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ABSTRACT 

Many articles dealing with individual cell lag phase determination assume that growth, when observed, comes from one 
cell. This assumption is not in agreement with the Poisson distribution, which uses the probability of growth in a sample 
to predict how many samples contain one, two, or some other number of cells. This article analyses and compares dif- 
ferent approaches to improve the accuracy of lag phase estimation of individual cells and micropopulations. It argues 
that if the highest initial load, as predicted by the Poisson distribution, is assigned to the sample with the shortest lag 
phase, the second highest to the sample with the second shortest lag phase and so on, the resulting lag phase distribu- 
tions would be more accurate. This study also proposes the use of a robust test, permutation test, to compare lag phase 
distributions obtained in different situations. 
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1. Introduction 

The measuring of any parameter characterizing the mi- 
crobial growth is essential for any quantitative microbial 
risk assessment. Then, to know the microbial lag phase 
length of viable cells is critical, especially in RTE prod- 
ucts, which nature and storing conditions may allow the 
growth of viable, pathogen or not, bacteria. In the case of 
populations of thousands or hundreds of viable cells, the 
lag phase, is quite reproducible if the pre-inoculation and 
growth conditions are constant. However, the lag phase 
of populations composed by few cells, or even by only 
individual cells, is inherently variable. Therefore, it is 
understandable that researchers [1-9] have paid attention 
to the distribution of single cells lag times and to the 
techniques that can measure them. Measuring the lag 
time of individual cells requires direct microscopic ob- 
servation [4,8] or techniques to isolate single cells [10]. 
Cell isolation can be achieved by diluting [2], sorting by 
flow cytometry [11] or inactivating all organisms except 
one [9]. When growth is detected in some samples and 
not in others, it is commonly assumed that growth comes 
from one cell [12]. The number of samples must always 
be high for reliable mathematical treatment. It is recom- 
mended that approximately 100 samples show growth 
[13], and this figure must not be a high percentage of the  

samples. Guillier et al. [5] stated that if 35% of samples 
show growth, this should not significantly affect indi- 
vidual cell lag phase distributions because at least 80% of 
samples contain one cell, according to the Poisson dis- 
tribution function. 

“Growth/no growth sampling” has been widely ap- 
plied to foods and opaque liquids; in the special case of 
translucent liquids, an apparatus called the Bioscreen C 
can be used to construct 200 growth curves simultane- 
ously for the same temperature, on the basis of the tur- 
bidity resulting from microbial growth. If the specific 
growth rate (μ) under the experimental conditions is 
known, the lag phase is determined using the following 
equations. In the case of translucent liquids analyzed 
using Bioscreen, the equation is [14]: 

   0Lag Ln Lnd dT N N              (1) 

where Td is the detection time, i.e. the time needed to 
reach an arbitrary absorbance (turbidity), Ln(Nd) is the 
natural logarithm of the number of cells generating such 
absorbance, Ln(N0) is the natural logarithm of the num- 
ber of organisms in the inoculum, and μ is the specific 
growth rate. In the case of opaque samples [6], the equa- 
tion is: 

   count count initialLag Ln LnT x x            (2) 
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where Tcount is the time between inoculation and plating 
of the sample, Ln(xcount) is the natural logarithm of the 
cell number detected at Tcount, Ln(xinitial) is the natural 
logarithm of the initial number of bacteria and µ is the 
specific growth rate.  

When a certain percentage of samples does not show 
growth, the assumption that growth in the other samples 
is due to one cell contravenes the predictions of the Pois- 
son distribution. Several researchers have used the Pois-
son distribution to calculate the proportion of growth- 
positive samples initially containing more than one cell 
[5,11,15,16]. McKellar and Hawke [17] recognised that 
one of the limitations of the Bioscreen as a tool to study 
single cell behaviour is that it is difficult to ensure that 
the growth in any given positive well arose from a single 
cell. Earlier, some authors [2,15] performed a series of 
binary dilutions to have one cell per sample. Francois et 
al. [2] observed that single cells should be found in wells 
of Bioscreen microtitre plates where the mean cell num- 
ber added to each well was less than one. These authors 
advocate pooling data from the last five binary dilution 
series to maximise the number of replicate wells; these se- 
ries contained 0.7812, 0.3906, 0.1951, 0.0977, and 0.0977 
cells per well, from a theoretical mean dilution range.  

According to the Poisson probability function, if a de- 
termined number of occurrences (ρ is expected, then the 
probability that there are exactly k occurrences (k being a 
non-negative integer number, k = 0, 1, 2, ···) is: 

   , *e   !                 (3) 

where e is the base of the natural logarithm; k is, in our 
case, the number of organisms in a sample, and the 
probability of k is given by the function; ρ is a positive 
real number, which expresses the average number of 

cells per sample; and k! is the factorial of k. To highlight 
the relevance of the data that Equation (3) offers, the 
Table 1 has been built up. This table shows the per- 
centages of samples predicted by Equation (3) that would 
contain a determined number of viable cells as a function 
of the percentage of samples, in which growth was de- 
tected. The average number of cell per sample (m) is also 
shown in Table 1. This average is calculated by assum- 
ing that the number of cell per sample follows a Poisson 
distribution. Hence, the following equation was used:  

 m Ln P                  (4) 

where P is the probability of there is not any viable cell 
in a sample. Applying Equation (3) to the data of Fran- 
cois et al. [2], with an average number of cells per sam- 
ple of 0.78, indicates that 65% of the positive samples 
contain one cell, 25.3% contain two, 6.6% three and 
1.3% four. These figures suggest that the estimated lag 
phase determinations for individual cells will have a cer- 
tain error. Indeed, Baranyi et al. [18] affirmed that the 
greater the Poisson parameter (ρ, average number of cells 
per sample), the less accurately Equations (1) and (2) esti- 
mate the distribution of the single cell lag time. If sam- 
ples are considered to contain only one cell, the value of 
Ln(N0) in Equation (1) and Ln(Xinitial) in Equation (2) is 
zero. However, if the predictions of the Poisson function 
are applied, we have to assume that some samples con- 
tain two, three or more cells, which is an undisputed fact 
in most real samples. In this case, Ln(N0) and Ln(Xinitial) 
are positive numbers that lengthen the lag phase of such 
samples. 

