
Journal of Signal and Information Processing, 2012, 3, 198-207 
http://dx.doi.org/10.4236/jsip.2012.32027 Published Online May 2012 (http://www.SciRP.org/journal/jsip) 

A New Useful Biometrics Tool Based on 3D Brain Human 
Geometrical Characterizations 

Kamel Aloui1, Amine Naït-Ali2*, Saber Naceur1 
 

1LTSIRS Laboratory, National Engineering School of Tunis, Belvedere, Tunisia; 2Université Paris-Est, Créteil, France. 
Email: {aloui_meteo, naceurs}@yahoo.fr, *naitali@u-pec.fr 
 
Received August 5th, 2011; revised September 22nd, 2011; accepted January 17th, 2012 

ABSTRACT 

Previous clinical research studies consider the existence of differences among normal individual cerebral cortex and 
show that some features such as cerebral sulci are unique for each individual so that human brains are anatomically dif- 
ferent and unique to each individual. In this work, we highlight the idea which consists in using medical data, such as 
brain MRI images for the purpose of individual identification or verification. In other words, we raise the following 
question: can one identify individuals using their brain geometry characteristics? Our aim is to validate the feasibility of 
this new biometrics tool based on human brain characterization. The proposed approach differs from existent biometrics 
modalities (e.g. fingerprint, hand, etc.) in the sense that brain features cannot be modified by individuals as it is the case 
when using fake fingerprints, or fake hands. In this work, we consider volumetric Magnetic Resonance Images (MRI) 
from which brain shapes are extracted using a 3D level-sets segmentation approach. Afterwards, geometrical descrip- 
tors are extracted from the 3D brain volume and from a projected version which provide specific features such as the 
isoperimetric ratio, the cortical surface curvature and the Gyrification index. Evaluations performed on a set of MRI 
images obtained from (MeDEISA) database show that it is possible to distinguish between individuals using their brain 
characteristics. Preliminary results are particularly encouraging. 
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1. Introduction 

From a macroscopic point of view, the brain requires 
various phases during its evolution up to the maturation 
(from a totally smooth brain to a highly wrinkled brain [1, 
2]). According to the appearance date of the folding, their 
shape, and their variability; three types of cortical folding 
can be distinguished, namely: 1) the primary folding, 
characterized by a weak inter-individual variability, visi- 
ble from the 16th week of gestation [3], 2) the secondary 
type of folding, characterized by an intermediate level 
variability which appears at about the 32nd week of ges- 
tation establishing the Gyrification degree of the cerebral 
cortex, and 3) the tertiary folding types, characterized by 
a high inter-individual variability, developed at about the 
36th week of gestation. Numerous anatomical studies of 
the human brain consider a partitioning into different areas 
which are often delineated by folds, showing a signifi- 
cant inter-individual variability of the geometric shape. 
In addition, studies have shown that the two hemispheres 
of a same individual are not necessarily symmetrical and 
that inter-hemispheric variability show that the geometric 
shape of the cerebral cortex is unique for each individual  

[4-6]. In such a context, we believe that an objective 
quantification of human brains could contribute consider- 
ably in biomedical and biometrics research areas so that 
one can provide a new useful tool to identify indivi- 
duals through their cerebral signatures. 

The proposed approach differs from some well known 
common modalities such as fingerprint recognition, iris, 
face, etc., in the sense that the proposed modality is not 
subject to external modifications (e.g. minor injuries) ex- 
cept in pathological cases, not considered in this work. 
Moreover, the proposed technique doesn’t allow any type 
of fakes as it is the case when dealing with classical tech- 
niques. “No one can change the feature of his own brain”. 
This approach can also be employed for the purpose of 
cadaver identification, obviously under some specific 
body conservation conditions and before using any DNA 
identification. 

Except direct post-mortem characterizations of the 
cerebral cortex, the Magnetic Resonance Imaging (MRI) 
is potentially a very attractive approach to study the 
anatomy of the cerebral cortex. This biomedical imaging 
technique allows a good visualization of different ana- 
tomical structures such as cortical sulci and it becomes  *Corresponding author. 
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more flexible to use thanks to the recent development of 
high-performance computers allowing a fast implemen- 
tation of three-dimensional processing algorithms. Actu- 
ally, from the literature, several research studies have 
been dedicated especially to clinical purposes such as: 
the asymmetry of the brain; the neurological morphome- 
try (e.g. autism); the schizophrenia, etc.  

