposed
into a set of key abstractions. The principles of system
abstraction, encapsulation, and inheritance are exploited
in this view. The process view deals with the issues of
system integrity, such as concurrency and distribution. It
also specifies how the abstractions from logical view
map onto the process view. In the development view, the
system is decomposed into subsystems that can be de-
veloped by small number of developers. These subsys-
tems are layered as a hierarchy and each layer provides
an interface to the upper layer. The physical view is to
map the software onto the hardware. The elements iden-
tified from previous views need to be mapped onto vari-

Copyright © 2012 SciRes. JSEA

Quality-Oriented Software Product Line Architecture Design 473

ous processing nodes. In addition to the “4” views, sce-
narios, also known as use cases, are used to put those
four views together. These scenarios are abstractions of
the most important system requirements. This view-
based design concept has been adapted by many other
design methods, including COPA [4] and QADA [5]. We
also adopt this design concept in our work presented in
this paper. There are also some other architecture design
methods. For example, ASAAM [6] is an aspectual ar-
chitecture analysis method to localize design concern,
which crosscutting several components, in one architec-
tural component. ADD [7] is an attribute driven method
to design software architecture. For more on software
architecture design, see details in surveys [8,9].

Non-functional requirements and quality attributes are
the properties of software products. They are require-
ments that have to be satisfied. Quality requirements are
used as a bridge to connect business goals and software
architectures [10]. In this paper, we focus on quality-
oriented SPL architecture design for two reasons: 1) it is
hard to evaluate if the architecture design is qualified
based on quality criteria; 2) comparing to the functional
requirements, qualities attributes are less considered in
the design phase. Quality attributes have impact on
product line architecture (PLA), product components and
the relationships among the components. For example, a
design decision based on security concern will affect
both encryption and network designs, and the way to
balance these two components.

Quality attributes are generally divided into three cate-
gories: system qualities, business qualities and architect-
ture qualities. It is crucial to evaluate if qualities re-
quirements have been achieved by architecture design.
Realizing the system qualities before developing the
concrete system is helpful to stakeholders. The appropri-
ate design methods will model the desired system needs
and constraints properly in the early stage. As a result, it
is more likely to form the right software architecture.

There are some quality based methods [11,12] for
software architecture design. Most of them are scenario-
driven. Different from other architectural design methods,
they are focus on quality related aspects such as system
performance, security of the system and other system
qualities. These design methods make sure that the re-
sulting architecture fulfills the quality requirements from
stakeholder. However, comparing to other design meth-
ods, quality driven design is still in the early develop-
ment stage overall, especially in SPL engineering.

Software Product Line (SPL) engineering is to develop
a collection of related systems which share a common
software architecture and related components [13]. The
idea of SPL engineering was proposed by Kang et al. [14]
and the approach has been used in industry over the last
decade. The key idea of SPL is to discover commona-

lities and variabilities across a product family. SPL con-
tains a set of reusable software assets, such as system
requirements, source code, and reusable components.
These assets are configured and composed to create
member products in a product line. A successful SPL is
able to improve the development productivity and the
quality of the software, significantly reduce cost and time
to market.

The architecture of an SPL is to describe both shared
components of products family and individual character-
istic of single product. The efforts of PLA design are
focusing on refining the reference architecture and reus-
able components. The reference architecture is instanti-
ated and used as a common asset to create concrete ar-
chitectures for member products. The reference architec-
tures also provide a clear idea of how configurable com-
ponents can be assembled to form member product ar-
chitectures.

The remainder of the paper is organized as follows.
Section 2 presents and discusses several popular archi-
tecture design methods. In Section 3, we describe an ex-
tension to QADA method. Section 4 concludes the paper
and discusses future works.

2. Software Production Line

Firstly, we briefly summarize some well established SPL
architecture design methods, they are FORM [14], FAST
[15], COPA [4], KobrA [16] and QADA [5]. These
methods have been validated on various domains in
industry.

1) Feature Oriented Method: Feature-Oriented Reuse
Method (FORM) is a feature-oriented approach. FORM
is using feature model to realize both commonalities and
variabilities of SPL. The result of feature model analysis
will be further used to explore the reusable components
for a product line.

Two phases are included for reusable architecture de-
velopment. In domain modeling, features are localized in
four layers and each layer presents a level of software
development hierarchy. Any instantiation of a feature
model is a combination of features from these four layers.
The subsystem model defines the overall system struc-
ture by packaging service features into subsystems in a
distributed environment. Then each subsystem is decom-
posed into a set of processes considering the operating
environment features. Modules are used to create reus-
able components with specifications to define how to
integrate them into applications. In architecture modeling,
the reference architecture is defined from three levels of
abstractions (subsystem model, process model and mod-
ule model) by the right feature selections and then pick
the proper reusable software components based on con-
cerns from stakeholders.