The aim of this study is to compare the individual cell 
and/or micropopulation lag phase distributions obtained 
by assuming that all samples with growth contain one  

 
Table 1. Percentage of samples with a determined number of cells, as predicted by Poisson function (Equation (3)). 

% of samples with a determined No. of cells 
% of samples with growth 

Average No. of 
cell/sample 

1 2 3 4 5 6 7 

90 2.303 23 27 20 12 5 2 1 

80 1.609 32 26 14 6 2 0 0 

70 1.204 36 22 9 3 1 0 0 

60 0.916 37 17 5 1 0 0 0 

50 0.693 35 12 3 1 0 0 0 

40 0.511 31 8 1 0 0 0 0 

30 0.357 25 5 1 0 0 0 0 

20 0.223 18 2 0 0 0 0 0 

10 0.105 9 1 0 0 0 0 0 
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cell, with the distributions obtained by assuming a dif- 
ferent number of cells per sample according to the Pois- 
son distribution function. 

2. Material and Methods 

2.1. Simulation  

A simulation was generated considering a different av- 
erage number of cells per sample (0.2 - 2.0). To create 
the simulation, 100 values of lag phases were randomly 
generated by assigning them values from 40 to 180 arbi- 
trary time units, following a gamma distribution with the 
following parameters: shape = 5.5, scale = 16.5, mean = 
91.7 and standard deviation = 29.4. A specific growth 
rate (μ) of 0.0693 h–1 was also considered. The resulting 
distribution data are those of Scenario I (see next sec- 
tion). 

2.2. Scenarios 

Four scenarios were used to calculate the lag phase dis- 
tributions: Scenario I assumes that all samples contain 
one cell. Scenarios II-IV use the Poisson distribution 
function to assign a number of cells to each sample. In 
Scenario II, the sample with the shortest lag phase con- 
tains the highest number of cells, according to the aver- 
age number of cells per sample and the Poisson table 
[19], the sample with the second shortest lag contains the 
second highest number of cells, and so on. In Scenario III, 
the number of cells is randomly distributed among sam- 
ples, regardless of the lag phase length. Scenario IV is 
calculated like Scenario II, except that all samples with 
more than one cell are not considered. From the data of 
Scenario I, lag phases were recalculated according to the 
assumptions of Scenarios II, III and IV and the corre- 
sponding distributions were obtained. 

2.3. Statistical Analysis 

Pairwise comparisons of the variances of lag phase dis- 
tributions were carried out using a permutation test to 
analyse homogeneity of the two variances; this bilateral 
test assumes that the variances ratio is one. Permutation 
tests are non-parametric significance tests based on per- 
mutation resampling without replacement, with observed 
lag times drawn at random from the original data and 
reassigned to the two groups being compared. The dis- 
tribution of possible variance ratios is calculated for all 
samples assuming the null hypothesis of homogeneity, 
and the observed ratio is positioned along this distribu- 
tion. Values falling outside the main distribution rarely 
occur by chance and therefore give evidence of hetero- 
geneity of variances [20]. Since our study involves mul- 
tiple comparisons of several groups, a p-value correction 
must be applied in order to minimise the probability of 

rejecting a true hypothesis. The Holm-Bonferroni p-value 
correction [21] was applied. This correction is less con- 
servative than those of Bonferroni and Sidak [22], which 
are also applied in the permutation test program de- 
scribed in appendix A. 

A permutation test routine including a multiple com- 
parison test was programmed using R language [23], 
which is described in Annex 1. 

2.4. Application of Scenarios to Experimental  
Data 

To check how well the simulations mimic the reality, the 
four scenarios were applied to the lag phases of Entero- 
coccus faecalis, Pseudomonas fluorescens, Salmonella 
enterica serovar Enteritidis and Listeria innocua sub-
jected to different irradiation treatments in tryptic soy 
broth (TSB) and cooked ham and subsequently incubated 
at different temperatures (experimental data from Agui- 
rre et al. [9]). Lag phases were estimated according to 
Equations (1) and (2) after determining the percentage of 
samples without growth and considering the Poisson 
function predictions and the scenarios above described. 

3. Results 

3.1. Simulation 

Figure 1(a) shows the increase in the mean lag and Fig- 
ures 1(b) and (c) show, respectively, the decrease in the 
standard deviation and the coefficient of variation as a 
function of the average number of cells per sample. The 
dashed line in Figure 1 shows the mean and standard 
deviations of the data in Scenario I. As expected, the 
greater the number of cells per sample is, the larger the 
difference between the mean and standard deviation of 
Scenario I data and those of the others. The distributions 
of Scenario III were not considered further because the 
averages were identical to those of Scenario II and their 
standard deviations were very close to those of Scenario I 
(data not shown).  

Comparison of the distributions obtained in Scenarios 
I and II, I and IV and II and IV (Figure 2) shows that the 
higher the more probable number per sample is, the 
smaller the p value for comparisons of the mean and 
standard deviation, according to the permutation test. 
Significant differences (α < 0.05) were found among the 
three comparisons for the mean and between Scenarios I 
and II and I and IV for the standard deviation. 