As it has been evoked previously, our objective is not 
clinical since we aim to quantify differences between the 
cerebral cortex of normal individuals for the purpose to 
study the possibility of identifying individuals through 
their brain signature. Consequently, we define in this 
work, through two approaches, new geometrical descrip- 
tors of adult and healthy human brains. In the first ap- 
proach, the brain is represented through 3D triangular 
meshes, whereas in the second approach, the brain vol- 
ume is projected so that one can obtain three views, 
namely: axial, coronal and sagittal views. From each 
view, geometrical parameters are extracted. Therefore, 
three feature vectors are obtained (x, y and z) containing 
respectively L, M and N parameters characterizing the 
brain. To evaluate our method, MRI volumetric images 
are provided from the database “Medical Database for 
the Evaluation of Image and Signal Processing Algo- 
rithms”, MeDEISA [7]. 

This paper is organized as follows: in Section 2, we 
present the kernel of our method which consists in: 1) 
segmenting 3D MRI images using a level-set based 
method in order to extract the brain geometry, 2) esti- 
mating brain features “geometrical descriptors” from a 
3D representation, 3) estimating brain features from a 
projected representation providing, coronal (front), ax- 
ial (top) and sagittal (lateral) views. In Section 3, objec- 
tive results are presented and commented. Finally, a 
discussion and a conclusion related to this work are 
given in Section 4. 

2. Proposed Method 

Segmenting manually volumetric images is a complex 
process which requires lot of time and much concentra- 
tion to achieve a good quality extraction of regions of 
interest. Actually, structures of interest show weak con- 
trast and high noise at boundaries since they are made of 
anatomical tissues mixtures (i.e. CerebroSpinal Fluid 
(CSF), Grey Matter (GM) and White Matter (WM)). For 
this reason, it is generally interesting to deal with auto- 
matic segmentation algorithms. For this purpose, a range 
of methods including edge based, region based, and 
knowledge based have been proposed for semi-automatic 
or automatic detection of various anatomical brain struc- 
tures. Recently, several attempts have been made to ap- 
ply deformable models [8-10] to brain image analysis. 
Indeed, deformable models refer to a large class of com- 
puter vision methods and have proved to be successful 

segmentation techniques for a wide range of applications. 
Moreover, they constitute an appropriate framework for 
merging heterogeneous information and they provide a 
consistent geometrical representation suitable for a sur- 
face based analysis.  

In some particular Level-sets [11], geometric deform- 
able models provide an elegant solution for medical im- 
age processing, especially for normal brain segmentation 
[12-15]. In this paper, to extract brain shape from volu- 
metric MRI images we will use a region-competition 
level-set method as described in [16,17]. This algorithm 
overcomes classical level-set problems by modulating 
the propagation term with a signed local statistical force, 
leading to a stable solution. 

2.1. Region-Competition Based Level-Set 

We propose a method which operates on 3D MRI scans 
of the human brain to segment the brain tissue. First, the 
data volume is pre-processed with an anisotropic diffu- 
sion filtering method [18] to reduce the noise and pre- 
serve edges. Then no-brain tissues are removed from the 
data volume by a simple thresholding. Afterwards, a 3D 
binary morphological erosion and dilation process [19] 
are applied to get an initial brain surface and finally we 
refine brain region extraction by using region-based in- 
formation into the level set framework. These computa- 
tional steps are illustrated in Figure 1. 

The aim of the third step is to extract “exactly” the 
cerebral cortex surface representing the interface be- 
tween MG and CSF. For this reason, we propose to use a 
deformable model algorithm based on the level set tech- 
nique. We propose also to drive our model by region 
information instead boundary information, because it is 
more robust. The process requires an initialization step 
and the definition of image forces to guide the propaga- 
tion direction and speed up the level-set. Theoretically, 
the level-set snake is defined as the zero level set of an 
implicit function   defined on the entire volume. This 
function will change over the time according to the speed 
term F. The evolution of   is defined as in [11] via a 
partial differential equation: 

F
t

 
 


              (1) 

The classical speed term is defined as in [20,21]: 

   F g I v k             (2) 

where  g x

k

 is the stop function that limits the propa- 
gation force to zero as the edge strength increases. The 
curvature  and the constant force F  propagate curve 
to the region of interest surface. 

