α-Times Integrated C-Semigroups

Man Liu, Da-Qing Liao, Qian-Qian Zhu, Fu-Hong Wang
Department of Basic Education, Xuzhou Air Force College, Xuzhou, China
Email: liuman8866@163.com

Received February 3, 2012; revised March 12, 2012; accepted March 20, 2012

Abstract

The α-times integrated C semigroups, $\alpha>0$, are introduced and analyzed. The Laplace inverse transformation for α-times integrated C semigroups is obtained, some known results are generalized.

Keywords: α-Times Integrated C Semigroups; Laplace Inverse Transformation; Pseudo-Resolvent Identity

1. Introduction

Integrated semigroups are more general than strongly continuous semigroups (i.e., C_{0} semigroups), cosine operator functions and exponentially bounded distribution semigroups. Integrated exponentially bounded semigroups were investigated in [1-15]. In this paper, we will introduce and analyze α-times integrated C semigroups, $\alpha \in R^{+}$. In Theorem 2.6 we give a necessary and sufficient condition for an $R_{C}(\lambda)$ to be the pseudo-resolvent of an α-times integrated C semigroups $S(t)$. At the same time we discuss the Laplace inverse transformation for α-times integrated C semigroups. The results obtained are generalizations of the corresponding results for integrated semigroups.

Throughout this paper, X is a Banach space, $B(X)$ is the space of bounded linear operators from X into X, $D(A), R(A), K(A)$ denote the domain, range, core of operator A respectively, $C \in B(X)$.

2. Definitions and Properties of $\boldsymbol{\alpha}$-Times Integrated \boldsymbol{C} Semigroups

For $\alpha \geq 0,[\alpha],(\alpha)$ denote the integral part and decimal part of α respectively. $\Gamma(\cdot)$ is well known Gamma function, and $\Gamma(s)=\int_{0}^{\infty} x^{s-1} e^{-x} \mathrm{~d} x, s \Gamma(s)=\Gamma(s+1)$.

For $\beta \geq-1$, we definite the function $j_{\beta}:(0, \infty) \rightarrow R$, and $j_{\beta}(t)=\frac{t^{\beta}}{\Gamma(\beta+1)} \quad j_{-1}$ denotes 0-point Dirac measure δ_{0}.

For continuous function $f(\cdot), \quad \beta \geq-1$, the definition of convolution product is as following

$$
\left(j_{\beta} * f\right)(t)=\left\{\begin{array}{cc}
\int_{0}^{t} \frac{(t-s)^{\beta}}{\Gamma(\beta+1)} f(s) \mathrm{d} s, & \beta>-1 \\
f(t), & \beta=-1
\end{array}\right.
$$

At first we introduce the fractional differential and integral of function.

For arbitrary $\alpha>0, \alpha$-order differential of function u denotes

$$
\left(D_{\alpha} u\right)\left(t_{0}\right)=\omega^{(n-1)}\left(t_{0}\right) .
$$

For arbitrary $\alpha>0, \alpha$-times cumulative integral of function u denotes

$$
\left(I_{\alpha} u\right)=\left(j_{\alpha-1} * u\right)(t) .
$$

Definition 2.1. Let $\alpha \in R^{+}$, a strongly continuous family $\{S(t)\}_{t \geq 0} \in B(X)$ is called α-times integrated C semigroups, if

$$
\begin{aligned}
& \left(V_{1}\right) S(t) C=C S(t), \text { and } S(0)=0 ; \\
& \left(V_{2}\right)
\end{aligned}
$$

$$
\begin{align*}
S(t) S(s) x= & \frac{1}{\Gamma(\alpha)}\left[\int_{t}^{s+t}(t+s-r)^{\alpha-1} S(r) C x \mathrm{~d} r\right. \tag{2.1}\\
& \left.-\int_{0}^{s}(t+s-r)^{\alpha-1} S(r) C x \mathrm{~d} r\right], \forall t, s \geq 0
\end{align*}
$$

If $\alpha=n(n \in N)$, then $\{S(t)\}_{t \geq 0}$ is called n-times integrated C semigroups.

If $\alpha=n(n \in N)$, and $C=I$, then $\{S(t)\}_{t \geq 0}$ is called n-times integrated semigroups.

If $\alpha>0, S(t) x=0 \quad(t \geq 0)$ implies $x=0$, then α times integrated C semigroups $\{S(t)\}_{t \geq 0}$ is non-degenerated.

If there exists $M>0, \omega \in R$, such that $\|S(t)\| \leq M e^{\omega t}$, $t \geq 0$, then $\{S(t)\}_{t \geq 0}$ is called exponentially bounded.

