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ABSTRACT 

In literature, features based on First and Second Order Statistics that characterizes textures are used for classification of 
images. Features based on statistics of texture provide far less number of relevant and distinguishable features in com- 
parison to existing methods based on wavelet transformation. In this paper, we investigated performance of tex- 
ture-based features in comparison to wavelet-based features with commonly used classifiers for the classification of 
Alzheimer’s disease based on T2-weighted MRI brain image. The performance is evaluated in terms of sensitivity, 
specificity, accuracy, training and testing time. Experiments are performed on publicly available medical brain images. 
Experimental results show that the performance with First and Second Order Statistics based features is significantly 
better in comparison to existing methods based on wavelet transformation in terms of all performance measures for all 
classifiers. 
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1. Introduction 

Alzheimer’s disease is a form of dementia that causes 
mental disorder and disturbances in brain functions such 
as language, memory skills, and perception of reality, time 
and space. World Health Organization [1] and National 
Institute on Aging (NIA) [2] highlighted that its early and 
accurate diagnosis can help in its appropriate treatment. 
One of the most popular ways of diagnosing Alzheimer 
by physician is a neuropsychological test like Mini Men- 
tal State Examination (MMSE) that test memory and 
language abilities. But problem with this approach is that 
it is subjective, human biased and sometimes does not 
give accurate results [3]. 

In Alzheimer’s disease, the hippocampus located in 
the medial temporal lobe of the brain is one of the first 
regions of the brain to suffer damage [4-6]. The research 
works [7-10] have found that the rate of volume loss over 
a certain period of time within the medial temporal lobe 
is a potential diagnostic marker in Alzheimer’s disease. 
Moreover, lateral ventricles are on average larger in pa- 
tients with Alzheimer’s disease. Holodny et al. [11] mea- 
sured the volume of the lateral ventricles for its diagno- 
sis. 

Alzheimer’s Association Neuroimaging Workgroup 
[12] emphasized image analysis techniques for diagnos- 
ing Alzheimer. Among various imaging modalities, Mag-  

netic Resonance Imaging (MRI) is most preferred as it is 
non-invasive technique with no side effects of rays and 
suitable for the internal study of human brain which pro- 
vide better information about soft tissue anatomy. How- 
ever, there is a huge MRI repository, which makes the 
task of manual interpretation difficult. Hence, computer 
aided analysis and diagnosis of MRI brain images have 
become an important area of research in recent years. 

For proper analysis of these images, it is essential to 
extract a set of discriminative features which provide 
better classification of MRI images. In literature, various 
feature extraction methods have been proposed such as 
Independent Component Analysis [13], Fourier Trans- 
form [14], Wavelet Transform [15,16], and Texture based 
features [17-19]. It is a well-known fact that Fourier 
transform is useful for extracting frequency contents of a 
signal however it cannot be use for analyzing accurately 
both time and frequency contents simultaneously. In or- 
der to overcome this, wavelet analysis is proposed which 
analyze time information accurately with the use of a 
fixed-size window. With the use of variable sized win- 
dows, it captures both low-frequency and high-frequency 
information accurately.  

For the classification of Alzheimer’s disease, Chaplot 
et al. [15] used Daubechies-4 wavelet of level 2 for the 
extraction of features from MRI. Dahshan et al. [16]  
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pointed out that the features extracted using Daubechies- 
4 Wavelet were too large and may not be suitable for the 
classification. The research work used Haar Wavelet of 
level 3 for feature extraction and further reduced features 
using Principal Component Analysis (PCA) [20] before 
classification. Though PCA reduce the dimension of fea- 
ture vector, but it has following disadvantages: 1) Inter- 
pretation of results obtained by transformed feature vec- 
tor become the non-trivial task which limits their us- 
ability; 2) The scatter matrix, which is maximized in 
PCA transformation, not only maximizes between-class 
scatter that is useful for classification, but also maximizes 
within-class scatter that is not desirable for classification; 
3) PCA transformation requires huge computation time 
for high dimensional datasets. 

In literature [17,18] features based on First and Second 
Order Statistics that characterizes textures are also used 
for classification of images. Features based on statistics 
of texture gives far less number of relevant, non-redun- 
dant, interpretable and distinguishable features in com- 
parison to features extracted using DWT. Motivated by 
this, in our proposed method, we use First and Second 
Order Statistics for feature extraction. In this paper, we 
investigated performance of First and Second order based 
features in comparison to wavelet-based features. Since, 
the classification accuracy of a decision system also de- 
pends on the choice of a classifier. We have used most 
commonly and widely used classifiers for the classifica- 
tion of MRI brain images. The performance is evaluated 
in terms of sensitivity, specificity, accuracy, training and 
testing Time. 

