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ABSTRACT 

We consider a normalized family F of analytic functions f, whose common domain is the complement of a closed ray in 
the complex plane. If  f z  is real when z is real and the range of f does not intersect the nonpositive real axis, then f 

can be reproduced by integrating the biquadratic kernel 
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 against a probability measure  t . It is 

shown that while this integral representation does not characterize the family F, it applies to a large class of functions, 
including a collection of functions which multiply the Hardy space Hp into itself. 
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1. Introduction 

Let  :z  1z Δ , and let  : 1 .z C z 
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Suppose f is analytic in Δ with the real part of f nonnega- 
tive. Then there is a nondecreasing function μ defined on  

0,2π   such that  d
e z2π
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  , where b  

is a real constant. This representation of such functions 
by integrating a bilinear kernel against a measure is due 
to G. Herglotz ([1], pp. 21-24) and ([2], pp. 27-30). In 
this paper, we examine a family of functions defined on 
the complex plane with a closed ray removed, which may 
be represented by integrating a biquadratic kernel against 
a probability measure (A measure μ is called a probabil- 
ity measure on  0,1

1
1

 provided μ is nonnegative with 

0
). In what follows, given functions f and g 

analytic in Δ, we say that f is subordinate to g (written 
 d t

f g ) provided     f z g  z  for some  analytic 
in Δ with   .



z z   

2. The Main Results 

Theorem 1. Let ,  1,C    ,0C   


 0 1f 
 

, and let 
F be the family of functions f having the following prop- 
erties:  

1) f is analytic in ;  
2) ;  
3) f z  1z 
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R  whenever  ;  
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where μ is a probability measure.  

Proof. Let 
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 Then   is an ana-  

lytic, bijective mapping of Δ in the w-plane onto  in 
the z-plane with 

Ω
 0 0.   Let . Then f F Ω Φf 

,g f

  

by 4). Let    and let 
2

1
.
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G w  Then  

G is an analytic, bijective mapping of Δ onto   with 
 sg .G  Define G

.h G
 to be the collection of all func- 

tions h analytic in Δ with  By a result due to D. 
A. Brannan, J. G. Clunie, and W. E. Kirwan [3],  
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where v is a probability measure and  co s G
 

 denotes 
the closed convex hull of G   1.F z z. Let s   

:Ω ΦF 
 

Then  is an analytic bijection with  0 1.F   
Since  g s G
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  and v a probability measure. Since for   is in- 
jective with  Δ Ω,  we have  

      g w f w f z  . 
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By 3)  f z f  ,1 .z 

 

z  whenever  Since 
 is symmetric about the real axis, by the identity theo- Ω

rem  f z f z

 : Im 0

 throughout Ω . Let  
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 For any measurable subset A of 

X define     * 1 2 .A A A     We have 
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where  * ie      and   1cos 2 1 .t t 

 : 1,

   
This integral representation does not characterize F, as 
the following theorem shows.  

Theorem 2. Suppose f C C  

 

 is defined via 
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where   is a probability measure. 
1) If   has support  , then  0,1 .f F
2) If   is a point mass, f F  if and only if   has 

support  0  or   . 1
Proof. Let f be as defined in the theorem. Suppose   

has support  , and the weight at 0 is a, where 0,1
10, .a  Since   is a probability measure, the corre- 

sponding weight at 1 is 1 – a. We have  

 
2 2 1

.
1

az az
f z

z

 
  Since 0 , the value  1a 


1 1 1z a  

,f F
  1

 lies in the domain of f, and is mapped to 
the origin in the w-plane. Therefore  proving 1). 

fObserve that point mass at 0 gives z z  

 

 and  

point mass at 1 gives 
1

1
f z
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, each of which is an  

analytic bijection from Ω  onto , and clearly in F. 
Suppose   has support  t 0 1t 

 

, where . Then  
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  0t    precisely when t = 1/2. It follows that Then 
 0,1t , and   lies in the domain of f for each 

  0f  f F . Therefore .   

3. An Application 

In [4], T. H. MacGregor and M. P. Sterner investigate 
multipliers of Hardy spaces of analytic functions using 
asymptotic expansions and power functions of the form 
 1

b
z



  n

, where b is a complex constant. A subclass of F 
which multiplies Hp into Hp is given in the following 
theorem. Suppose 

0 nn
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 are analytic in Δ. Then the Hadamard 

product of f and g is defined by 

f g z a b z
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  We say that f multiplies Hp into Hp provided for 
* pg H p whenever f g H .  
Theorem 3. Let   be a finite complex-valued Borel 

measure defined on  0,1

 

 and let  
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Then f is a multiplier of Hp into Hp for every p > 0. 
Moreover, there is a constant Cp depending only on p 
such that * p ppH H

f g C g .pg H    for all 
Proof. Let f be as described in the hypotheses of the 

theorem, and suppose pg H
Δz

 for some p > 0. Then for 
  and 0,1
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 1,C ,  f  the value of f is unity at the origin, and By Cauchy’s formula,  
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is real when z is real  1z .  


 Finally, observe that 

the range of f is contained in ,0 .C  
 1, .z C

 To see this 
last statement, fix   : 0 1tz t Then      

Hence  
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0
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Therefore for 0 1   and 0 2π   we have  
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Let    0 1x   for sup  iG g xe  0 2π.   Then 
G is the Hardy-Littlewood maximal function for g, and 
so lies in  0,2πpL  ([5], p. 12). Moreover, there is a 
constant Cp depending only on p such that 
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If we restrict the measure   to be a probability meas- 
ure, then the formula implies the analyticity of f on 

is the line segment from 0 to z. Hence 
1

: 0 1
1

t
tz

    
 

is the arc of the circle determined by 1, 
1

1 z
, and 0, 

having endpoints 1 and 
1

1 z
 and not including the ori- 

gin. Since   is a probability measure,  1

0

1
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lies in the circular segment which is the closed convex 
hull of that arc, and this circular segment does not inter- 
sect  ,0 .  Hence each such multiplier function f lies 
in F. 

REFERENCES 
[1] P. L. Duren, “Univalent Functions,” Springer-Verlag, New 

York, 1983. 

[2] D. J. Hallenbeck and T. H. MacGregor, “Linear Problems 
and Convexity Techniques in Geometric Function The- 
ory,” Pitman Publishing Ltd., London, 1984. 

[3] D. A. Brannan, J. G. Clunie and W. E. Kirwan, “On the 
Coefficient Problem for Functions of Bounded Boundary 
Rotation,” Annales Academiae Scientiarum Fennicae. Se- 
ries AI. Mathematica, Vol. 523, 1972, pp. 403-489. 

[4] T. H. MacGregor and M. P. Sterner, “Hadamard Products 
with Power Functions and Multipliers of Hardy Spaces,” 
Journal of Mathematical Analysis and Applications, Vol. 
282, No. 1, 2003, pp. 163-176. 
doi:10.1016/S0022-247X(03)00128-8 

[5] P. L. Duren, “Theory of Hp Spaces,” Academic Press, New 
York, 1970. 

 
 

http://dx.doi.org/10.1016/S0022-247X%2803%2900128-8