3.2. Application of Scenarios to Experimental  
Data 

Table 2 summarises the experimental data, including the 
expected inactivation according to the irradiation applied, 
the average number of surviving cells per sample and the     
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Figure 1. Effect of the average number of cells per sample on the mean (a), standard deviation (b) and coefficient of variation 
(Sd*100/mean, C) of lag phase distribution in a model system assuming that lag phases follow a gamma distribution and that 
 = 0.0693 h−1. Dashed lines represent the mean, standard deviation and coefficient of variation assuming that all samples 
contain one cell (Scenario I). Solid symbols show the results assuming a variable number of cells per sample, and assuming 
that the sample with the shortest lag phase contains the highest number of cells, the sample with the second shortest lag con- 
tains the second highest number, and so on, according to the Poisson distribution function (Scenario II). Empty symbols rep- 
resent the results following the assumptions in (Scenario II) but including only samples with one cell (Scenario IV). 
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(a)                                             (b) 

Figure 2. Comparison by permutation test of means (a) and variances (b) of lag phase distributions obtained when all sam- 
ples with growth are assumed to contain one cell (Scenario I) with those obtained under other assumptions (Scenarios II and 
IV). The solid circles show the comparison between (Scenarios I and II), in which samples with growth are assumed to con-
tain one or more cells according to the truncated Poisson distribution, and assuming that the sample with the shortest lag 
phase is supposed to have the highest inocula. The solid triangles show the comparison between (Scenarios I and IV), which 
makes the same assumptions as (Scenario II) but excludes samples containing more than one cell. Empty squares show the 
comparison between (Scenarios II and IV). Dashed lines represent the α-value = 0.05. Data below the line indicate significant 
differences. 
 
characteristics of the distributions (mean, standard devia- 
tion and coefficient of variation) for each substrate, 
treatment (Aguirre et al. [9]) and scenario. Scenario III 
was not considered for the reasons mentioned above. As 
in the simulations, analysis of the experimental data 
showed that the mean lag phase when growth is assumed 
to be due to a variable number of cells (Scenario II) was 

equal to, or higher than, the mean when growth is as- 
sumed to be due to a single cell (Scenario I). In contrast, 
the standard deviations in Scenario II were always lower 
than those in Scenario I, except in the case of Salmonella 
Enteritidis growing in ham at 7˚C after no treatment. 

The permutation test was used to compare the distribu- 
tions between Scenarios I and II, I and IV and II and IV.  
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Several significant differences (α < 0.05) were found and 
in order to clarify the reasons of such differences, the 
average number of cells per sample and the specific 
growth rate were plotted (Figure 3).  

samples with more than one cell. 
In order to determine more accurately the lag phase, 

we propose to assume that the sample with the shortest 
lag phase contains the highest number of cells, according 
to the Poisson distribution, the sample with the second 
shortest contains the second highest number of cells, and 
so on (Scenario II). This assumption is based on the fact 
that higher inocula need less number of duplications (i.e. 
less time) to reach a determined number of cells (Td or 
Tcount in Equations (1) and (2), respectively) and then, lag 
is actually longer than if the growth had been generated 
by only one cell. Furthermore, it is known that the lag 
phase of individual cells is variable [1,7,9] and, logically, 
it is more likely to find a fast cell in starting the growth 
in samples that contain higher number of cells and, ob- 
viously, lag phase of these samples must be shortened 
because of the “fast” cells. Pin and Baranyi [7], working 
with single cells and micropopulations, stated that sam-
ples with low initial number of cells, showed longer lag 
times—in average—than those initiated with more cells. 
All these reasonings support the starting hypothesis.  

4. Discussion 

Obviously, to consign to oblivion the Poisson function of 
distribution, when growth is observed in a determined 
percentage of homogeneous samples, and consider that 
this growth comes from one viable cell, is erroneous be-
cause the probability of that a significant number of 
samples contains more than one cell is very high (see 
Table 1); obviously, the higher the average number of 
cells per sample is, the higher the probability of finding  
 

 

The greater the number of cells per sample is, the lar- 
ger the difference between the mean and standard devia- 
tion of lag phase distributions (Figure 1). Then, when 
individual cell lag phases are determined, larger errors 
are expected as the number of cells per sample increases, 
confirming the Baranyi et al. [18] statement. In other 
words, in practical situations, the greater the number of 
samples with microbial growth is, the greater the ex- 
pected errors in individual cell lag phase estimation. 
Figure 2 corroborates this finding since the higher the 
average number of cells per sample is, the more probably 
is to find significant differences (α < 0.05) between the 
distributions of all scenarios analyzed. 

Remarkable differences between Scenarios I and IV 
were observed in both the mean and the standard devia- 
tion (Figure 1). It is important to remember that in this 
case, lag phase data, when one cell per sample is as- 
sumed (Scenario I), are compared with the lag phase data 
of cells with longer lags (IV), which are more likely to 
contain, actually, one cell. Samples with shorter lag 
phases are ignored in Scenario IV and, therefore, data 
from fast cells growing alone are not included. Then, the 
lag phase average is always biased to long times in this 
scenario. 

Scenarios II and III should model the experimental 
data more closely than Scenario I because Equations (1) 
and (2), used to calculate the lag phase, reduce the time 
to reach a given microbial concentration (Td or Tcount) by 
the time that the initial cell number takes to reach the 
given concentration {[(Ln(Nd) – Ln(N0)]/μ] or [(Ln(Xcount) 
– Ln(Xinitial)]/μ]}. This is true regardless of the variability 
in growth rate observed in the first divisions of a cell [4], 
because this variability seems to be randomly distributed 