Copyright © 2012 SciRes. JSEA

Quality-Oriented Software Product Line Architecture Design 474

2) Process Driven Method: Family-Oriented Abstrac-
tion, Specification and Translation (FAST) is a software
development method focusing on building product fami-
lies. It is intended to enhance the efficiency of develop-
ment process by reducing multiple tasks, time to market
and development cost [17]. This method is suitable in
case that one product has multiple versions that have
shared elements in common.

Two main activities of FAST are Domain Engineering
and Application Engineering. Domain engineering con-
sists of activities to define domain-based family, a mod-
eling language to describe family members. Domain en-
gineering also specifies tools needed for application
model analyze. The application engineering is to gener-
ate application systems to customer requirements. Each
single system, which is defined by the application model,
is a member of the family and is generated by tools sup-
port developed from domain engineering. In addition to
domain engineering and application engineering, FAST
has an extra engineering process: domain qualification.
Domain qualification is the process to deal with eco-
nomic related concerns for a domain. During this process,
economic related information needs to be specified and
included in an economic model as the result.

3) Component Based Method: Component-Oriented
Platform Architecting (COPA) method is a component-
oriented method that enables the development of soft-
ware intensive product families. COPA method aims for
achieving a balance between multiple aspects and con-
cerns. Because it was firstly validated in practical Indus-
try, COPA has the best industrial application experience
in large product families.

COPA starts with business phase, which is analyzing
the customer needs and expectations. Architecture phase
is divided into five views by architectural framework:
customer business view, application view, functional
view, conceptual view and realization view. COPA also
contains three engineering processes within process
framework: product family engineering, platform engi-
neering, and product engineering. Product family engi-
neering focuses on the family architecture, platform en-
gineering is dealing with those reusable assets and the
responsibility of product engineering is to generate the
software products. The architectural activities of product
family engineering are to define views on both comer-
cial and technical aspects. The activities of platform en-
gineering are to support product engineering with inte-
gration testing and to maintain existing components and
platforms. The activities of product engineering consist
of developing the specific product components and con-
structing products.

KobrA method is another component-based product
line engineering approach. It is able to be applied on both
single system and family based systems. It is a simple

and practical method for software development by ap-
plying standard UML models and some commercial tools
to enhance its applicability.

Each component, is called Komponent in KobrA, is
described at two levels of abstractions: specification level,
which defines Komponents behaviors and services, and
realization level, which describes how to fulfill the upper
level services via lower level Komponents. KobrA has
two main engineering activities: framework engineering
activities and application engineering activities. Frame-
work engineering activity is to create a general frame-
work which includes all product variants of product fam-
ily. In framework engineering, the specification of a
Komponent is described by a set of models. Variabilities
are determined by decision model whether variabilities
can be captured by the existing decisions or it is neces-
sary to add new decisions to the decision model. With the
support of a set of models such as interaction model,
structural model, activity model, and decision model, it is
able to specify how to design a single Komponent. The
purpose of application engineering activity is to imple-
ment the framework in order to derive member products
from the family.

4) Quality Driven Method: Quality-driven Architec-
ture Design and quality Analysis (QADA) is a traceable
quality based method to design and evaluate software
architecture. QADA contains scenario-based quality ana-
lysis to evaluate if the architecture design options meet
the quality requirements.

QADA consists of three viewpoints: structural view,
behavior view, and deployment view at two levels of
abstractions: conceptual level and concrete level. Quality
attributes are categorized to related views and each view
has associated targets on the two levels at certain design
phase. As a quality-driven method, quality analysis is
performed at both levels with different attentions. Analy-
sis on conceptual level focuses on variability analysis
and architectural analysis by quality based methodology.
Quality analysis of concrete architecture emphasizes on
the customer value analysis and scenario-based quality
analysis. The purpose of architectural analysis at con-
ceptual level is to provide a knowledge base for a more
comprehensive quality attributes analysis at the concrete
level.

QADA is the only quality-driven architecture design
method among these methods. It contains several views
at different levels to separate concerns and it provides a
quality-driven link between software requirement and
architecture. Quality attributes are very important to ar-
chitecture development since quality attributes guide the
decision on architectural style selections and thus affect
the construction of system architecture. In [5], author
mentioned that additional views are needed to present
more information of quality attributes analysis in future

Copyright © 2012 SciRes. JSEA

Quality-Oriented Software Product Line Architecture Design 475

research. So in this paper, we will extend QADA method
by adding an extra view to improve this quality based
PLA design method.