In this work, we use a simplified version of the level- 
set formulation [17]. The model shrinks when the boun- 
dary encloses parts of the background, and grows when  
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Figure 1. Proposed method for brain cortical surface segmentation. 
 
the boundary is inside the brain region. Here, the speed 
function usually consists in a combination of two terms: 
curvature term for smoothness and data term for evolu- 
tion. The snake evolves using the following equation: 

 

   1D x k
t

   
   


      (3) 

where D is a data term that forces the model to expand or 
contract toward desirable features in the input data. By 
making D positive in desired regions or negative in un- 
desired regions. The term k is the means curvature of the 
surface, which forces the surface to have less area (and 
remain smooth), and  0 , 1   is a free parameter that 
controls the degree of smoothness. Figure 2. The speed term from [17]. 

The speed function depends on the grayscale value 
input data I  at the point x : 

 

 

 D I I T               (4) 

where  controls the brightness of the region to be seg- 
mented and 

T
  controls the range of grayscale values 

around  that could be considered inside the object. A 
model situated on voxels with grayscale values in the 
interval 

T

T   will expand to enclose that voxel, whereas 
a model situated on grayscale values outside that interval 
will contract to exclude that voxel.  

As represented in Figure 2,  describes the central 
intensity value of the region to be segmented, and 

T
  

describes the intensity deviation around  that is a part 
of the desired segmentation. Therefore if a pixel or voxel 
has an intensity value within the 

T

T   range, the model 
will expand; otherwise it will contract. 

Consequently, the three user parameters that need to 
be specified for the segmentation are T ,   and  . 
An initial mask to be transformed to a signed distance 
[22] for the level-set function is also required (Figure 3). 
The level set iteration can be terminated once   has 
converged, or after a certain number of iterations. 

Figure 3. Cerebral cortex surface obtained after 3D seg- 
mentation of volumetric brain MR Images [6]. (a) Initial ce- 
rebral cortex surface; (b) Show 2D projection into 2D brain 
slice of initial surface; (c) Cerebral cortex surface obtained 
using 3D level-sets method; (d) 2D projection of brain re- 
fined surface into 2D brain slice. 
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2.2. 3D Geometrical Cerebral Cortex  
Characterization 

When dealing with the characterization aspect of 3D ob- 
ject, we generally refer to extracting distinctiveness de- 
scriptors or measures of shape variability. For example, 
if we ask for the difference between a foot ball and a rug- 
by ball, one can answer that the first one is more round 
than the second one. By analogy, we provide in this sec- 
tion a measure of this difference applied on the human 
brain shape. The application of mathematics of differen- 
tial geometry to their shape analysis has been shown to 
be useful in [23,24]. 

The proposed method is described as follows: we de- 
fine various invariants geometrical descriptors for the 
cerebral cortex surfaces [25-30]. For this purpose, we 
have achieved seven measures, validated using a collec- 
tion of magnetic resonance scans of eight normal adult 
subjects. These measures quantify the amount of the sur- 
face area in a given volume, namely, the convexity of the 
surface, the intrinsic and extrinsic curvatures, the mini- 
mal, and the maximal and mean distances separating the 
cerebral cortex surface regarding the surface centre of 
gravity.  

1) Isoperimetric Ratio (IPR): the isoperimetric ratio  

(IPR) is defined by    
2

3Area volS S  where Area(S)  

is the surface area, and the vol(S) is the brain volume. 
This descriptor measure the failure of the brain surface to 
be a sphere. We also define the convex isoperimetric 
ratio (IPRconv), which can be calculated by  

   
2

3
conv convArea volS S  representing the relationship  

between the area and the volume delimited by convex 
hull surface of the cerebral cortex. 

2) Convexity Ratio (CR): the CR takes its minimum for 
convex bodies. In other words, this descriptor measures 
the failure of the brain shape to be convex. We defined 
two measures, namely, the surface area convexity ratio 
(CRS), which is defined by    convArea AreaS S  and 
the volume convexity ratio (CRV) defined by 

   convvol volS S . 
3) Gyrification Index (IG): the IG descriptor is a 2D 

convexity ratio (CR) which is considered as a slice-by- 
slice version of the SCR. It is the ratio of inner to outer 
cortical contours, see [28,29]. 

