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ABSTRACT 

The size of 3D data stored around the web has become bigger. Therefore the development of recognition applications 
and retrieval systems of 3D models is important. This paper deals with invariants for 3D models recognition. Thus un- 
der general affine transform we propose in a first time determinants of three points to realize invariance under affinity. 
To solve starting point problem we needs Fourier Series (FS) to extract affine invariant descriptors, called Fourier Se- 
ries Descriptor (FSD). The difference between first and second approaches: in first approach determinants are computed 
on cartesian coordinates directly while in the second one determinants are computed from FS coefficients to eliminate 
dependency on starting point. The FS are also applied on 2D slices to generate affine invariants for 3D volume. FS 
can be computed based on hole points of volume, but this technique. The principal advantages of proposed ap- 
proaches are the possibility to handle affine transform and 3D volume. Two types of 3D objects are used in the ex- 
perimentations: mesh and volume, the Princeton Shape Benchmarek (PSB) is also used to test our descriptor based 
on FSD. 
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1. Introduction 

The digital databases of 3D objects which are used in 
various domains (e-commerce, games, medicine, etc.) 
become large. Therefore, an efficient method that allows 
users to find similar 3D objects for a given 3D model 
query is becoming necessary. Content based indexing 
and retrieval is an important way to manage these data- 
bases. Many content based retrieval systems and search 
engines for 3D models are available on the web [1-3]. 
Many methods in this way are developed. The shape 
spectrum descriptor proposed by Zaharia et al. based on 
surface geometry, is recommended by MPEG-7 [4]. Fi- 
lali et al. proposed the descriptor based on 2D views 
named Adaptive Views Clustering (AVC). It is a proba- 
bilistic Bayesian method that selects the most interesting 
views from several views of a 3D model [1]. Based on 
the statistics, Osada et al. proposed the descriptor named 
shape distribution (D2) [5]. Paquet et al. proposed the 
method of cord histograms [6]. The ratio area/volume is 
used as a feature vector to describe the 3D models by 
Zhang and Chen [7]. Even if this descriptor computes the 
feature vectors easily and quickly, it needs a high quality 
of mesh. Vranic and Saupe [8] proposed the method 
named Ray based descriptor. It uses the extents obtained 
from the center of mass of the model to intersection with 
its surface in directions which are constructed by an ico-  

sahedron. This approach is not robust to noise and needs 
a high dimension of feature vectors, this is why the 
authors construct the feature vectors from the complex 
function on a sphere, composed with Ray based feature 
vectors and shading based feature vectors, presented in 
frequency domain by applying the spherical harmonics 
[9]. In order to capture the information in the interior of a 
3D model, the authors proposed the descriptor named 
Layered Depth Spheres [10], where they use the property 
of spherical harmonics to achieve the rotation invariance. 
All previous work cited above can handle only 3D 
similitude (rotation, scale, translation). 

This paper deals with invariants for 3D models recog- 
nition. Thus under general affine transform we propose in 
a first time determinants of three points to realize invari- 
ance under affinity. To solve starting point problem we 
needs Fourier Series (FS) to extract affine invariant 
descriptors, called Fourier Series Descriptor (FSD). The 
difference between first and second approaches: in first 
approach determinants are computed on cartesian coordi- 
nates directly while in the second one determinants are 
computed from FS coefficients to eliminate dependency 
on starting point. The FS are also applied on 2D slices to 
generate affine invariants for 3D volume. FS can be com- 
puted based on hole points of volume, but this technique 
This technique is obviously time-consuming. 
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The principal advantages of proposed approaches is 
the possibility to handle affine transform and 3D volume. 
Two types of 3D objects are used in the experimentations: 
mesh and volume, the Princeton Shape Benchmarek (PSB) 
is also used to test our descriptor based on FSD. 

The paper is organized as follow: in Section 2, deter- 
minants of three points are introduced as affine invariants 
for 3D mesh. However to solve the starting point problem 
we apply Fourier series on separates coordinates to 
obtain what we call FSD in Section 3. In Section 4 FSs 
coefficients are derived from 2D slices to generate affine 
invariants for 3D volume. PSB database is used in Section 
5 as a direct application of FSD method on 3D mesh. 
Section 6 presents some mathematical and experimental 
comparisons. 

2. Invariants under 3D Affinity Using  
Determinant of Three Points 

A general affine transform A Equation (1) is defined by 
the following matrix:  
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Let X be a set of 3D points, then the analytic ex- 
pression Equation (2) of the transformed set X  is given 
by: 
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The determinant of three points Equation (3) is given 
by:  
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For each three points we can verify that:  

det( )ijk ijkD A  D              (4) 

The resulting (3 × 3) matrix ijkD  depends on choice 
of index i, j and k for X and X . 

3. Starting Point Problem and FSD Method 

The starting point problem can be seen as dependency on 
index of points, the following example of a 2D curve 
illustrates this problem: a circle can be generated by: 

  ( ), ( ) cos ( ),sin( )x t y t t t t  

where  0;2πt . 