The rest of the paper is organized as follows. A brief 
description of wavelet transform and First and Second 
order statistics are discussed in Sections 2 and 3 respec- 
tively. It is followed by Section 4 which includes experi- 
mental setup and results. Finally conclusion and future 
directions are included in Section 5. 

2. Wavelet Transform 

The feature extraction stage is one of the important com- 
ponents in any pattern recognition system. The perform- 
ance of a classifier depends directly on the choice of fea- 
ture extraction and feature selection method employed on 
the data. The feature extraction stage is designed to ob- 
tain a compact, non-redundant and meaningful represen- 
tation of observations. It is achieved by removing redun- 
dant and irrelevant information from the data. These fea- 
tures are used by the classifier to classify the data. It is 
assumed that a classifier that uses smaller and relevant 
features will provide better accuracy and require less 
memory, which is desirable for any real time system. 
Besides increasing accuracy, the feature extraction also 
improves the computational speed of the classifier.  

In literature, many feature extraction techniques for 

images i.e. Fourier transform, Discrete Cosine Transform, 
Wavelet Transform and Texture based features are pro- 
posed. The Fourier transform provides representation of 
an image based only on its frequency content over the 
analysis window. Hence, this representation is not spa- 
tially localized. In order to achieve space localization, it 
is necessary for the space window to be short, therefore 
compromising frequency localization. Wavelets are ma- 
thematical functions that decompose data into different 
frequency components and then study each component 
with a resolution matched to its scale. Wavelet provides a 
more flexible way of analyzing both space and frequency 
contents by allowing the use of variable sized windows. 
Hence, Wavelet Transform provides better representation 
of an image for feature extraction [21]. 

The Continuous Wavelet Transform (CWT) of a signal 
x(t) is calculated by continuously shifting a scalable 
wavelet function   and is defined as 
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where s and   are scale and translation coefficients 
respectively. 

Discrete Wavelet Transform (DWT) is derived from 
CWT which is suitable for the analysis of images. Its 
advantage is that discrete set of scales and shifts are used 
which provides sufficient information and offers high re- 
duction in computation time [21]. The scale parameter (s) 
is discretized on a logarithmic grid. The translation pa- 
rameter    is then discretized with respect to the scale 
parameter. The discretized scale and translation parame- 
ters are given by, 2 ms   and , where m 
and n are positive integers. Thus, the family of wavelet 
functions is represented by 
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The DWT decomposes a signal x[n] into an approxi- 
mation (low-frequency) components and detail (high fre- 
quency) components using wavelet function and scaling 
functions to perform multi-resolution analysis, and is 
given as [21] 
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where ci,k, i = 1 I are wavelet coefficients and di,k , i = 
1 I are scaling coefficients. 

The wavelet and the scaling coefficients are given by 
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where gi[n – 2ik] and hI[n – 2Ik] represent the discrete 
wavelets and scaling sequences respectively. 

The DWT for a two dimensional image x[m, n] can be 
similarly defined for each dimension separately. This 
allows an image I to decompose into a pyramidal struc- 
ture with approximation component (Ia) and detailed 
components (Ih, Iv and Id) [22]. The image I in terms of 
first level approximation component and detailed com- 
ponents is given by 

1 1 1 1
a h v dI I I I I                (6) 

If the process is repeated up to N levels, the image I 
can be written in terms of Nth approximation component 
( N

aI ) and detailed components as  

 1 to 
N i i i
a h vi N dI I I I


    I         (7) 

Figure 1 shows the process of an image I being de- 
composed into approximate and detailed components up 
to level 3. As the level of decomposition is increased, 
compact but coarser approximation of the image is ob- 
tained. Thus, wavelets provide a simple hierarchical 
framework for better interpretation of the image informa- 
tion [23]. 

Mother wavelet is the compressed and localized basis 
of a wavelet transform. Chaplot et al. [15] employed 
level 2 decomposition on MRI brain images using Dau- 
bechies-4 mother wavelet and constructed 4761 dimen- 
sional feature vector from approximation part for the 
classification of two types of MRI brain images i.e. im- 
age from AD patients and normal person. Dahshan et al. 
[16] pointed out that the number of features extracted 
using Daubechies-4 wavelet were too large and may not 
be suitable for the classification. In their proposed me- 
thod, they extracted 1024 features using level 3 decom- 
position of image using Haar Wavelet and further reduced 
features using PCA. Though PCA reduce the dimension 
of feature vector, but it has following disadvantages: 1) 
 

 

Figure 1. Pyramidal structure of DWT up to level 3. 

