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ABSTRACT 

The α-times integrated C semigroups, α > 0, are introduced and analyzed. The Laplace inverse transformation for α-times 
integrated C semigroups is obtained, some known results are generalized. 
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1. Introduction 

Integrated semigroups are more general than strongly 
continuous semigroups (i.e., 0  semigroups), cosine 
operator functions and exponentially bounded distribu- 
tion semigroups. Integrated exponentially bounded semi- 
groups were investigated in [1-15]. In this paper, we will 
introduce and analyze α-times integrated C semigroups, 

. In Theorem 2.6 we give a necessary and suffi- 
cient condition for an C

C

R 
R   to be the pseudo-resol- 

vent of an α-times integrated C semigroups . At the 
same time we discuss the Laplace inverse transformation 
for α-times integrated C semigroups. The results obtained 
are generalizations of the corresponding results for inte- 
grated semigroups. 

 S t

Throughout this paper, X is a Banach space,  B X

R A

 is 
the space of bounded linear operators from X into X, 

, ,  D A   K A  denote the domain, range, core 
of operator A respectively, .  C B X

2. Definitions and Properties of α-Times  
Integrated C Semigroups 

For 0  ,   ,    denote the integral part and deci- 
mal part of α respectively.   

1s x
 is well known Gamma 

function, and  
0

ds x e x
      1s 

1
, .  s s 

For     : 0,j R  

 

, we definite the function ,  

and  
1

t
j t



 

  1j  denotes 0-point Dirac meas-  

ure 0 . 
For continuous function  f  , 1   , the definition 

of convolution product is as following  

  
 
   

0 1

t t s
f s

j f t



 

 


   



 

d , 1

, 1

s

f t





 

 

0

. 

At first we introduce the fractional differential and in- 
tegral of function. 

For arbitrary  ,   -order differential of function 
u denotes  

       1
0 0

nD u t t  

0

. 

For arbitrary  ,   -times cumulative integral of 
function u denotes 

    1I u j u t   

R 

. 

Definition 2.1. Let , a strongly continuous fam- 
ily     S t B X

1

0t
 is called α-times integrated C- 

semigroups, if 
    S t C CS t , and (V ) 0 0S 

2

     

; 
(V )  

   

   

1

1

0

1
d

d , , 0

s t

t

s

S t S s x t s r S r Cx r

t s r S r Cx r t s






 



  

   




(2.1) 



If n n N    
0t

S t


, then   is called n-times 
integrated C semigroups. 

 If n n N     
0t

S t


0

, and C = I, then  is called 
n-times integrated semigroups. 

  0S t xIf   ,   ( t ) implies , then α- 
times integrated C semigroups  is non-degen- 
erated. 

0 0x 
  

0t
S t



R  If there exists M > 0,  , such that tS t Me ,  
0t    

0t
S t



0

 is called exponentially bounded. , then 

Definition 2.2. Let   , a strongly continuous fam-  

ily    
0t

S t B X

  is called α-times exponentially  

bounded integrated C semigroups generated by A, if 
 0 0S  , and there exists , 0M  0  , such that 

    , A   , tS t Me 0t , , and for arbitrary 
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x X

 , dte S t x t 
 

 
0t

0

, we have   , 
         1

0CR A x A Cx      .  (2.2) 

Proposition 2.3. Let A be the generator of an α-times 
integrated C semigroups , S t   . Then 

1) For all  x D A  and t , 0

   x S t Ax    ,S t x D A AS t        (2.3) 

     
0

d
t
S s Ax s

  dx s D A

1

t
S t x Cx




 
 

      (2.4) 

2) , for all 
0

t
S s x X 0t 

 

, and  and 

   
0

d
t

1

t
A S s x s S t x  Cx

 

  dte S t x t   Re



      (2.5) 

Proof. Letting ,  
0CR x    

  

   

, ,

, d ,

CA R u A x

u A S t x t

 
Fix , then  u A

     
0

0

, dt
C C

t
C

e S t R u A x t R

e R

 



  

 








 

for all Re  , and x X

 , , 0A t 

. By the uniqueness theo- 
rem it follows that 

       , ,C CR u A S t S t R u A u  (2.6) 

This implies (2.3). Let  x D ReA , then for all   , 
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Then (2.4) follows from the uniqueness theorem. 
In order to prove (2.5), let x X , and , 0 Ret   

 