4) Gauss and Mean Curvature L2 Norm: measures, 
given above which are based on the surface area or the 
volume enclosed do not require differentiable patches. In 
such a context we have defined two different measures 
based on differentials features of discrete surface like the 
principal curvatures kmin and kmax or the Gauss and mean 
curvatures, K and H, [24,26]. These pairs of measures are 
related by the following expression:  min max 2H k k   

and min max.K k k . Gauss curvature L2 Norm is L2 Norm 
which we normalize by the square root of the surface 
area divided by , which we call 4π

  2GLN Area 4π
L

S K . The Mean curvature L2  

Norm (MLN) is 2L
H . The GLN descriptor measure of 

how much of the surface has constant Gauss curvature 
and the MLN descriptor as a measure of bending of the 
cortex surface. 

5) A Point Cloud Descriptors: cerebral cortex surface is 
a set of vertices in a three-dimensional coordinate system. 
These vertices are defined by X, Y and Z coordinates. The 
descriptors we used are derived from the characterization 
of 3D point cloud representing the brain surface to 
measure the variability of the human brain shape. We 
defined here three descriptors from the point cloud, 
namely, minimal, maximal and mean distances separat- 
ing the cerebral cortex surface regarding the surface cen- 
tre of gravity. They are expressed respectively by: 

     
min

2 2

DCG

min i G i G i G
i

x x y y z z       
 

2    (5) 

     
max

2 2

DCG

max i G i G i G
i

x x y y z z       
 

2    (6) 

     

mean

2 2

DCG

1
i G i G i G

i

x x y y z z
n
       
 
 2    (7) 

where n, is the number of vertexes in brain meshes sur- 
face and  , ,G G Gx y z  is the centre of gravity of cerebral 
cortex meshes surface defined by:  

  
1

1
, , , ,

n

G G G i i i
i

x y z x y z
n 

        (8) 

2.3. 2D Characterization of a Projected Cerebral  
Cortex 

Geometric descriptors of human brain shape, given above 
are based on the characterization of 3D cortical surface. 
The idea presented in this sub-section consists in explor- 
ing a new approach which characterizes the brain ge- 
ometry using a three parameters descriptor. These three 
parameters are indeed obtained by projecting the brain 
according to three directions (Figure 4) producing hence 
the coronal, axial and sagittal views. From each view, 
geometrical parameters are extracted. Therefore, three 
feature vectors are obtained (x, y and z) containing re- 
spectively L, M and N parameters characterizing the 
brain shape. For each view (2D surface) we defined some 
measures, namely, the maximal distance separating brain 
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Figure 4. Cerebral cortex surface 2D projection on coronal, axial and sagittal views. 
 

Table 1. 3D geometrical cerebral cortex characterization. projected view regarding the centre of gravity, called 
DMAX; the minimal distance called DMIN, the mean 
distance called DMEAN and the surface-perimeter ratio 
called SP.  

Descriptors Mean Min Max Std 

IPR 4.4347 4.2357 4.6596 0.1604 

IPRconv 3.8147 3.3204 4.6639 0.4235 

SCR 0.7032 0.5797 0.8075 0.1007 

VCR 0.7522 0.5560 0.9465 0.1776 

GI 0.9568 0.9104 1.0373 0.0433 

GLN 7.9740 0.1145 16.0171 5.8052 

MLN 43.2341 0.0000 86.4783 32.0660 

DCGmax 88.9643 76.5879 103.8749 11.1282 

DCGmin 5.5096 0.6257 13.7053 4.1687 

DCGmean 62.0274 52.9299 67.9287 5.0387 

These descriptors will be evaluated in the next section. 

3. Results 

To evaluate the proposed approach, MRI volumetric im- 
ages have been used. They can be downloaded from the 
well known MeDEISA database “Medical Database for 
the Evaluation of Image and Signal Processing Algo- 
rithms” [7].  

Results corresponding to the 3D characterisation and 
the 2D characterisation of the projected cerebral cortex 
are considered below, respectively in sub-Sections 3.1 
and 3.2. 

 
DCGmax ( = 11.19) are the most significant descriptor to 
characterize geometrical shape of the cerebral cortex. 
The two selected descriptors do not eliminate the ability 
of other descriptors to describe 3D geometrical brain 
shape. In fact, to identify a person through the brain sig- 
nature requires multiple parameters for more reliable 
identification procedure, so all descriptors in Table 1 can 
be used in a hierarchical identification according to a 
descriptor weight whose purpose is to refine signatures 
brain matching and recognition. 