Therefore the following equation: 

         0 0 0, cos ,sin 0x t t y t t t t t t     

where  0;2πt  and 0  a constant can give a circle 
but the order of points are not the same. 

t

In many shape descriptors, the curve is re-parame- 
terized by normalized arc length Equation (5), s which is 
defined as follows:  

( )s t x y z                 (5) 

Arc length is preserved under similarity transforms i.e. 
the corresponding points between the original and the 
transformed curve have the same normalized arc length 
under change in orientation, translation, and differ by a 
scale factor under scaling. Arc length is not preserved 
under general affine transforms [11]. In some applications, 
where curves are subject to general affine transforms, arc 
length is replaced by affine length Equation (6) which is 
defined as follows and is proved to be affine invariant.  
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The analytic expression of the transformed and repara- 
meterized set X  Equation (7) is:  
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To extract invariant we develop separately x, y and z 
into FSs as following: 
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T denote the period of parameter  . 
To verify invariance take the coordinate x, the same 

prove can be done for coordinates y and z, then:  
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We can construct relative invariant, based on deter- 
minant of three FS coefficients (indexed m, n and p) as 
follow: 
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Thus absolute invariant (FSD) can be derived by 
dividing by another relative invariant , ( ,  
and  are three fixed coefficients).  
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4. Affine Invariants for 3D Volume Using FS 
Applied on 2D Slice 

Typical scalar volume data is composed of a 3-D array of 
data and three coordinate arrays of the same dimensions. 
The coordinate arrays specify the x-, y-, and z- 
coordinates for each data point. The units of the coordinates 
depend on the type of data. For example, flow data might 
have coordinate units of inches and data units of psi. 
Slice planes provide a way to explore the distribution of 
data values within the volume by mapping values to 
colors. You can orient slice planes at arbitrary angles, as 
well as use nonplanar slices. In this case each volume V 
is characterized by a set of slices, each slice is a 2D 
image having coordinates (x, y) and color information. 

To extract affine invariants we apply FS on coordi- 
nates x and y using color as parameter [12,13]. From our 
image we first define the set of parameterized points: 

       
     3 3 3

, , ,
,( ), ( )

, ,

R G Bx y x y x y
x y

R G B ,x y x y x
  

  y
 (13) 

Then, we develop separately x and y into FS Equation 
(14) as following: 
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We can construct relative invariant Equation (15), based 
on two FS coefficients (indexed m and n) as follow:  
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Absolute invariant (FSD) can be derived by : 
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In Figures 2 and 3 we present five slices of a 3D 
volume and it’s transformed, those volumes Figure 1 are 
initially stocked into 24 slices. 

In this experiment only slices 1, 8 and 27 are considered. 
For each one six normalized color coefficients are 
extracted. In Table 1 invariant color coefficients are 
presented for original slices 1, 8 and 27. In Table 2 in- 
variant color coefficients are presented for transformed 
slices 1, 8 and 27. The result obtained allow to detect  
 

 

Figure 1. A 3D volume and its transformed. (a) MRI vo- 
lume; (b) Transformed volume. 
 

 

Figure 2. Five 2D slices of 3D volume. 
 

 

Figure 3. Five 2D slices of transformed 3D volume. 
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Table 1. Six invariant coefficients for each slice of V. 

slice 1 slice 8 slice 27 

2.1298 3.5516 1.3817 

0.3842 0.1887 0.2907 

0.2912 0.3892 0.2188 

0.4825 0.5262 0.6793 

0.3140 0.3626 0.5440 

0.4386 0.4805 0.5930 

 
Table 2. Six invariant coefficients for each slice of . V

slice 1 slice 8 slice 27 

2.1252 3.5407 1.3851 

0.3845 0.1880 0.2927 

0.2892 0.3924 0.2173 

0.4832 0.5315 0.6810 

0.3139 0.3642 0.5477 

0.4392 0.4768 0.5940 

 
similarity between slices and consequently between 3D 
volume. 

This technique suppose that V and  are stocked 
with the same number of slices. We can use another 
technique based on isosurface [14]. An isosurafce define 
the 3D volume bounded by a particular isovalue. The 
volume inside contains values greater (or less) than the 
isovalue. The volume outside contains values less (or 
greater) than the isovalue. The isovalue can be an in- 
terval [min, max] in this case the isosurface is a list of all 
cells for which the isovalue is contained in the interval 
[min, max]. Also the choice of isovalue on V and  is 
another problem. Figure 4 shows some subvolumes 
obtained by this technique. 

V

V

5. 3D Search Engine for 3D Mesh 

In order to test our 3D descriptor Figure 5, we use the 
Princeton Shape Benchmark database (PSB) [15]. It 
consists of 1814 3D models given in format Object File 
Format (OFF), with two sets (test set and train set) of 
classified 3D models. The test classification consists of 
907 models classified into 92 classes. The training classi- 
fication consists of 907 models classified into 90 classes. 
We add some 3D models to the PSB database, which 
have been created using QSlim software [16] so as to 
provide models with different levels of detail. The 
modified PSB consists of 1889 models reclassified with 
geometrical aspects, our classification consists of 982 
models classified into 93 classes. We use the average 
precision versus recall plots Figure 6 and the First Tier 
(FT), Second Tier (ST), and Nearest Neighbor (NN) 
quantities widely used in shape retrieval community to  

 

Figure 4. Subvolumes obtained by isosurface technique. 
 