Definition 2.2. Let $\alpha \geq 0$, a strongly continuous family $\{S(t)\}_{t \geq 0} \in B(X)$ is called α-times exponentially bounded integrated C semigroups generated by A, if $S(0)=0$, and there exists $M>0, \omega>0$, such that $(\omega, \infty) \subset \rho(A),\|S(t)\| \leq M e^{\omega t}, t \geq 0$, and for arbitrary
$\lambda>\omega, \quad x \in X$, we have

$$
\begin{equation*}
R_{C}(\lambda, A) x=(\lambda-A)^{-1} C x=\lambda^{\alpha} \int_{0}^{\infty} e^{-\lambda t} S(t) x \mathrm{~d} t \tag{2.2}
\end{equation*}
$$

Proposition 2.3. Let A be the generator of an α-times integrated C semigroups $\{S(t)\}_{t>0}, \alpha \geq 0$. Then

1) For all $x \in D(A)$ and $t \geq 0$,

$$
\begin{align*}
& S(t) x \in D(A), A S(t) x=S(t) A x \tag{2.3}\\
& S(t) x=\frac{t^{\alpha}}{\Gamma(\alpha+1)} C x+\int_{0}^{t} S(s) A x \mathrm{~d} s \tag{2.4}
\end{align*}
$$

2) $\int_{0}^{t} S(s) x \mathrm{~d} s \in D(A)$, for all $x \in X$, and $t \geq 0$ and

$$
\begin{equation*}
A \int_{0}^{t} S(s) x \mathrm{~d} s=S(t) x-\frac{t^{\alpha}}{\Gamma(\alpha+1)} C x \tag{2.5}
\end{equation*}
$$

Proof. Letting $R_{C}(\lambda) x=\lambda^{\alpha} \int_{0}^{\infty} e^{-\lambda t} S(t) x \mathrm{~d} t, \operatorname{Re} \lambda>\omega$ Fix $u \in \rho(A)$, then

$$
\begin{aligned}
\int_{0}^{\infty} e^{-\lambda t} S(t) R_{C}(u, A) x \mathrm{~d} t & =\lambda^{-\alpha} R_{C}(\lambda, A) R_{C}(u, A) x \\
& =\int_{0}^{\infty} e^{-\lambda t} R_{C}(u, A) S(t) x \mathrm{~d} t
\end{aligned}
$$

for all $\operatorname{Re} \lambda>\omega$, and $x \in X$. By the uniqueness theorem it follows that

$$
\begin{equation*}
R_{C}(u, A) S(t)=S(t) R_{C}(u, A), u \in \rho(A), t \geq 0 \tag{2.6}
\end{equation*}
$$

This implies (2.3). Let $x \in D(A)$, then for all $\operatorname{Re} \lambda>\omega$,

$$
\begin{aligned}
C x & =\int_{0}^{\infty} \lambda^{\alpha+1} e^{-\lambda t} \frac{t^{\alpha}}{\Gamma(\alpha+1)} C x \mathrm{~d} t \\
& =\lambda R_{C}(\lambda, A) x-R_{C}(\lambda, A) A x \\
& =\int_{0}^{\infty} \lambda^{\alpha+1} e^{-\lambda t} S(t) x \mathrm{~d} t-\int_{0}^{\infty} \lambda^{\alpha} e^{-\lambda t} S(t) A x \mathrm{~d} t \\
& =\int_{0}^{\infty} \lambda^{\alpha+1} e^{-\lambda t} S(t) x \mathrm{~d} t-\int_{0}^{\infty} \lambda^{\alpha} e^{-\lambda t} d \int_{0}^{t} S(s) A x \mathrm{~d} s \\
& =\int_{0}^{\infty} \lambda^{\alpha+1} e^{-\lambda t} S(t) x \mathrm{~d} t-\int_{0}^{\infty} \lambda^{\alpha+1} e^{-\lambda t} \int_{0}^{t} S(s) A x \mathrm{~d} s \mathrm{~d} t
\end{aligned}
$$

Then (2.4) follows from the uniqueness theorem.
In order to prove (2.5), let $x \in X$, and $t \geq 0, \operatorname{Re} \lambda>\omega$, then by (2.3), (2.4), (2.6) we have

$$
\begin{align*}
C \int_{0}^{t} S(s) x \mathrm{~d} s= & \lambda R_{C}(\lambda, A) \int_{0}^{t} S(s) x \mathrm{~d} s \\
& -R_{C}(\lambda, A) \int_{0}^{t} S(s) A x \mathrm{~d} s \\
= & \lambda R_{C}(\lambda, A) \int_{0}^{t} S(s) x \mathrm{~d} s \tag{2.7}\\
& -R_{C}(\lambda, A)\left[S(t) x-\frac{t^{\alpha}}{\Gamma(\alpha+1)} C x\right]
\end{align*}
$$