Interpretation of results obtained by transformed feature 
vector become the non-trivial task which limits their us- 
ability; 2) The scatter matrix, which is maximized in 
PCA transformation, not only maximizes between-class 
scatter that is useful for classification, but also maxi- 
mizes within-class scatter that is not desirable for classi- 
fication; 3) PCA transformation requires huge compu- 
tation time for high dimensional datasets. 

Hence, there is need to construct a smaller set of fea- 
tures which are relevant, non-redundant, interpretable 
and helps in distinguishing two or more kinds of MRI 
images. This will also improve the performance of deci- 
sion system in terms of computation time. In literature 
[17,18], First and Second Order Statistics based features 
are constructed which provide a smaller set of relevant 
and non-redundant features for texture classification. 

3. Features Based on First and Second Order  
Statistics 

The texture of an image region is determined by the way 
the gray levels are distributed over the pixels in the re- 
gion. Although there is no clear definition of “texture” in 
literature, often it describes an image looks by fine or 
coarse, smooth or irregular, homogeneous or inhomoge- 
neous etc. The features are described to quantify proper- 
ties of an image region by exploiting space relations 
underlying the gray-level distribution of a given image. 

3.1. First-Order Statistics 

Let random variable I represents the gray levels of image 
region. The first-order histogram P(I) is defined as: 

number of pixels with gray level 
( )

total number of pixels in the region

I
P I      (8) 

Based on the definition of P(I), the Mean m1 and Cen- 
tral Moments µk of I are given by 
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where Ng is the number of possible gray levels. 
The most frequently used central moments are Vari- 

ance, Skewness and Kurtosis given by µ2, µ3, and µ4 re- 
spectively. The Variance is a measure of the histogram 
width that measures the deviation of gray levels from the 
Mean. Skewness is a measure of the degree of histogram 
asymmetry around the Mean and Kurtosis is a measure of 
the histogram sharpness. 

3.2. Second-Order Statistics 

The features generated from the first-order statistics pro- 
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vide information related to the gray-level distribution of 
the image. However they do not give any information 
about the relative positions of the various gray levels 
within the image. These features will not be able to mea- 
sure whether all low-value gray levels are positioned to- 
gether, or they are interchanged with the high-value gray 
levels. An occurrence of some gray-level configuration 
can be described by a matrix of relative frequencies 
Pθ,d(I1, I2). It describes how frequently two pixels with 
gray-levels I1, I2 appear in the window separated by a 
distance d in direction θ. The information can be ex- 
tracted from the co-occurrence matrix that measures 
second-order image statistics [17,24], where the pixels 
are considered in pairs. The co-occurrence matrix is a 
function of two parameters: relative distance measured in 
pixel numbers (d) and their relative orientation θ. The 
orientation θ is quantized in four directions that represent 
horizontal, diagonal, vertical and anti-diagonal by 0˚, 45˚, 
90˚ and 135˚ respectively.  

Non-normalized frequencies of co-occurrence matrix 
as functions of distance, d and angle 0˚, 45˚, 90˚ and 135˚ 
can be represented respectively as  
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where    refers to cardinality of set, f(k, l) is inten- 
sity at pixel position (k, l) in the image of order  
( )M N
 

and the order of matrix D is  
 M N M N  . 

Using Co-occurrence matrix, features can be defined 
which quantifies coarseness, smoothness and texture— 
related information that have high discriminatory power.  

Among them [17], Angular Second Moment (ASM), 
Contrast, Correlation, Homogeneity and Entropy are few 

such measures which are given by: 
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ASM is a feature that measures the smoothness of the 
image. The less smooth the region is, the more uniformly 
distributed P(I1, I2) and the lower will be the value of 
ASM. Contrast is a measure of local level variations 
which takes high values for image of high contrast. Cor- 
relation is a measure of correlation between pixels in two 
different directions. Homogeneity is a measure that takes 
high values for low-contrast images. Entropy is a mea- 
sure of randomness and takes low values for smooth im- 
ages. Together all these features provide high discrimina- 
tive power to distinguish two different kind of images. 

All features are functions of the distance d and the 
orientation θ. Thus, if an image is rotated, the values of 
the features will be different. In practice, for each d the 
resulting values for the four directions are averaged out. 
This will generate features that will be rotations invari- 
ant. 