Figure 3. Comparison of lag phase distributions between 
Scenarios I and II (a), I and IV (b), and II and IV (c) using 
the permutation test. Empty symbols indicate that there are 
no significant differences (α > 0.05) between distributions. 
Solid symbols indicate significant differences (α < 0.05). 
Data were taken from Aguirre et al. (2011) and correspond 
to Listeria innocua (circles), Pseudomonas fluorescens (tri- 
angles), Salmonella Enteritidis (squares) and Enterococcus 
faecalis (diamonds). 
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[24]. Recalculating the lag phases of samples more likely 
to contain more than one cell is easily accomplished by 
substituting N0 or Xinitial in Equations (1) and (2), respec- 
tively, by the number of cells predicted by the Poisson 
function. When the lag phase is determined by Bioscreen 
or in food, assuming that all samples contain one cell, the 
sample with the shortest lag phase is most likely to con- 
tain the highest inoculum, and samples with the longest 
lag phases are most likely to contain only one cell. Based 
on this reasoning, if more accurate data on initial micro- 
bial concentration can be obtained, the quality of lag 
phase estimation will improve, although these estima- 
tions are not absolutely accurate due to the intrinsic cell 
variability. Actually, one cell may have a short lag phase, 
even shorter than that of a micropopulation of two me- 
dium or long lag phase cells, even considering that one 
cell have to duplicate once more than two cells to reach 
the same number of daughter cells and this duplication 
time is, of course, considered by Equations (1) and (2) 
when calculating lag phases. 

The analysis of the experimental data of Table 2 
shows that the mean lag phase, when growth is assumed 
to be due to a variable number of cells (Scenario II), was 
higher than the mean when growth is assumed to be due 
to a single cell (Scenario I). Furthermore, the lower the 
lag phases of Scenario I were, the greater the percentage 
of increase (Table 2). This means that considering that 
all samples contain one cell in optimum growth condi- 
tions or in healthy cells, which imply short lag phases, 
generates relevant inaccuracies, while the lag phase de- 
termination of injured cells and at suboptimal growth 
conditions, the error may even become negligible (Table 
2). These statements are only pertinent for the lag phase 
average because if we consider the transformation from 
Scenario I to Scenario II, data to data, it is evident that 
short lag phases estimated according to Scenario I are 
transformed in longer ones, probably in a non realistic 
way. An example is shown in Tables 3 and 4, which 
show the lag phases of non-radiated and irradiated (2 
kGy) Enterococcus faecalis in TSB at 18˚C, respectively 
(data of distributions are shown in Table 2). The analysis 
of the Table 3 data allows to affirm that the recalculation 
of lag phases according to Scenario II, ascribing the 
highest number of cells to the sample with the shortest 
lag and the second highest number of cells to the second 
shortest, etc., result in a too long lag phases for such 
samples, which hardly correspond to a samples with five 
cells instead one (the first two data of the left columns of 
the Table 3). The analysis of Table 4 data drives to the 
same reasoning, although the lengthening of lag phases 
due to the irradiation minimizes the differences. In con- 
trast, the standard deviations in Scenario II were almost 
always lower than those in Scenario I (Table 2), which 
means a lower dispersion of data and, presumably, a  

Table 3. Lag phases of non-radiated Enterococcus faecalis 
in TSB at 18˚C calculated by Equation (1) considering a 
constant μof 0.409 and assuming: Scenario I: All samples 
contain 1 cell; Scenario II: The sample in column “Sce- 
nario I” with the shortest lag phase contains the highest 
inoculum, the second shortest, the second highest, and so on. 
Number of cells per sample was estimated according to the 
Poisson distribution considering that the average number of 
cells per sample was 1.56 (Table 2). Then, according to the 
Poisson function of distribution (Equation (3)), the first two 
samples must contain five cells, the next five samples four 
cells, the next thirteen samples three cells, the next twenty 
six samples two cells and the last thirty three samples one 
cell. n. Number of sample, decreasingly ordered according 
to the Scenario I lag phase. 

n Scenario I Scenario II n I II 

1 2.7 6.5 40 5.9 7.6 

2 2.7 6.5 41 6.2 7.9 

3 2.7 6.1 42 6.2 7.9 

4 2.9 6.3 43 6.2 7.9 

5 3.0 6.4 44 6.7 8.4 

6 3.1 6.5 45 6.7 8.4 

7 3.1 6.5 46 6.7 6.7 

8 3.2 5.8 47 6.7 6.7 

9 3.2 5.8 48 7.0 7.0 

10 3.2 5.8 49 7.2 7.2 

11 3.2 5.8 50 7.2 7.2 

12 3.2 5.8 51 7.2 7.2 

13 3.6 6.1 52 7.2 7.2 

14 3.7 6.3 53 7.2 7.2 

15 3.7 6.3 54 7.7 7.7 

16 3.7 6.3 55 7.7 7.7 

17 3.7 6.3 56 7.7 7.7 

18 4.2 6.8 57 7.7 7.7 

19 4.2 6.8 58 7.7 7.7 

20 4.2 6.8 59 7.8 7.8 

21 4.2 5.9 60 8.0 8.0 

22 4.7 6.4 61 8.2 8.2 

23 4.7 6.4 62 8.2 8.2 

24 4.7 6.4 63 8.2 8.2 

25 4.7 6.4 64 8.2 8.2 

26 4.7 6.4 65 8.3 8.3 

27 4.7 6.4 66 8.4 8.4 

28 4.8 6.5 67 8.5 8.5 

29 5.0 6.7 68 8.7 8.7 

30 5.0 6.7 69 8.7 8.7 

31 5.2 6.9 70 9.2 9.2 

32 5.2 6.9 71 9.2 9.2 

33 5.2 6.9 72 9.2 9.2 

34 5.5 7.2 73 9.2 9.2 

35 5.7 7.4 74 9.7 9.7 

36 5.7 7.4 75 9.7 9.7 

37 5.7 7.4 76 9.7 9.7 

38 5.7 7.4 77 9.8 9.8 

39 5.7 7.4 78 10.7 10.7 

  Average (h) 6.09 7.38 

  Sd (h) 2.16 1.13 
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Table 4. Lag phases of Enterococcus faecalis irradiated with 
2 kGy in TSB at 18˚C calculated by Equation (1) consider- 
ing a constant μ of 0.409 and assuming: Scenario I: All 
samples contain 1 cell; Scenario II: The sample in column 
“Scenario I” with the shortest lag phase contains the highest 
inoculum, the second shortest, the second highest, and so on. 
Number of cells per sample was estimated according to the 
Poisson distribution considering that the average number of 
cells per sample was 1.97 (Table 2). Then, according to the 
Poisson function of distribution (Equation (3)), the first 
sample must contain six cells, the next three samples five 
cells, the next nine samples four cells, the next eighteen 
samples three cells, the next twenty seven samples two cells 
and the last twenty seven samples one cell. n. Number of 
sample, decreasingly ordered according to the Scenario I 
lag phase. 