3. Extension to QADA

We propose to include a quality view into the multiple
views of QADA to improve the traceability of the re-
ference architecture. The purpose of having quality view
is to provide a picture of system components and pack-
ages and to illustrate how they fulfill the quality require-
ments of a product line. At the same time, it describes the
impact of quality requirements on the reference architec-
ture at the conceptual level.

Quality based frameworks like [1,18] could be modi-
fied and used to develop this view. To develop a refer-
ence architecture, we start from requirement engineering.
Because some quality requirements have more influences
on the architectural design than others, so to help to
manage the complex requirements specifications and stay
focus on the most critical design decisions, it is important
to focus on those important quality requirements which
have strong impacts on the reference architecture. We
call these important quality requirements the architecture
development drivers. The architecture drivers need to be
embedded into reference architecture and refined for
member product architecture development.

A quality scenario is a quality requirement of the asso-
ciated quality attribute. Quality scenarios are used for
identifying architecture drivers. Quality scenarios can be
categorized into general scenarios and concrete scenarios.
General scenarios are system independent and they can
be applied for all member products in a product family.
Concrete scenarios are derived from the general scena-
rios and they are solid and to be used as quality require-
ments of a specific member system. To develop the re-
ference architecture, we mainly focus on general scena-
rios. General scenarios can be represented by a table
including all possible alternatives of certain quality attri-
butes. The specification of quality scenarios and exam-
ples of modifiability-related scenarios are given in Table
1.

The next activity of developing quality view is to
identify mechanisms [18] for the realization of family
architectural drivers, which contain a set of general sce-
narios. Mechanisms contribute to the quality require-
ments achievements. A strategy-oriented mechanism,
which is related to collection of architecture drivers, de-
scribes design strategies to satisfy the architecture drivers.
Such mechanisms are abstract, but can be used for both
the reference architecture development and member pro-
duct reference architecture design. A mechanism could
also be very specific, contains a set of components, con-
nection types and their responsibilities for fulfilling cer-
tain quality requirements. To map quality scenarios onto

Table 1. Quality attributes scenario and an example.

Scenario parts Specification Example

Source of stimulus
Where stimulus are

from
Users, developers,

admins

Stimulus
Conditions when
stimulus happen

Add/delete/modify
functionalities

Environment
Certain conditions

when stimulus occur
Design time, run time

Artifact
Whole or part of

system is stimulated
Interface, platform,

system

Respond
Activities when
stimulus happen

Locate modified place,
deploy modification

Respond measure
Measurable to achieve

the requirements
Cost, efforts

architecture, system components and the connections,
which derived from mechanisms, are used to form the
reference architecture and to implement the quality re-
quirements of SPL. Components, contributing to the re-
lated architecture drivers, can be grouped, and these are
the subsystem options and design options. When deve-
loping architecture for specific member product, concrete
scenarios will be take into account and all these subsys-
tems will be configured and refined.

Table 2 used in [18] is to present how scenarios map
onto a product line of vehicle navigation systems. The
scenario is that: “recalculate route due to incoming radio
data message”. This is a performance-related scenario
and it is mapped onto the logical view of architecture.
Six components (from two subsystems) are involved in
this scenario. The components and their responsibilities
are represented in the table.

Functional requirements will be further used to evalu-
ate the capability of the reference architecture. Design
options from scenarios mapping contain system compo-
nents to achieve the functionalities of systems, and then
functionalities will match the system requirements by
using the appropriate mechanisms.

4. Conclusion and Future Works

We have reviewed software product line architectures
design process. Quality attributes play an important role
in the process as they have big impacts on software
architecture design. The main benefit of quality based
design methods is to put stakeholders’ expectations at
first place to ensure the quality of software products.

We have introduced the quality view to QADA to im-
prove the traceability of quality based PLA design. The
improved framework emphasis on considering how the
reference architecture fulfills the quality requirements. In
quality view, quality scenarios is mapped onto the refer-
ence architecture and corresponding components. The
results of applying this framework are the valid reference

Copyright © 2012 SciRes. JSEA

Quality-Oriented Software Product Line Architecture Design

Copyright © 2012 SciRes. JSEA

476

Table 2. Scenario mapping example (From [18]).

Design Component Responsibilities

Radio Data Provider Receive radio data message

TRS Management
Decode and convert data into internal

format accumulate message and replace
expired data check data filtering

Atlas Update street elements

Vehicle Tracking Report position

Route Management
Check if recalculation is necessary notify

interested parties

Route Calculation Route calculation

architecture options at the conceptual level to satisfy
various quality requirements of the SPL.