4. Experimental Setup and Results 

In this section, we investigate different combination of 
feature extraction methods and classifiers for the classi- 
fication of two different types of MRI images i.e. Normal 
image and Alzheimer image. The feature extraction meth- 
ods under investigations are: Features based on First and 
second order statistics (FSStat), Features using Daube- 
chies-4 (Db4) as described by Chaplot et al. [15] and 
Haar in combination with PCA (HaarPCA) as described 
by Dahshan et al. [16]. We will explore the classifiers 
used by Chaplot et al. [15] (SVM with linear (SVM-L), 
polynomial kernel (SVM-P) and radial kernel (SVM-R)), 
Dahshan et al. [16] (K-nearest neighbor (KNN) and 
Levenberg-Marquardt Neural Classifier (LMNC)) and 
C4.5. The polynomial kernel of SVM is used with de- 
grees 2, 3, 4 & 5 and best results obtained in terms of 
accuracy are reported. Similarly radial kernel (SVM-R) 
is used with various parameters 10i where I = 06 and 
only results corresponding to highest Accuracy is re- 
ported. Description of LMNC and remaining classifiers 
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can be found in [25] and [26] respectively. 
Textural features of an image are represented in terms 

of four first order statistics (Mean, Variance, Skewness, 
Kurtosis) and five-second order statistics (Angular sec- 
ond moment, Contrast, Correlation, Homogeneity, En- 
tropy). Since, second order statistics are functions of the 
distance d and the orientation  , hence, for each second 
order measure, the mean and range of the resulting val- 
ues from the four directions are calculated. Thus, the 
number of features extracted using first and second order 
statistics are 14. 

To evaluate the performance, we have considered medi- 
cal images from Harvard Medical School website [27]. 
All normal and disease (Alzheimer) MRI images are ax- 
ial and T2-weighted of 256 × 256 size. For our study, we 
have considered a total of 60 trans-axial image slices (30 
belonging to Normal brain and 30 belonging to brain 
suffering from Alzheimer’s disease). The research works 
[7-10] have found that the rate of volume loss over a 
certain period of time within the medial temporal lobe is 
a potential diagnostic marker in Alzheimer disease. More- 
over lateral ventricles are on average larger in patients 
with Alzheimer’s disease. Hence, only those axial sec- 
tions of the brain in which lateral ventricles are clearly 
seen are considered in our dataset for experiment. As 
temporal lobe and lateral ventricles are closely spaced, 
our axial samples thus cover hippocampus and temporal 
lobe area sufficiently, which can be good markers to dis- 
tinguish two types of images. Figure 2 shows the diffe- 
rence in lateral ventricles portion between a normal and 
an abnormal (Alzheimer) image.  

In literature, various performance measures have been 
suggested to evaluate the learning models. Among them 
the most popular performance measures are following: 1) 
Sensitivity, 2) Specificity and 3) Accuracy. 

Sensitivity (True positive fraction/recall) is the pro- 
portion of actual positives which are predicted positive. 
Mathematically, Sensitivity can be defined as 

Sensitivity
TP

TP FN



           (17) 

Specificity (True negative fraction) is the proportion of 
 

    
(a)                (b) 

Figure 2. Pyramidal structure of DWT up to level 3. 

actual negatives which are predicted negative. It can be 
defined as 

Specificity
TN

TN FP



           (18) 

Accuracy is the probability to correctly identify indi- 
viduals. i.e. it is the proportion of true results, either true 
positive or true negative. It is computed as 

Accuracy
TP TN

TP TN FP FN




  
      (19) 

where TP: correctly classified positive cases, TN: corre- 
ctly classified negative cases, FP: incorrectly classified 
negative cases and FN: incorrectly classified positive 
cases. 

In general, sensitivity indicates, how well model iden- 
tifies positive cases and specificity measures how well it 
identifies the negative cases. Whereas accuracy is ex- 
pected to measure how well it identifies both categories. 
Thus if both sensitivity and specificity are high (low), 
accuracy will be high (low). However if any one of the 
measures, sensitivity or specificity is high and other is 
low, then accuracy will be biased towards one of them. 
Hence, accuracy alone cannot be a good performance 
measure. It is observed that both Chaplot et al. [15] and 
Dahshan et al. [16] used highly imbalance data whose 
classification accuracy was highly biased towards one. 
Hence, we have constructed balanced dataset (samples of 
both classes are in same proportion) so that classification 
accuracy is not biased. Two other performance measures 
used are training and testing time of learning model.  

The dataset was arbitrarily divided into a training set 
consisting of 12 samples and a test set of 48 samples. 
The experiment is performed 100 times for each setting 
and average sensitivity, specificity, accuracy, training 
and testing time are reported in Table 1. The best results 
achieved for each classifier corresponding to different 
performance measure is shown in bold. All experiments 
were carried out using Pentium 4 machine, with 1.5 GB 
RAM and a processor speed of 1.5 GHz. The programs 
were developed using MATLAB Version 7 using com- 
bination of Image Processing Toolbox, Wavelet Toolbox 
and Prtools [28] and run under Windows XP environ- 
ment.  