Noting that $\lambda R_{C}(\lambda, A) x-C x=R_{C}(\lambda, A) A x$ Hence, $\int_{0}^{t} S(s) x \mathrm{~d} s \in D(A)$, and by (2.7), (2.5) follows.
Corollary 2.4. Let $\alpha \in R^{+}$. Then $S(t) x \in \overline{D(A)}$ for all $x \in X$ and $t \geq 0$. Then $S(\cdot) x$ is right differentiable in $t \geq 0$ if $S(t) x \in D(A)$. In that case

$$
\frac{\mathrm{d}}{\mathrm{~d} t} S(t) x=A S(t) x+\frac{t^{\alpha-1}}{\Gamma(\alpha)} C x, t \geq 0, x \in X
$$

Proposition 2.5. Let $A: D(A) \rightarrow X$ be closed linear operator, when $\lambda, u \in \rho(A)$, we have

1) The pseudoresolvent identity

$$
\begin{equation*}
R_{C}(\lambda, A) C-R_{C}(\mu, A) C=(\mu-\lambda) R_{C}(\lambda, A) R_{C}(\mu, A) \tag{2.8}
\end{equation*}
$$

2) $\frac{\mathrm{d}^{n}}{\mathrm{~d} \lambda^{n}} R_{C}(\lambda, A) C^{n}=(-1)^{n} n!\left[R_{C}(\lambda, A)\right]^{n+1}$

$$
\begin{equation*}
n=1,2, \cdots \tag{2.9}
\end{equation*}
$$

Proof. 1)

$$
\begin{aligned}
R_{C}(\lambda, A) C & =(\mu-A)^{-1}(\mu-A) R_{C}(\lambda, A) C \\
& =(\mu-A)^{-1} C(\mu-\lambda+\lambda-A) R_{C}(\lambda, A) \\
& =(\mu-A)^{-1} C C+(\mu-\lambda) R_{C}(\mu, A) R_{C}(\lambda, A) \\
& =R_{C}(\mu, A) C+(\mu-\lambda) R_{C}(\mu, A) R_{C}(\lambda, A)
\end{aligned}
$$

It follows that

$$
R_{C}(\lambda, A) C-R_{C}(\mu, A) C=(\mu-\lambda) R_{C}(\lambda, A) R_{C}(\mu, A)
$$

2) We apply the mathematical induction when $n=1$, by (2.8)

$$
\frac{\mathrm{d}}{\mathrm{~d} \lambda} R_{C}(\lambda, A) C=-\left[R_{C}(\lambda, A)\right]^{2}
$$

we suppose $n=k,(2.9)$ is complete. i.e.,

$$
\frac{\mathrm{d}^{k}}{\mathrm{~d} \lambda^{k}} R_{C}(\lambda, A) C^{k}=(-1)^{k} k!\left[R_{C}(\lambda, A)\right]^{k+1}
$$

then

$$
\begin{aligned}
\frac{\mathrm{d}^{k+1}}{\mathrm{~d} \lambda^{k+1}} R_{C}(\lambda, A) C^{k+1} & =\frac{\mathrm{d}}{\mathrm{~d} \lambda}\left(\frac{\mathrm{~d}^{k}}{\mathrm{~d} \lambda^{k}} R_{C}(\lambda, A) C^{k}\right) C \\
& =\frac{\mathrm{d}}{\mathrm{~d} \lambda}(-1)^{k} k!\left[R_{C}(\lambda, A)\right]^{k+1} C \\
& =(-1)^{k+1}(k+1)!\left[R_{C}(\lambda, A)\right]^{k+2}
\end{aligned}
$$

i.e., it follows $n=k+1$. The proof is complete.