n Scenario I Scenario II n I II 
1 58.7 62.9 44 68.6 70.3 
2 58.7 62.5 45 69.1 70.8 
3 58.7 62.5 46 69.2 70.9 
4 59.2 63.0 47 69.6 71.3 
5 59.4 62.8 48 69.6 71.3 
6 59.7 63.1 49 69.6 71.3 
7 59.9 63.3 50 69.7 71.4 
8 60.2 63.6 51 70.7 72.4 
9 60.2 63.6 52 70.9 72.6 

10 60.6 64.0 53 71.7 73.4 
11 61.2 64.6 54 73.9 75.6 
12 61.3 64.7 55 74.2 75.9 
13 61.6 65.0 56 74.2 75.9 
14 61.9 64.4 57 74.7 76.4 
15 62.2 64.8 58 74.9 76.6 
16 63.9 66.5 59 75.1 75.1 
17 63.9 66.5 60 75.2 75.2 
18 63.9 66.5 61 75.6 75.6 

19 64.5 67.0 62 75.6 75.6 
20 64.6 67.2 63 75.6 75.6 
21 64.7 67.3 64 75.6 75.6 
22 64.9 67.5 65 75.6 75.6 
23 65.4 67.9 66 76.1 76.1 
24 65.6 68.1 67 76.1 76.1 
25 65.7 68.3 68 76.2 76.2 

26 65.7 68.3 69 76.2 76.2 

27 65.7 68.3 70 76.6 76.6 

28 65.7 68.3 71 76.6 76.6 

29 65.7 68.3 72 76.6 76.6 

30 65.8 68.3 73 76.6 76.6 

31 66.3 68.8 74 76.6 76.6 
32 66.4 68.1 75 76.6 76.6 
33 67.0 68.7 76 76.7 76.7 
34 67.2 68.9 77 76.7 76.7 
35 67.6 69.3 78 76.7 76.7 
36 67.7 69.4 79 77.5 77.5 
37 67.9 69.6 80 77.7 77.7 

38 68.0 69.7 81 79.2 79.2 

39 68.0 69.7 82 80.7 80.7 

40 68.1 69.8 83 84.7 84.7 

41 68.2 69.9 84 85.2 85.2 

42 68.6 70.3 85 86.9 86.9 
43 68.6 70.3    

  Average (h) 69.92 71.53 
  Sd (h) 7.04 5.89 

more accurate lag phase determinations when applying 
the Scenario II, which means that, in spite of the above 
discussed arguments, the average of the recalculated dis- 
tribution (Scenario II) must be more realistic than that of 
Scenario I.  

The robust permutation test (see Annex 1) is proposed 
to compare lag phase distributions. When this test was 
applied to the experimental data of Aguirre et al. [9], 
several significant differences (α < 0.05) were found be- 
tween Scenarios I and II, I and IV and II and IV. From 
Figure 3, it may be deduced that the higher the average 
number of cells per sample was, the greater the probabil- 
ity that there would be significant differences in distribu- 
tions between Scenario I and II or between I and IV. This 
is consistent with the predictions of the simulation gen- 
erated in this study. The influence of the specific growth 
rate on the distributions is less clear. 

5. Conclusion 

To estimate lag phase, the assumption that growth comes 
from one cell in all samples when a certain percentage of 
them does not show microbial growth contradicts the 
Poisson distribution function. Taking into account the 
percentage of samples showing microbial development, 
the Poisson function allows ascribing higher inocula to 
the samples with shorter lag phases. Considering Pois- 
son-based predictions of the number of cells per sample, 
instead of considering that all samples contain one cell, 
the accuracy of the average lag phase determinations of 
micropopulations will be improved. In fact, the more sam- 
ples there are that contain more than one cell, the greater 
the improvement will be. This improvement is likely to 
be statistically significant mainly in cases where the av-
erage number of cells per sample is relatively high. 
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Appendix A 

##############################################
################################ 
#         PROGRAM PERMUTA-
TION_VARIANCE_RATIO_TEST v2.0 
##############################################
################################ 
# Authors: María del Carmen Bravo and Juan Aguirre - 
November 2011 
# This R program (http://cran.es.r-project.org/) applies 
the permutation  
# test to the null hypothesis of homogeneity of two vari-
ances. 
# It applies a multiple test procedure to comparisons of 
several variance  
# pairs. To minimize the probability of rejecting a true 
hypothesis,  
# Bonferroni and Sidak p-value corrections, as well as 
the less conservative  
# Holm-Bonferroni corrections, are applied to the 
p-values. 
# The lag-time distribution of single cells of different 
microorganisms is  
# analysed. For each microorganism, the analysis is car-
ried out using 3, 4, or  
# 5 dose or scenario groups. By default, the number of 
variance pair  
# comparisons in these cases are 3, 6 and 10, respec-
tively.  
# All tests are bilateral (alternative hypothesis is non- 
homogeneity). 
# Extension to unilateral tests (alternative hypothesis is 
that one variance  
# is larger), and to different numbers of doses or scenar- 
ios, is possible.  
# Also the number of comparisons may be reduced. 
# Permutation test: 
# ----------------- 
# The homogeneity of two variances test is equivalent to 
the variance 
# ratio test, with the null hypothesis stating that the ratio 
of variances 
# is equal to 1. 
# For two dose or scenario groups, the variances of the 
lag-time of both 
# groups and their ratio (variance_ratio) are computed. 
# For a number of times, n_permutations: 
#    - Lag-time observations are randomly distributed 
into the two dose  
#       or scenario groups. Original dose or scenario 
sizes are maintained.  
# - Variances of both groups and their ratio are com- 
puted. 