We can observe the following from Table 1:  
1) The classification accuracy with FSStat is signifi- 

cantly more in comparison to both Db4 [15] and Haar- 
PCA [16] for all classifiers. 

2) Similar variation in observation is noticed with per- 
formance measure sensitivity.  

3) For specificity, FSStat provide better results, except 
for classifiers SVC-P and LMNC, in comparison to both 
Db4 and HaarPCA. 

4) The difference between sensitivity and specificity is 
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Table 1. Comparison of performance measures values for each combination of feature extraction technique and classifier. 

(in percentage) (in milli-sec) 
Clsf Fe 

Sn Sp Acc Trn Tst 

Db4 87.67 98.33 93 64 0.88 

HaarPCA 87.33 97.5 92.42 150 0.67 SVM_L 

FSStat 98.96 99.17 99.06 50 0.45 

Db4 88.58 97.88 93.23 64 0.92 

HaarPCA 88.75 96.67 92.71 148 0.67 SVM_P 

FSStat 99.33 93.29 96.31 51 0.43 

Db4 95 95.58 95.29 72 1.21 

HaarPCA 84.92 90.04 87.48 149 0.71 SVM_R 

FSStat 97.92 98.88 98.4 49 0.50 

Db4 85.37 97.17 91.27 25 0.88 

HaarPCA 84.29 95.79 90.04 110 0.44 KNNC 

FSStat 98.38 99 98.69 15 0.18 

Db4 - - - - - 

HaarPCA 83.96 95.38 89.67 670 0.67 LMNC 

FSStat 90 93.25 91.63 519 0.47 

Db4 67.21 85.79 76.5 23 1.17 

HaarPCA 74.67 82.29 78.48 102 0.4 C4.5 

FSStat 91.92 95.75 93.83 6 0.1 

Due to huge dimension of Db4 feature vector, LMNC could not be executed; Clsf, Fe, Sn, Sp, Acc, Trn, Tst denotes Classifiers, Feature extraction technique, 
Sensitivity, Specificity, Accuracy, Training time and Testing time respectively. 
 
large for both Db4 and HaarPCA in comparison to 
FSStat. Accuracy obtained using both Db4 and HaarPCA 
is more even though the sensitivity is low and specificity 
is high which suggest that classification accuracy ob- 
tained is biased.  

5) The variation in classification accuracy with differ- 
ent classifiers is not significant with FSStat in compari- 
son with both Db4 and HaarPCA.  

6) The training time with FSStat is significantly less in 
comparison to both Db4 and HaarPCA. This is because 
the number of features obtained with FSStat is less and 
does not involve any computation intensive transforma- 
tion like PCA in HaarPCA.  

7) Testing time of an image is not significant in com- 
parison to training time. However, testing time of an im- 
age is least with FSStat in comparison to both Db4 and 
HaarPCA. 

From above, it can be observed that the performance 
of decision system using FSStat is significantly better in 
terms of all measures considered in our experiment.  

5. Conclusions and Future Work 

In this paper, we investigated features based on First and 
Second Order Statistics (FSStat) that gives far less num- 
ber of distinguishable features in comparison to features 
extracted using DWT for classification of MRI images.  

Since, the classification accuracy of a pattern recognition 
system not only depends on features extraction method 
but also on the choice of classifier. Hence, we investi- 
gated performance of FSStat based features in compari- 
son to wavelet-based features with commonly used 
classifiers for the classification of MRI brain images. The 
performance is evaluated in terms of sensitivity, speci- 
ficity, classification accuracy, training and testing time. 

For all classifiers, the classification accuracy and 
sensitivity with textural features is significantly more in 
comparison to both wavelet-based feature extraction 
techniques suggested in literature. Moreover it is found 
that FSStat features are not biased towards either sensitivity 
or specificity. Their training and testing time are also 
significantly less than other feature extraction techniques 
suggested in literature. This is because First and Second 
Order Statistics gives far less number of relevant and 
distinguishable features and does not involve in com- 
putational intensive transformation in comparison to 
method proposed in literature. 

In future, the performance of our proposed approach 
can be evaluated on other disease MRI images to evalu- 
ate its efficacy. We can also explore some feature extrac- 
tion/construction techniques which provide invariant and 
minimal number of relevant features to distinguish two 
or more different kinds of MRI. 
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