Theorem 2.6. Let $S(t)$ be a stongly continuous operator function, and $\|S(t)\| \leq M e^{\omega t}, t \geq 0$, letting $R_{C}(\lambda)=\lambda^{\alpha} \int_{0}^{\infty} e^{-\lambda t} S(t) x \mathrm{~d} t, \operatorname{Re} \lambda>\omega$. Then $\left\{R_{C}(\lambda)\right\}_{\operatorname{Re} \lambda>\omega}$ satisfies the pseudoresolvent

$$
\begin{equation*}
R_{C}(\lambda) C-R_{C}(\mu) C=(\mu-\lambda) R_{C}(\lambda) R_{C}(\mu) \tag{2.10}
\end{equation*}
$$

if and only if $S(t)$ satisfies (V_{2}).
Proof. One can easily prove the necessary condition.
Let us prove that it is sufficient.
Letting $\operatorname{Re} \lambda, \operatorname{Re} u>\omega$, and $\lambda \neq u$. Then the resolvent equation implies

$$
\begin{aligned}
& \frac{R_{C}(\lambda) R_{C}(\mu)}{\lambda^{\alpha} u^{\alpha}}=\frac{R_{C}(\lambda) C-R_{C}(\mu) C}{(u-\lambda) \lambda^{\alpha} u^{\alpha}} \\
& =\frac{\lambda^{-\alpha} R_{C}(\lambda) C-u^{-\alpha} R_{C}(\mu) C}{(u-\lambda) u^{\alpha}}+\frac{R_{C}(\mu) C\left(u^{-\alpha}-\lambda^{-\alpha}\right)}{(u-\lambda) u^{\alpha}}
\end{aligned}
$$

$$
\begin{equation*}
\frac{R_{C}(\lambda) R_{C}(\mu)}{\lambda^{\alpha} u^{\alpha}}=\int_{0}^{\infty} e^{-\lambda t} \int_{0}^{\infty} e^{-u t} S(t) S(s) \mathrm{d} t \tag{2.11}
\end{equation*}
$$

$$
\frac{\lambda^{-\alpha} R_{C}(\lambda) C-u^{-\alpha} R_{C}(\mu) C}{(u-\lambda) u^{\alpha}}
$$

$$
=\left(-\int_{0}^{\infty} \frac{1}{\lambda-u} e^{-\lambda t} S(t) C \mathrm{~d} t+\int_{0}^{\infty} e^{-(\lambda-u) t} u^{-\alpha} R_{C}(u) C \mathrm{~d} t\right) \frac{1}{u^{\alpha}}
$$

$$
=\left(-\int_{0}^{\infty} e^{-(\lambda-u) t} \int_{0}^{t} e^{-u s} S(s) C \mathrm{~d} s \mathrm{~d} t\right.
$$

$$
\left.+\int_{0}^{\infty} e^{-(\lambda-u) t} \int_{0}^{\infty} e^{-u s} S(s) C \mathrm{~d} s \mathrm{~d} t\right) \frac{1}{u^{\alpha}}
$$

$$
=\left(\int_{0}^{\infty} e^{-(\lambda-u) t} \int_{t}^{\infty} e^{-u s} S(s) C \mathrm{~d} s \mathrm{~d} t\right) \frac{1}{u^{\alpha}}
$$

$$
=\left(\int_{0}^{\infty} e^{-\lambda t} \int_{t}^{\infty} e^{-u(s-t)} S(s) C \mathrm{~d} s \mathrm{~d} t\right) \frac{1}{u^{\alpha}}
$$

$$
=\left(\int_{0}^{\infty} e^{-\lambda t} \int_{0}^{\infty} e^{-u s} S(s+t) C \mathrm{~d} s \mathrm{~d} t\right) \frac{1}{u^{\alpha}}
$$

$$
\text { Noting that } \int_{0}^{\infty} e^{-u v} v^{\alpha-1} \mathrm{~d} v=\frac{\Gamma(\alpha)}{u^{\alpha}}
$$

Then

$$
\begin{align*}
& \frac{\lambda^{-\alpha} R_{C}(\lambda) C-u^{-\alpha} R_{C}(\mu) C}{(u-\lambda) u^{\alpha}} \\
& =\int_{0}^{\infty} e^{-\lambda t} \int_{0}^{\infty} S(s+t) \int_{0}^{\infty} \frac{e^{-u(s+v)}}{\Gamma(\alpha)} v^{\alpha-1} C \mathrm{~d} v \mathrm{~d} s \mathrm{~d} t \\
& =\int_{0}^{\infty} e^{-\lambda t} \int_{0}^{\infty} e^{-u r} \int_{0}^{r} \frac{(r-s)^{\alpha-1}}{\Gamma(\alpha)} S(s+t) C \mathrm{~d} v \mathrm{~d} s \mathrm{~d} t \tag{2.13}\\
& =\int_{0}^{\infty} e^{-\lambda t} \int_{0}^{\infty} e^{-u r} \int_{t}^{t+s} \frac{(t+s-r)^{\alpha-1}}{\Gamma(\alpha)} S(r) C \mathrm{~d} v \mathrm{~d} s \mathrm{~d} t
\end{align*}
$$