# A distribution of the variance ratios is obtained. 
# If the variance_ratio value is an anomalous value of 
this distribution, 
# then the hypothesis of homogeneity of variances is 
rejected. 
# A histogram of the variance ratio distribution is gener-
ated. 
# Bonferroni and Sidak p-value corrections: 
# ----------------------------------------- 
# The output of each homogeneity of variances test is its 
p-value and 
# the corrected Sidak and Bonferroni p-values that take 
into account the  
# number of variance pair comparisons. The Bonferroni 
correction is the 
# test p-value multiplied by the number of comparisons. 
This value 
# must be compared to a multiple significance level al-
pha. 
# Holm-Bonferroni p-value corrections: 
# ------------------------------------ 
# p-values of homogeneity of variance tests are ordered 
from lower to higher. 
# These values are compared to alpha/n_comparisons, 
alpha/(n_comparisons-1), 
# alpha/(n_comparisons-2),..., alpha, respectively. The 
p-values must be lower # than this second set of values to 
be significant with a multiple  
# significance level alpha. 
# References: 
# ----------- 
# Abdi, H. 2007. Bonferroni and Sidák corrections for 
multiple comparisons.  
# In: N.J. Salkind (ed.) Encyclopedia of Measurement 
and Statistics, Thousand # Oaks, CA: Sage. pp. 103-107 
# Hesterberg, T., Moore, D.S., Monaghan, S., Clipson, 
A., Epstein, R.. McCabe, # G.P., 2005, Bootstrap Meth-
ods and Permutation Tests. In: Moore, D.S. &  
# McCabe, G.P.: Introduction to the Practice of Statistics, 
Fifth Ed., W.H.  
# Freeman & Co. pp. 14.1-14.70. 
# Holm, S., 1979. A simple sequentially rejective multi-
ple test procedure.  
# Scandinavian Journal of Statistics, 6, 65-70. 
# R version 2.7.2, 2008. R: A Language and Environ-
ment for Statistical  
# Computing. Reference Index. The R Foundation for 
Statistical Computing.  
# ISBN 3-900051-07-0. 
# To run the program in R: Mouse-selection of several 
sentences + F5  
 
##############################################
################################ 
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#                           Function definitions 
##############################################
################################ 
 
# The function definitions part of the program is exe-
cuted once. 
# permutation_test function definition.  
# g1, g2: ordinal numbers identifying dose or scenario 
groups. 
 
permutation_test <- function(g1,g2) { 
 
 assign("k",k+1,envir=.GlobalEnv) 
 
 lag2g<-LAG[Key==keys[g1] | Key==keys[g2]]  
 
 ng1<-n_groups[g1] 
 ng2<-n_groups[g2] 
 
 n1<-ng1 
 n11<-ng1+1 
 n2<-ng1+ng2 
 
variance_ratio<-var_groups[g1]/var_groups[g2] 
 s_variance_ratio<-numeric(n2) 
 s_variance_ratio<-variance_ratio 
 
 for (i in 1:(n_permutations-1)) { 
 s_lag2g<-sample(lag2g) 
 
s_variance_ratio<-c(s_variance_ratio,var(s_lag2g[1:n1])/
var(s_lag2g[n11:n2])) 
 } 
 
 posi-
tion<-length(s_variance_ratio[s_variance_ratio<=varianc
e_ratio]) 
  
 # p_inf: left tail estimated probability for vari- 
ance_ratio value 
 p_inf<-position/n_permutations      
 p_sup<-1-p_inf 
 
 p_value<-print_results 
(g1,g2,variance_ratio,p_inf,p_sup)  
 
# If the user does not want to see the histograms, add the 
# symbol as the  
# first character in the following two sentences.  
win.graph() 
 histogram(s_variance_ratio,g1,g2) 
 
 p_value 
 } 

 
# print_results function definition 
 
print_results <- function (g1,g2,coc,p_inf,p_sup) { 
 
 cat ('------------------- Permutation test 
---------------------',"\n") 
 cat('Groups:', keys[g1],keys[g2],"\n") 
 cat('Variance ratio:',coc,"\n") 
 
 # p_value: p-value for the two-tailed test 
 if (1/n_permutations < p_inf & p_inf <= 0.5) 
p_value <- p_inf*2 
 if (0 < p_sup & p_sup < 0.5) p_value <- p_sup*2  
 # p_bon, p_sidak: corrected Bonferronni and Sidak 
p_values for  
# n_comparisons tests  
  
if ((1/n_permutations<p_inf & p_inf<=0.5) | (0<p_sup & 
p_sup<0.5)) { 
p_bon <- p_value*n_comparisons 
  p_sidak <- 1-(1-p_value)^n_comparisons } 
 
 if (p_inf==1/n_permutations | p_sup==0) { 
    p_value <- 1/n_permutations 
    p_bon <- 1/n_permutations 
    p_sidak <- 1/n_permutations  
    cat('Two-tailed p_value lower 
than',1/n_permutations,"\n") 
    cat('Bonferroni corrected p_value lower 
than',1/n_permutations) 
    cat("\n",'Sidak corrected p_value lower 
than',1/n_permutations,"\n") 
   } 
 
 if (p_value > 1/n_permutations) cat('Two-tailed 
p_value:',p_value,"\n") 
 
 if (1/n_permutations < p_value & p_value < alpha) 
{ 
  cat('Bonferroni corrected 
p_value:',p_bon,"\n") 
  cat('Sidak corrected p_value:',p_sidak,"\n") } 
 
 if (min(p_bon,p_sidak)>alpha  )  
  { cat('** Non significant differences between 
variances **',"\n")} 
 if (min(p_bon,p_sidak)<alpha)   
    {cat ('** Variances of doses groups are different 
**',"\n")} 
  
 cat 
('----------------------------------------------------------',"\n") 
 p_value 
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} 
 