, 
then by (2.3), (2.4), (2.6) we have 

     

   

   

   

0 0

0
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, d
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, d

1

s
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t
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 , ,R A Ax

   

 (2.7) 

Noting that C  Hence, 
, and by (2.7), (2.5) follows. 
 CR A x Cx   

   dS s x s D A
R 

0

t


Corollary 2.4. Let . Then S t x D A  for 

all x X
0t 

  and . Then  is right differenti- 
able in  if . In that case 

0t 
 S t

 S x
 x D A

1d
, 0, .

d

t
S t x AS t x Cx t x X

t







   


 :

 

Proposition 2.5. Let A D A X  be closed linear 
operator, when  u A , we have   , 

1) The pseudoresolvent identity 

         , , , ,C C C CR A C R A C R A R A         

(2.8) 

2)       1d
, 1 ! ,

d

n
nnn

C Cn
R A C n R A 




    

1,2,n

 

 

       
     
       

       

1

1

1

, ,

,

, ,

, , ,

C C

C

C C

C C C

R A C A A R A C

A C A R A

               (2.9) 

Proof. 1) 

A CC R A R A

R A C R A R A

   

    

    

    







  

    

   

  

 

It follows that 

         , , , ,C C C CR A C R A C R A R A       

1n

 

2) We apply the mathematical induction when  , 
by (2.8) 

    2d
, ,

d C CR A C R A 


    

n k

 

 , (2.9) is complete. i.e.,  we suppose 

      1d
, 1 ! ,

d

k
kkk

C Ck
R A C k R A 




      

then  
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d d d
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1n k

 

i.e., it follows  . The proof is complete. 
Theorem 2.6. Let S t  be a stongly continuous op-

erator function, and   tS t Me 0t 

   
0

dt
CR e S t x t  

   , 

, , letting  

Re  . Then   
ReCR

 



  

satisfies the pseudoresolvent  

         C CR RC CR C R C         (2.10) 

if and only if  S t  satisfies ( 2V ). 
h condition. Proof. One can easily prove t e necessary 

prove  it is sufficie t. Let us  that n
Letting Re , Reu  , and u  . Then the re-

solvent equation implies 
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Using (2.14) and (2.15), we obtain 
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   (2.16) 

Assertion ( 2V ) follows from (2.13) and (2.16
uniqueness of the Laplace transformation. 

3. Laplace Inverse Transformation for 
α-Times Integrated C-Semigroups 

Lemma 3.1. [16] Let 0

) and the 

       , : , X    , F F    

is  
0

dt Laplace-type expression:  F e t t 
  ,   

 0 0, and      t ht h t Mhe     , , 0t h  , then 

 

 

   1 d
,

2π

i t

i
t e F

i

 


   


 

 
 

Theorem 3.2. Let 0

 

  , then the following condi- 
tio alns are equiv ent: 

1) A generates an α-times exponentially bounded inte- 
grated semigroups   S t ; 

0t
2) There exists 0  , such that    , A  

for all u
, and 

 , A generates an  u A C
  expone

unded semigroups 
ntially 

bo   T t , and  
t 0

   
 

   
1

T t






 . 

Proo If A generates an α-times exponentially 
bounded integrated semigroups   

0t
S t


, then 

   

 
d

S t u A j
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d  

f. 1) 

 0 1
d

t t
A W r x r W t x Cx



  , 

 
oup g

 

By ([17], Proposition 3.7(a)),  
0t

W t


 is an  

 u A C
  semigr enerated by A  is the exten- 

tion of A, By ([17], A Proposition 3.11), A . 
mb n heorem 3.4]

 

2) Co i g [18] with [17, T , we can prove  

   
0 1

t
d

t
A S r x r S t x Cx  , an



 
d the space of op- 

Copyright © 2012 SciRes.                                                                                 APM 



M. LIU  ET  AL. 214 

erator is exchangeable, by Proposition 2.3, This ends the 
proof . 

Theorem 3.3. Let A be closed linear operator on X, 
 A  ,  A  , an α-times exponentially bounded  

integrated C semigroups 
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And the integral on the right converges uniformly on 
any bounded intervals. 

Corollary 3.4. The conditions are same as Theorem 3.3, 
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Consequently, 

     
2d

2π
t C

i
S s x e

i 0

,1 dt i R A x
t s s

   
   . 

The next part is easy to prove. 
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