3.1. 3D Geometrical Cerebral Cortex  
Characterization 

Based on the features considered in Section 2.1, Table 1 
shows the mean value, minimal and maximal value and 
standard deviation for each descriptor that describes 3D 
geometrical shape of eight brains. These statistical values 
indicate the variation range of each descriptor. Specifi- 
cally, the most significant descriptors having the ability 
to describe inter-individual shape variability of cerebral 
cortex are those characterized by a wide range of varia- 
tion and from which we can distinguish and differentiate 
brains. One can notice that the MLN ( = 32.06) and  

3.2. 2D Characterization of the Projected  
Cerebral Cortex 

These geometrical descriptors, as described in Section 



A New Useful Biometrics Tool Based on 3D Brain Human Geometrical Characterizations 203

2.2, are evaluated on the same set of MRI volumetric 
images used in the previous sub-section. Consequently, 
results from Tables 2, 3 and 4 show respectively the 
mean value, minimal and maximal value and standard 
deviation for each descriptor that describes coronal 
(front), axial (top) and sagittal (lateral) views of brains 
surface. The measures corresponding to each descriptor 
and to each brain views characterized by a wide range of 
variation and from which we can distinguish and differ- 
entiate brains shape. 

Unlike the direct volume characterization, this ap- 
proach seems to be more flexible for brain print recogni- 
tion and matching to distinguish between individuals. 
This new approach of brain views characterization pro- 
vides more degree of freedom to identify individuals 
using their brain geometry characteristics. For more reli- 
able identification procedure we can use a vectorial 
analysis. In other words, for individual identification 
based on geometric brain shapes, it is more appropriate 
to use a set of descriptors (L, M and N parameters) in- 
stead a scalar analysis on each projection brain view. 

Geometrical descriptors characterizing each brain 
views can be either correlated or not. In fact in this pro- 
posed approach one can expect that better results can be 
obtained by combining descriptors for each brain views. 
For instance, one can include inter-views correlation. In 
other words, we can use new descriptors of brain shape 
from inter views correlation such as: 
   coronal view axial viewSP SP , 
   coronal view sagittal viewSP SP , 
   coronal view axial viewSP SP . 

To identify a person through the brain signature it is 
more appropriate to use multiple parameters for more 
reliable identification procedure. In fact the idea is to 
assign to each individual a vector of geometric descrip- 
tors for each view of his brain and a vector of descriptors 
from the correlation between sagittal, axial and coronal 
view. Consequently, higher is the dimension of the brain 
vectors descriptors better is the capacity to distinguish 
between individuals. 

4. Discussion and Conclusions 

The objective of this work consists in studying the feasi- 
bility of a new biometrics technique, completely different 
compared to classical techniques (e.g. fingerprint, iris, 
face recognition, etc.). The proposed modality consists in 
using human brain geometry for the purpose of identify- 
ing individuals. The main advantage of this modality is 
that the acquired data cannot be subject to any voluntary 
modification (i.e. no one can change the geometry of his 
own brain). As reported in the abstract of this paper, this 
technique seems to be complex to be used in daily identi- 
fication routines, but we believe that regarding tech- 
nological progresses, such processes could be easier to  

Table 2. Geometrical characterization of 2D cerebral cortex 
projection axial view. 

Descriptors Mean Min Max Std 

DMAX 91.8273 76.6144 109.6309 11.7709

DMIN 60.4260 49.2758 71.0598 8.3616 

DMEAN 74.2811 67.3516 87.3531 6.2348 

SP 35.6429 31.4291 43.5723 4.0866 

 
Table 3. Geometrical characterization of 2D cerebral cortex 
projection coronal view. 

Descriptors Mean Min Max Std 

DMAX 82.1415 67.5950 101.8029 14.6570

DMIN 50.6635 35.3144 78.9116 13.5251

DMEAN 68.4786 58.6345 87.6712 10.1822

SP 30.7640 19.4202 43.2252 7.0109 

 
Table 4. Geometrical characterization of 2D cerebral cortex 
projection sagittal view. 

Descriptors Mean Min Max Std 

DMAX 91.6979 76.0845 109.7982 12.7054

DMIN 43.7619 22.2528 68.2013 13.7188

DMEAN 69.0730 54.9124 88.9367 10.6929

SP 30.0798 17.8994 42.3132 7.1539 

 
employ in the future. 