# histogram function definition 
 
histogram <-function (x,g1,g2) { 
     
graph_name<-paste(file_name,sheet_name,'Groups:',key
s[g1],'and',keys[g2]) 
     hist(x, main = graph_name) } 
  
##############################################
################################ 
#                     End of function definitions 
##############################################
################################ 
 
##############################################
################################ 
#          Main program 
##############################################
################################ 
# Program parameters: 
# ------------------- 
# alpha: Multiple significance level for 
n_comparisons of permutation 
#          test of the homogeneity of two variances. 
Usual value: 0.05 
# n_permutations: Number of permutations. Usual 
value: 10000 
# file_name: Name of the Excel file with the input 
data 
# sheet_name: Name of the Excel sheet with the input 
data  
# Name of columns: Key LAG 
# Key refers to treatment names (doses or scenarios)  
#  LAG refers to LAG-time 
# groups_number: Number of dose or scenario groups.  
# Possible values: 3, 4, 5 
# n_comparisons: Number of pairwise comparisons. 
Values: 3, 6, 10  
# for respective group_number values of 3, 4, 5 
# Its value is used for p_value corrections 
# keys: group_number dimension vector with dose or 
scenario group names 
#  digits: Number of digits for output of numerical val-
ues 
# output_file_name: Name of output file when user 
wants program output  
# diverted to a file instead of to the R terminal 
 
# This main program must be executed once for all vari-
ance comparisons of  
# lag-time distribution for each microorganism  
 

# IMPORTANT NOTE: The user must assign values to 
these program parameters 
# --------------- 
alpha <- 0.05 
n_permutations <- 10000 
# file_name and sheet_name are only necessary for the 
output, to identify 
# results 
file_name <- 'file-name.xls' 
sheet_name <- 'sheet-name' 
groups_number <- 3 
 
# Give the dose or scenario names in the case of 
groups_number equal  
# to 3, 4 or 5. Names are case-sensitive. 
if (groups_number == 3) keys <- c('A','B','C') 
if (groups_number == 4) keys <- c('A','B','C','D') 
if (groups_number == 5) keys <- c('A','B','C','D','E') 
 
# Output: 
# ------- 
# Program output can be diverted to the R terminal (de- 
fault) or to a file. 
# If output is written to a file, specify the name of the file  
# (for example: output_file_name="c:/output_files/Lag_ 
HAM.txt") 
# and run the following two sentences without the # 
symbol. 
 
# output_file_name="complete-file-name" 
# sink(file = output_file_name, append = TRUE, type = 
"output",split = FALSE) 
 
# the append = TRUE option means that the output will 
be appended  
# to the file; otherwise, it will overwrite the contents of 
the file. 
# If during an R session you want to divert output to the 
R terminal,  
# run the next sentence without the # symbol. 
 
# sink(file=NULL) 
 
###################   Data entry  
#################### 
#   1. Open the Excel file file_name, sheet sheet_name 
#   2. Select the columns Key and LAG (names are 
case-sensitive) 
#   3. Click menu option Edit --> Copy (or CTRL + C ) 
#   4. Execute the next two R sentences 
# If the decimal point is written as a comma in your input 
data, read  
# the note at the end of the program 
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data<- read.table("clipboard",header=T) 
attach(data) 
 
# digits controls the number of digits to print # when 
printing numeric values. 
# options(digits=5)  
 
################## Running the analysis  
############## 
# User has two options: 
# 1) Select all sentences through to the end of the pro-
gram and execute them 
# 2) Execute the following command blocks as appropri-
ate 
 
if (groups_number == 3) n_comparisons <- 3 
if (groups_number == 4) n_comparisons <- 6 
if (groups_number == 5) n_comparisons <- 10 
 
cat('Input data: File  ', file_name ,', sheet ', 
sheet_name,"\n") 
cat('Number of doses or scenario groups:',groups_num- 
ber,"\n") 
cat('Number of comparisons:',n_comparisons,"\n") 
cat('Multiple significance level:', alpha,"\n") 
 
g1<-Key[Key==keys[1]] 
ng1<-length(g1) 
g2<-Key[Key==keys[2]] 
ng2<-length(g2) 
g3<-Key[Key==keys[3]] 
ng3<-length(g3) 
 
n_groups<-c(ng1,ng2,ng3) 
 
var1<-var(LAG[Key==keys[1]]) 
var2<-var(LAG[Key==keys[2]]) 
var3<-var(LAG[Key==keys[3]]) 
 
var_groups<-c(var1,var2,var3) 
 
# Running this block is required for groups_number > 3, 
though it can be run 
# for any value of groups_number. 
if (groups_number>3) { 
 g4<-Key[Key==keys[4]] 
 ng4<-length(g4) 
 n_groups<-c(n_groups,ng4) 
 var4<-var(LAG[Key==keys[4]]) 
 var_groups<-c(var_groups,var4) 
 } 
 
# Running this block is required for groups_number = 5, 
though it can be run 

# for any value of groups_number. 
if (groups_number==5) { 
 g5<-Key[Key==keys[5]] 
 ng5<-length(g5) 
 n_groups<-c(n_groups,ng5) 
 var5<-var(LAG[Key==keys[5]]) 
 var_groups<-c(var_groups,var5) 
 } 
 