 

Figure 5. Screen-shot of the 3D search engine. 
 

 

Figure 6. Precision/recall plots for our classification, test 
classification and train classification using PSB database. 
 
evaluate the performance of the descriptors. For a given 
query Q in a class C with N models, let Rk be the 
number of correctly retrieved models among the K best 
matches. The recall is defined as a ratio of relevant 
models Rk to (N – 1), and the precision is the ratio of the 
relevant results and returned results K, given by the 
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following formulas: 

 Recall = Rk N 1

Precision Rk K




 

The First Tier is the same as precision value when K is 
equal to n – 1, the Second Tier is also the same as 
precision value when K is equal to 2(n – 1) and the 
Nearest Neighbor measure is the percentage of the closest 
matches that belong to the same class as the query. 
Obviously, an ideal score is 100, and higher scores 
represent better results. 

Figure 6 shows the recall versus precision of test set, 
the training set and PSB Database. After training and 
testing the precision becomes higher using the hole 
database which mean a considerable amelioration and 
best performance of FSD method. 

6. Comparison 

6.1. Mathematical Comparison 

Feature vectors for 3D model retrieval can be based also 
on 3D moments. In [17] a complete set of orthogonal 3D 
Zernike polynomials is proposed based on 3D moments. 
Let  , , x y z  be a local continuous density function, 
for example, this can be 1 inside voxels belonging to an 
object and 0 in free space. Traditional 3D moments pqr  
are defined Equation (17) as:  

 d d d, ,p q r
pqr x y z x y zx y z 

  
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        (17) 

But those moments can not handle affine transform, so 
we propose separable 1D moment Equation (18).  
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         (18) 

We can verify as we have done in Section 3 that those 
moments are affine invariants. 

6.2. Experimental Comparison 

We compare our approach to the descriptor named Ray 
with spherical harmonic (RSH), proposed by Vranic and 
Saupe [21]. In order to extract the feature vector for a 3D 
model the authors use the continuous principal compo- 
nent analysis to align the model into the canonical 
position. Then they extract the maximal extents from the 
center of mass of the model to its surface, finally the 
spherical harmonic is applied to represent these rays in 
the frequency domain. The second descriptor used in 
comparison is the Silhouette based feature vectors (SIL), 
proposed by Heczko et al. [18]. This approach aligns 

models using the CPCA (Continuous Principle Compo- 
nent Analysis), capture shape characteristics of models in 
three monochromes images. Then the authors extract the 
three contours and for each contours they apply the dis- 
crete Fourier Transform in order to present feature 
vectors in spectral domain. The third descriptor used in 
the comparison is the descriptor named Depth Buffer 
(DBD), it is an efficient image-based descriptor proposed 
by Heczko et al. [18]. It needs the CPCA to align the 
model in a canonical position and scale into the canonical 
unit cube. Six grey-scale images are rendered using 
parallel projection. Then the authors apply 2D Fourier 
Transform, and their feature vectors are composed in the 
low frequency coefficients. Figure 7 shows the average 
precision versus recall plots comparing the four descriptors, 
where the dimension of the DBD, SIL, FSD and RSH are 
438, 300, 300 and 136 respectively. Table 3 provides 
comparative performance measures of the different 
descriptors (DBD, SIL, FSD and RSH). It is clear from 
Table 3 that the proposed approach gives lower per- 
formance than DBD and SIL. However, it is worth 
mentioning that DBD and SIL methods are 2D view 
based approaches. 
 

 

Figure 7. Precision/recall plots comparing FSD method to 
RSH, SIL and DBD using PSB database. 
 
Table 3. Comparison of measurements: NN, FT and ST for 
different methods using PSB database. 

 ST (%) FT (%) NN (%) 

DBD 44.7 34.2 61.3 

SIL 43.6 32.6 55.7 

FSD 38.9 28.4 52.3 

RSH 38.4 27.8 53.3 
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7. Conclusion 

This paper advocate the use of affine invariants to 
describe 3D objects. Those 3D descriptors are based on 
determinants and Fourier series. The principal advantages 
of our description is that similarity is achieved without 
aligning models orientation by CPCA (Continuous Prin- 
cipal Component Analysis) and a general affine transform 
is considered. CPCA can gives erroneous alignments for 
example aircrafts with long and small wings can be 
aligned in tow different canonical positions. In future the 
3D search engine can be extended for medical databases 
(MRI magnetic resonance imaging), this data typically 
contains a number of slice planes taken through a volume, 
such as the human body. One of the key difficulty when 
using proposed invariants is the lack of clear interpre- 
tation of the invariant’s meaning relatively to the shape. 
It may interesting to study the behavior of these invari- 
ants for families of synthetic shapes controlled by only a 
few parameters. 
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