As the reference architecture will be refined and con-
figured to produce member product architecture, there-
fore, it is unavoidable that we have to manage the quality
attributes tradeoffs. This will be part of our future work.
Moreover, this paper only takes system quality attributes
into account when designing a reference architecture,
other architecture attributes also need to be considered,
this will be another task in the future works.

REFERENCES
[1] L. Bass, P. Clements and R. Kazman, “Software Archi-

tecture in Practice,” 2nd Edition, Addison-Wesley, New
York, 2003.

[2] P. Kruchten, “The 4 + 1 View Model of Architecture,”
IEEE Software, Vol. 12, 1995, pp. 42-50.
doi:10.1109/52.469759

[3] H. Mcheick and H. Mili, “Understanding Separation of
Concerns,” Workshop on Early Aspects—Aspect Oriented
Software Development AOSD04, 2004.

[4] P. America, H. Obbink, J. Muller and R. van Ommering,
“COPA: A Component-Oriented Platform Architecting
Method for Families of Software Intensive Electronic
Products,” The 1st Conference on Software Product Line
Engineering, Denver, 28-31 August 2000.

[5] M. Matinlassi, E. Niemel and L. Dobrica, “Quality-
Driven Architecture Design and Quality Analysis Me-
thod—A Revolutionary Initiation Approach to a Product
Line Architecture,” VTT Technical Research Centre of
Finland, Espoo, 2002.

[6] B. Tekinerdogan, “ASAAM: Aspectual Software Archi-
tecture Analysis Method,” 4th Working IEEE/IFIP Con-
ference on Software Architecture, Oslo, 12-15 June 2004.

[7] L. Bass, M. Klein and F. Bachmann, “Quality Attribute
Primitives and the Attribute Driven Design Method,” In:
F. van der Linden, Ed., 4th International Workshop on
Software Product-Family Engineering, Springer, Berlin
Heidelberg, 2002, pp. 163-176.

[8] D. Falessi, G. Cantone, R. Kazman and P. Kruchten
“Decision-Making Techniques for Software Architecture
Design: A Comparative Survey,” Journal of ACM Com-
puting Surveys, Vol. 43, No. 4, 2011, pp. 1-28.
doi:10.1145/1978802.1978812

[9] N. May, “A Survey of Software Architecture Viewpoint
Models,” Proceedings of the 6th Australasian Workshop
on Software and System Architectures, Melbourne, 29
March 2005, pp. 13-24.

[10] R. Kazman, R. L. Nord and M. Klein, “A Life-Cycle
View of Architecture Analysis and Design Methods,”
Software Architecture, Technical Note, 2003.

[11] L. Bass, M. Klein and G. Moreno, “Applicability of
General Scenarios to the Architecture Tradeoff Analysis
Method,” Software Engineering Institute, Carnegie Mel-
lon University, Pittsburgh, 2001.

[12] R. Kazman, J. Asundi and M. Klein, “Quantifying the
Costs and Benefits of Architectural Decisions,” Pro-
ceedings of the 23rd International Conference on Soft-
ware Engineering, Toronto, 12-19 May 2001, pp. 297-
306.

[13] J. Bosch, “Design and Use of Software Architectures:
Adopting and Evolving a Product-Line Approach,” Addi-
son-Wesley, New York, 2000.

[14] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin and M. Huh,
“FORM: A Feature-Oriented Reuse Method with Do-
main-Specific Reference Architectures,” Annals of Soft-
ware Engineering, Vol. 5, 1998, pp. 143-168.
doi:10.1023/A:1018980625587

[15] D. Weiss, C. Lai and R. Tau, “Software Product-Line
Engineering: A Family-Based Software Development Pro-
cess,” Addison-Wesley, Boston, 1999.

[16] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laiten-
berger, R. Laqua, D. Muthig, B. Paech, J. Wust and J.
Zettel, “Component-Based Product Line Engineering with
UML,” Addison-Wesley, Boston, 2002.

[17] M. Matinlassi, “Comparison of Software Product Line
Architecture Design Methods: COPA, FAST, FORM,
KobrA and QADA,” Proceedings of the 26th Inter-
national Conference on Software Engineering, IEEE
Computer Society, Washington, 2004, pp. 127-136.

[18] S. Thiel, “On the Definition of a Framework for an Ar-
chitecting Process Supporting Product Family Develop-
ment,” 4th International Workshop on Software Product-
Family Engineering, Springer-Verlag, London, 2002, pp.
125-142.

http://dx.doi.org/10.1109/52.469759
http://dx.doi.org/10.1145/1978802.1978812
http://dx.doi.org/10.1023/A:1018980625587