Using seven volumetric MRI images obtained from 
MeDEISA database, a first approach based on a 3D brain 
modelling has been employed. Each volume is seg- 
mented using a 3D level set algorithm, then ten various 
measures have been evaluated. Results show that the 
MLN and DCGmax are the most significant descriptor that 
can be used to characterize geometrical shape of the 
cerebral cortex. Whereas, the others descriptors such as 
GLN, DCGmin and DCGmean can be used to refine the 
identification. 

The second proposed approach consists in projecting a 
given volume according to three directions, namely the 
axial, coronal and sagittal. Compared to the direct 3D 
modeling, we have reported that more flexibility and 
more degrees of freedom are achieved to study inter- 
individual brain shape variability. This approach consid- 
ers that each projected brain surface according to a given 
direction (i.e. coronal, axial, sagittal) can be used to ex- 
tract significant parameters producing hence appropriate 
tri-dimensional descriptors for individual identification. 
These descriptors are based on the evaluation of the iso- 
perimetric ratio; the cortical surface curvature; the gyri- 
fication index; (maximal, minimal and mean) distance 
regarding the centre of gravity from 3D brain surfaces. 

Using volumetric MRI images from MeDEISA data- 
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base, we consider that the obtained results are particu- 
larly encouraging in the sense that some descriptors can 
be successfully used in biometrics. As a perspective to 
this work, we believe that it would be interesting to de- 
fine an optimal descriptor which maximizes the evalua- 
tion standard deviation. Another important work consists 
in analyzing the robustness of descriptors when different 
scanners are used especially when dealing with different 
image resolutions and different image qualities. More- 
over, some extra-experiences are required which consists 
in acquiring volumetric MRI images from the same indi- 
vidual so that one can evaluate the capacity of a given 
descriptor to identify an individual with high accuracy. 
This step is very important and requires a specific acqui- 
sition protocol. 
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Appendix 

1. Level Set Algorithm 

1.1. Upwinding 

Equation (1), the level set equation, needs to be discre- 
tized for computation. This is done using the up-wind 
differencing scheme [31].  

A first order accurate method for time discretization of 
Equation (1), is given by the forward Euler method, from 
[31]: 

0
t t

t tF
t

 
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  


           (9) 

A process of choosing which approximation for the 
spatial derivative of   to use based on the sign of F that 
is known as upwinding. Results in the derivatives below 
required for the level set equation update [32]. 
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 is approximated using the upwind scheme. 
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Finally, depending on whether  or  
, 

, , 0i j kF 
, , 0i j kF    is 

max , ,2

min , ,2

if 0

if 0
i j k

i j k

F

F





    




    (13) 

   t t t t F              (14) 

1.2. Curvature 

Curvature is computed based on the values of the current 
level set using the derivatives below. 
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Using the difference of normals method from [32], cur- 
vature is computed using the above derivatives with the 
two normals n  and n . 
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Level set segmentation algorithm. The two normals are used to compute divergence, 
allowing for mean curvature to be computed as shown 
below in Equation (12). 
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   (18)�

Input: Volumetric MR images , Initial mask , Threshold 
, Range 

I m
T  , Iteration , Reinitialiation step N Init  

Output: Segmentation result (surface meshes of cerebral cortex).

Initialize 0  to Signed Euclidean Distance Transform [22] from 

mask m. 
 
Calculate Data Speed Term : Equation (4) 
for 1 to N do 

Calculate First Order Derivatives : Equation (10) 
Calculate Second Order Derivatives : Equation (15) 

Calculate Curvature Terms  and : Equations (16) 
and (17) 

n n

Calculate Gradient  : Equation (13) 

Calculate Speed Term F : Equation (3) 
Update Level Set Function : Equation (14) 

if N% RITS == 0 then 
Reinitialize   to SEDT 

end 
end 
if  N%RTIS==0 then  
reinitialize   to SEDT 

       end 
end 

1.3. Stability 

Stability is enforced using the Courant-Friedrichs-Lewy 
(CFL) condition which states the numerical wave speed 
must be greater than the physical wave speed. 

 max

x
t

u


                 (19) 

where  are the u x  components of F . 

1.4. Level Set Implementation 

The following pseudo code outlines the structure of the 
level set algorithm implementations: 
 

 