# Continue running the program 
std_groups <- sqrt(var_groups) 
cat('Names of doses or scenario groups:', keys,"\n") 
cat('Variances:', var_groups,"\n") 
cat('Standard deviations:', std_groups,"\n") 
 
# k: Initialization of the number of comparisons # per- 
formed. User should not 
# change this value 
# k increments its value by one each time #permuta- 
tion_test function is run 
k<-0 
c1<-numeric(n_comparisons) 
c2<-numeric(n_comparisons) 
p_values<-numeric(n_comparisons) 
 
# Execution of the permutation_test function as permute- 
tion_test(g1,g2),  
# where g1, g2:  ordinal numbers identifying dose or 
scenario groups. 
# n_comparisons permutation_test definition functions 
must be run. 
 
p<-permutation_test(1,2); c1[k]<-1; c2[k]<-2; 
p_values[k]<-p  
 
p<-permutation_test(1,3); c1[k]<-1; c2[k]<-3; 
p_values[k]<-p 
 
p<-permutation_test(2,3); c1[k]<-2; c2[k]<-3; 
p_values[k]<-p 
 
# Running this block is required for groups_number > 3, 
though it can be run 
# for any value of groups_number. 
if (groups_number>3) { 
 p<-permutation_test(1,4); c1[k]<-1; c2[k]<-4; 
p_values[k]<-p 
p<-permutation_test(2,4); c1[k]<-2; c2[k]<-4; 
p_values[k]<-p 
 p<-permutation_test(3,4); c1[k]<-3; c2[k]<-4; 
p_values[k]<-p 
 } 
 
# Running this block is required for groups_number = 5, 
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though it can be run 
# for any value of groups_number. 
if (groups_number==5) { 
 p<-permutation_test(1,5); c1[k]<-1; c2[k]<-5; 
p_values[k]<-p 
 p<-permutation_test(2,5); c1[k]<-2; c2[k]<-5; 
p_values[k]<-p 
 p<-permutation_test(3,5); c1[k]<-3; c2[k]<-5; 
p_values[k]<-p 
 p<-permutation_test(4,5); c1[k]<-4; c2[k]<-5; 
p_values[k]<-p 
 } 
 
# Continue running the program: 
# -to control possible errors in k value and 
# -to perform tests that apply Holm-Bonferroni p-value 
corrections 
 
if (k>n_comparisons) { 
    cat ('******* ERROR *******',"\n") 
    cat ('The number of permutation tests run is greater 
than', n_comparisons) 
    cat ("\n",'Start the running of the program from 
sentence k<-0') } 
 
# ord_p: test p-values in order of increasing value 
ord_p <- order(p_values) 
 
# alpha_i: Holm-Bonferroni significance level for the ith 
test for a multiple  
# significance level alpha   
alpha_i<-c(alpha/n_comparisons:1) 
 
C<-matrix(c(c1[ord_p],c2[ord_p],p_values[ord_p],alpha
_i),nrow=n_comparisons) 
 
aux<-numeric(n_comparisons) 
for (i in 1:n_comparisons) { 
 aux[i]<-0 
 if (C[i,3]< C[i,4]) aux[i]<-1 } 
 
CC<-matrix(c(C,aux),nrow=n_comparisons) 
 
# L: number of significance tests 
L <-sum(CC[,5])  
 
# CCC: matrix of significance tests.  
#  columns 1 and 2: Identification numbers of  
# dose or scenario groups 
# column 3: p-value for the bilateral test 
#  column 4: alpha_i value to be compared with 
p-value 
CCC<-CC[,1:4][CC[,5]==1] 

dim(CCC)<-c(L,4)  
 
cat ("\n") 
cat ('** Application of Holm-Bonferroni p-value correc-
tions **',"\n") 
cat ('--------------------------------------------------------',"\n") 
if (L==0) { 
cat ('** Non significant differences between any pair of 
variances **',"\n")} 
if (L > 0) { 
cat ('** Pairs of variances that are different **',"\n") 
 cat ('Doses        Doses         p-value  
H-B correction',"\n") 
 cat ('-----        -----         -------  
--------------',"\n") 
 for (i in 1:L) { 
cat(format(keys[CCC[i,1]],width=12),format(keys[CCC[
i,2]],width=12), 
 format(CCC[i,3],width=8,digits=5),  
format(CCC[i,4],width=9,digits=5),"\n")}  
cat ('Significant because p-value < Holm-Bonferroni 
correction',"\n") 
 } 
cat ('--------------------------------------------------------',"\n") 
cat 
('*********************************************
***********',"\n") 
 
# End of the program 
 
# Notes: 
# ------ 
# When running attach(data), the message  
#     The following object(s) are masked from data # 
(position 3): 
#  Key LAG  
# should be ignored 
# For data in which the decimal is marked with a comma 
instead of a period, 
# use the following sentence without the # symbol 
#data<-read.table("clipboard",dec=",",header=T#) 
# Data can be read from CSV files exported from Excel 
# For data in which the decimal is marked with a # pe-
riod, use the following  
# sentence without the # symbol 
#data<-read.csv2("complete-file-name",header=T#) 
# For data in which the decimal is marked with a comma, 
use the following  
# sentence without the # symbol 
#data<- read.csv("complete-file-name",header=T)  
# Example of complete-file-name: 
# c:/data/VT2kgy.csv 
# To avoid the following error 
# Error en win.graph() : too many devices open 
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# close graphing devices when many are open 
# To avoid the following error 
# Error en var(LAG[Key == keys[1]]) : 'x' is empty 
# ensure that the names in the column Key of the # Excel 

file are  
# the same as the names given in the sentence  
# if (groups_number ...) keys <- c('A',...)

 