Moreover,

$$
\begin{aligned}
& \frac{R_{C}(\mu) u^{-\alpha}}{(u-\lambda) u^{\alpha}} C \\
& =\int_{0}^{\infty} e^{(\lambda-u) t} \int_{0}^{\infty} e^{-u s} S(s) C \int_{0}^{\infty} \frac{e^{-u v}}{\Gamma(\alpha)} v^{\alpha-1} \mathrm{~d} v \mathrm{~d} s \mathrm{~d} t \\
& =\int_{0}^{\infty} e^{\lambda t} \int_{0}^{\infty} S(s) C \int_{t+s}^{\infty} \frac{e^{-u r}}{\Gamma(\alpha)}(r-t-s)^{\alpha-1} \mathrm{~d} r \mathrm{~d} s \mathrm{~d} t \\
& =\int_{0}^{\infty} e^{\lambda t} \int_{t}^{\infty} e^{-u r} \int_{0}^{r-t} \frac{(r-t-s)^{\alpha-1}}{\Gamma(\alpha)} S(s) C \mathrm{~d} r \mathrm{~d} s \mathrm{~d} t \\
& =\int_{0}^{\infty} e^{-u t} \int_{-t}^{0} e^{-\lambda r} \int_{0}^{t+r} \frac{(t+r-s)^{\alpha-1}}{\Gamma(\alpha)} S(s) C \mathrm{~d} r \mathrm{~d} s \mathrm{~d} t
\end{aligned}
$$

and

$$
\begin{align*}
& \frac{R_{C}(\mu) \lambda^{-\alpha}}{(u-\lambda) u^{\alpha}} C \\
& =\int_{0}^{\infty} e^{(\lambda-u) t} \int_{0}^{\infty} e^{-u s} S(s) C \int_{0}^{\infty} \frac{e^{-\lambda v}}{\Gamma(\alpha)} v^{\alpha-1} \mathrm{~d} v \mathrm{~d} s \mathrm{~d} t \\
& =\int_{0}^{\infty} e^{-u t} \int_{-t}^{0} e^{-\lambda r} \int_{0}^{t+r} \frac{(t+r-s)^{\alpha-1}}{\Gamma(\alpha)} S(s) C \mathrm{~d} r \mathrm{~d} s \mathrm{~d} t \tag{2.15}\\
& \quad+\int_{0}^{\infty} e^{-u t} \int_{0}^{\infty} e^{-\lambda r} \int_{0}^{t} \frac{(t+r-s)^{\alpha-1}}{\Gamma(\alpha)} S(s) C \mathrm{~d} r \mathrm{~d} s \mathrm{~d} t
\end{align*}
$$

Using (2.14) and (2.15), we obtain

$$
\begin{align*}
& \frac{R_{C}(\mu) C\left(u^{-\alpha}-\lambda^{-\alpha}\right)}{(u-\lambda) u^{\alpha}} \\
& =\int_{0}^{\infty} e^{-u t} \int_{0}^{\infty} e^{-\lambda r} \int_{0}^{t} \frac{(t+r-s)^{\alpha-1}}{\Gamma(\alpha)} S(s) C \mathrm{~d} r \mathrm{~d} s \mathrm{~d} t \tag{2.16}
\end{align*}
$$

Assertion (V_{2}) follows from (2.13) and (2.16) and the uniqueness of the Laplace transformation.

3. Laplace Inverse Transformation for α-Times Integrated \boldsymbol{C}-Semigroups

Lemma 3.1. [16] Let $\omega \geq 0, F(\lambda):(\omega, \infty) \rightarrow X, F(\lambda)$ is Laplace-type expression: $F(\lambda)=\lambda \int_{0}^{+\infty} e^{-\lambda t} \alpha(t) \mathrm{d} t$, $\alpha(0)=0$, and $\|\alpha(t+h)-\alpha(t)\| \leq M h e^{\omega(t+h)}, t, h \geq 0$, then

$$
\alpha(t)=\frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty} e^{\lambda t} F(\lambda) \frac{\mathrm{d} \lambda}{\lambda},(\gamma>\omega)
$$

Theorem 3.2. Let $\alpha \geq 0$, then the following conditions are equivalent:

1) A generates an α-times exponentially bounded integrated semigroups $\{S(t)\}_{t \geq 0}$;
2) There exists $\omega>0$, such that $(\omega, \infty) \subset \rho(A)$, and for all $u>\omega, A$ generates an $(u-A)^{-\alpha} C$ exponentially bounded semigroups $\{T(t)\}_{t \geq 0}$, and
$S(t)=(u-A)^{-\alpha}\left(\frac{\mathrm{d}}{\mathrm{d} t}\right)^{[\alpha]+1}\left(j_{-(\alpha)} * T\right)(t)$.
Proof. 1) If A generates an α-times exponentially bounded integrated semigroups $\{S(t)\}_{t \geq 0}$, then

$$
A \int_{0}^{t} W(r) x \mathrm{~d} r=W(t) x-\frac{t^{\alpha}}{\Gamma(\alpha+1)} C x
$$

By ([17], Proposition 3.7(a)), $\{W(t)\}_{t \geq 0}$ is an $(u-A)^{-\alpha} C$ semigroup generated by $\underset{\tilde{A}}{\tilde{A}}$ is the extention of A, By ([17], Proposition 3.11), $\tilde{A}=A$.
2) Combing [18] with [17, Theorem 3.4], we can prove $A \int_{0}^{t} S(r) x \mathrm{~d} r=S(t) x-\frac{t^{\alpha}}{\Gamma(\alpha+1)} C x$, and the space of op-
erator is exchangeable, by Proposition 2.3, This ends the proof.

Theorem 3.3. Let A be closed linear operator on X, $\rho(A) \neq \Phi, \lambda \in \rho(A)$, an α-times exponentially bounded integrated C semigroups $\{S(t)\}_{t \geq 0}$ with infinitesimal generator A, and $\|S(t)\| \leq M e^{\omega t}, \quad \omega \geq 0, \gamma>\omega$, then for $\forall x \in D(A)$,

$$
\begin{align*}
\int_{0}^{t} S(s) x \mathrm{~d} s & =\frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty} e^{\lambda t} \frac{R_{C}(\lambda, A) x}{\lambda^{\alpha}} \frac{\mathrm{d} \lambda}{\lambda} \tag{3.1}\\
& =\frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty}\left(I_{\alpha} e^{\lambda t} R_{C}(\lambda, A) x\right) \frac{\mathrm{d} \lambda}{\lambda}
\end{align*}
$$

Proof. Let $\alpha(t)=\int_{0}^{t} S(s) \mathrm{d} s$,

$$
F(\lambda)=\frac{(\lambda-A)^{-1} C x}{\lambda^{\alpha}}, \forall x \in D(A)
$$

by Lemma 3.1

$$
\begin{aligned}
F(\lambda) & =\frac{(\lambda-A)^{-1} C x}{\lambda^{\alpha}}=\int_{0}^{+\infty} e^{-\lambda t} S(t) x \mathrm{~d} t \\
& =\int_{0}^{+\infty} e^{-\lambda t} x \mathrm{~d} \int_{0}^{t} S(s) \mathrm{d} s \\
& =\lambda \int_{0}^{+\infty} e^{-\lambda t}\left(\int_{0}^{t} S(s) x \mathrm{~d} s\right) \mathrm{d} t(\lambda>\omega)
\end{aligned}
$$

So $F(\lambda)$ satisfies Lemma 3.1,

$$
\int_{0}^{t} S(s) x \mathrm{~d} s=\frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty} e^{\lambda t} \frac{R_{C}(\lambda, A) x}{\lambda^{\alpha}} \frac{\mathrm{d} \lambda}{\lambda},(\gamma>\omega)
$$

On the other hand, by Theorem 3.2 A generates $(u-A)^{-\alpha} C$ exponentially bounded semigroups $\{T(t)\}_{t \geq 0}$.

So for $\forall x \in D(A)$, we have

$$
\begin{aligned}
& \int_{0}^{t} T(s) x \mathrm{~d} s \\
& =\frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty} e^{\lambda t}(\lambda-A)^{-1}(u-A)^{-\alpha} C x \frac{\mathrm{~d} \lambda}{\lambda} \\
& =\frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty} e^{\lambda t}(\lambda-A)^{-1} R(u, A)^{\alpha} C x \frac{\mathrm{~d} \lambda}{\lambda} \\
& =\frac{R(u, A)^{\alpha}}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty} e^{\lambda t}(\lambda-A)^{-1} C x \frac{\mathrm{~d} \lambda}{\lambda}
\end{aligned}
$$

It follows that $S(t)=(u-A)^{\alpha}\left(I_{\alpha} T\right)(t)$.
Whence

$$
\begin{aligned}
& \int_{0}^{t} S(s) x \mathrm{~d} s=(u-A)^{\alpha} \int_{0}^{t}\left(I_{\alpha} T\right)(s) x \mathrm{~d} s \\
& =(u-A)^{\alpha}\left(I_{\alpha} \int_{0}^{t} T(s) x \mathrm{~d} s\right) \\
& =(u-A)^{\alpha} \frac{R(u, A)^{\alpha}}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty}\left(I_{\alpha} e^{\lambda t}(\lambda-A)^{-1} C x\right) \frac{\mathrm{d} \lambda}{\lambda} \\
& =\frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty}\left(I_{\alpha} e^{\lambda t} R_{C}(\lambda, A) x\right) \frac{\mathrm{d} \lambda}{\lambda} .
\end{aligned}
$$

And the integral on the right converges uniformly on any bounded intervals.

Corollary 3.4. The conditions are same as Theorem 3.3, then for $\forall x \in X$,

$$
\begin{align*}
S(t) x & =\frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty} e^{\lambda t} \frac{R_{C}(\lambda, A) x}{\lambda^{\alpha}} \mathrm{d} \lambda \tag{3.2}\\
& =\frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty}\left(I_{\alpha} e^{\lambda t} R_{C}(\lambda, A) x\right) \mathrm{d} \lambda
\end{align*}
$$

Proof. by Theorem 3.3

$$
\begin{equation*}
\int_{0}^{t} S(s) x \mathrm{~d} s=\frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty} e^{\lambda t} \frac{R_{C}(\lambda, A) x}{\lambda^{\alpha}} \frac{\mathrm{d} \lambda}{\lambda} \tag{3.3}
\end{equation*}
$$

Then $A \int_{0}^{t} S(s) x \mathrm{~d} s=\frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty} e^{\lambda t} \frac{R_{C}(\lambda, A) A x}{\lambda^{\alpha}} \frac{\mathrm{d} \lambda}{\lambda}$.
By (2.5) and noting that

$$
\frac{t^{\alpha}}{\Gamma(\alpha+1)}=\frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty} e^{\lambda t} \lambda^{-\alpha-1} \mathrm{~d} \lambda
$$

Therefore

$$
\begin{aligned}
S(t) x= & \frac{t^{\alpha}}{\Gamma(\alpha+1)} C x+\frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty} e^{\lambda t} \frac{R_{C}(\lambda, A) A x}{\lambda^{\alpha}} \frac{\mathrm{d} \lambda}{\lambda} \\
= & \frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty} e^{\lambda t} \lambda^{-\alpha-1} C x \mathrm{~d} \lambda \\
& +\frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty} e^{\lambda t} \frac{R_{C}(\lambda, A) A x}{\lambda^{\alpha}} \frac{\mathrm{d} \lambda}{\lambda} \\
= & \frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty} e^{\lambda t} \frac{R_{C}(\lambda, A) x}{\lambda^{\alpha}}(\lambda-A+A) \frac{\mathrm{d} \lambda}{\lambda} \\
= & \frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty} e^{\lambda t} \frac{R_{C}(\lambda, A) x}{\lambda^{\alpha}} \mathrm{d} \lambda
\end{aligned}
$$

Combining Theorem 3.3 we can prove the next part.
Corollary 3.5. The conditions are same as Theorem 3.3, then for $\forall x \in X$,

$$
\begin{align*}
\int_{0}^{t} S(s) x \mathrm{~d} s & =\frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty} e^{\lambda t} \frac{R_{C}(\lambda, A) x}{\lambda^{\alpha}} \frac{\mathrm{d} \lambda}{\lambda^{2}} \tag{3.4}\\
& =\frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty}\left(I_{\alpha} e^{\lambda t} R_{C}(\lambda, A) x\right) \frac{\mathrm{d} \lambda}{\lambda^{2}}
\end{align*}
$$

Proof. by Theorem 3.3

$$
\begin{equation*}
\int_{0}^{t} S(s) \mathrm{d} s=\frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty} e^{\lambda t} \frac{R_{C}(\lambda, A) x}{\lambda^{\alpha}} \frac{\mathrm{d} \lambda}{\lambda} \tag{3.5}
\end{equation*}
$$

integrating (3.5) from 0 to t, i.e.,

$$
\begin{aligned}
\int_{0}^{t}(t-s) S(s) x \mathrm{~d} s & =\frac{1}{2 \pi i} \int_{0}^{t} \int_{\gamma-i \infty}^{\gamma+i \infty} e^{\lambda t} \frac{R_{C}(\lambda, A) x}{\lambda^{\alpha}} \frac{\mathrm{d} \lambda}{\lambda} \mathrm{~d} s \\
& =\frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty}\left(e^{\lambda t}-1\right) \frac{R_{C}(\lambda, A) x}{\lambda^{\alpha}} \frac{\mathrm{d} \lambda}{\lambda^{2}}
\end{aligned}
$$

Noting that $\frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty} \frac{R_{C}(\lambda, A) x}{\lambda^{\alpha}} \frac{\mathrm{d} \lambda}{\lambda}=0$

Consequently,

$$
\int_{0}^{t}(t-s) S(s) x \mathrm{~d} s=\frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty} e^{\lambda t} \frac{R_{C}(\lambda, A) x}{\lambda^{\alpha}} \frac{\mathrm{d} \lambda}{\lambda^{2}} .
$$

The next part is easy to prove.

REFERENCES

[1] A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Springer-Verlag, New York, 1983. doi:10.1007/978-1-4612-5561-1
[2] Q. Zhao, G. T. Zhu and D. X. Feng, "Generalized Operator Semigroup and Well-Posedness of Singular Distributed Parameter Systems," Science in China, Series A, Vol. 40, No. 5, 2010, pp. 477-495.
[3] T.-J. Xiao and J. Liang, "Approximation of Laplace Transforms and Integrated Semigroups," Journal of Functional Analysis, Vol. 172, No. 1, 2000, pp. 202-220. doi:10.1006/jfan.1999.3545
[4] X. Q. Song, "Spectral Mapping Theorems for C-Semigroups," Journal of Mathematical Research \& Exposition, Vol. 40, No. 5, 1996, pp. 526-530.
[5] Q. Zheng, "Pertubations and Approximations of Integrate Semigroups," Acta Mathematica Sinica, New Series, Vol. 9, No. 3, 1993, pp. 252-260. doi:10.1007/BF02582903
[6] Q. Zheng, "Integral Semigroup and Abstract Cauchy Problem," Advances in Mathematics, Vol. 21, No. 3, 1992, pp. 257-273.
[7] K. L. Lang and G. J. Yang, "Local c-Semigroup and Abstract Cauchy Problem," Applied Mathematics, Vol. 11, No. 4, 1998, pp. 35-37.
[8] I. Miyadera and N. Tanaka, "A Remark on Exponentially Bounded C-Semigroups," Proceedings of the Japan Aca-
demy Series A, Vol. 66, No. 2, 1990, pp. 31-34.
[9] W. Arendt, "Vector-Valued Laplace Transforms and Cauchy Problems," Israel Journal of Mathematics, Vol. 59, No. 3, 1987, pp. 327-352. doi:10.1007/BF02774144
[10] W. Arendt, "Resolvent Positive Operators," Proceedings London Mathematical Society, Vol. 54, No. 2, 1978, pp. 321-349. doi:10.1112/plms/s3-54.2.321
[11] R. Delaubenfels, "Existence and Uniqueness Families for the Abstract Cauchy Problem," London Mathematical Society, Vol. 44, No. 2, 1991, pp. 310-322.
[12] S. W. Wang, "Mild Integrated C-Existence Families," Studia Mathematics, Vol. 112, No. 3, 1995, pp. 251-266.
[13] M. C. Gao, "Mild Integrated C-Existence Families and Abstract Cauchy Problem," Northeast Mathematics, Vol. 14, No. 1, 1998, pp. 95-102.
[14] N. Tanaka and I. Miyadera, "Exponentially Bounded C Semigroups and Integrated Semigroups," Tokyo Journal of Mathematics, Vol. 12, No. 3, 1989, pp. 99-115. doi:10.3836/tjm/1270133551
[15] W. Arendt, "Vector Valued Laplace Tranforms and Cauchy Problems," Israel Journal of Mathematics, Vol. 59, No. 3, 1987, pp. 327-352. doi:10.1007/BF02774144
[16] M. Mijatovic and S. pilipovic, " α-Times Integrated Semigroup," Journal of Mathematical Analysis and Applications, Vol. 210, No. 2, 1997, pp. 790-803. doi:10.1006/jmaa.1997.5436
[17] Existence Families, "Functional calculi and Evolution Equations," Lecture Notes in Mathematics, Springer-Verlag, New York, 1994.
[18] M. Hieber, "Laplace Transforms and α-Times Integrated Semigroup," Forum Mathematicum, Vol. 3, No. 3, 1991, pp. 595-612. doi:10.1515/form.1991.3.595

