An Integral Representation of a Family of Slit Mappings

Adrian W. Cartier, Michael P. Sterner
Department of Biology-Chemistry-Mathematics, University of Montevallo, Montevallo, USA
Email: sternerm@montevallo.edu

Received January 4, 2012; revised February 17, 2012; accepted February 28, 2012

Abstract

We consider a normalized family F of analytic functions f, whose common domain is the complement of a closed ray in the complex plane. If $f(z)$ is real when z is real and the range of f does not intersect the nonpositive real axis, then f can be reproduced by integrating the biquadratic kernel $\frac{t(t-1) z^{2}-z+1}{(1-t z)^{2}}$ against a probability measure $\mu(t)$. It is

 shown that while this integral representation does not characterize the family F, it applies to a large class of functions, including a collection of functions which multiply the Hardy space H^{p} into itself.Keywords: Herglotz Formula; Integral Representations; Subordination; Slit Mappings; Hardy Spaces; Multipliers; Hadamard Product

1. Introduction

Let $\Delta=\{z \in \mathbb{C}:|z|<1\}$, and let $\partial \Delta=\{z \in C:|z|=1\}$. Suppose f is analytic in Δ with the real part of f nonnegative. Then there is a nondecreasing function μ defined on $[0,2 \pi]$ such that $f(z)=\int_{0}^{2 \pi} \frac{e^{i t}+z}{e^{i t}-z} \mathrm{~d} \mu(t)+i b$, where b is a real constant. This representation of such functions by integrating a bilinear kernel against a measure is due to G. Herglotz ([1], pp. 21-24) and ([2], pp. 27-30). In this paper, we examine a family of functions defined on the complex plane with a closed ray removed, which may be represented by integrating a biquadratic kernel against a probability measure (A measure μ is called a probability measure on $[0,1]$ provided μ is nonnegative with $\left.\int_{0}^{1} \mathrm{~d} \mu(t)=1\right)$. In what follows, given functions f and g analytic in Δ, we say that f is subordinate to g (written $f \prec g$) provided $f(z)=g(\omega(z))$ for some ω analytic in Δ with $|\omega(z)| \leq|z|$.

2. The Main Results

Theorem 1. Let $\Omega=C-[1, \infty), \Phi=C-(-\infty, 0]$, and let F be the family of functions f having the following properties:

1) f is analytic in Ω;
2) $f(0)=1$;
3) $f(z) \in R$ whenever $-\infty<z<1$;
4) $f(\Omega) \subseteq \Phi$.

Then

$$
F \subseteq\left\{f: f(z)=\int_{0}^{1} \frac{t(t-1) z^{2}-z+1}{(1-t z)^{2}} \mathrm{~d} \mu(t)\right\},
$$

where μ is a probability measure.
Proof. Let $\varphi(w)=-\left(\frac{1-w}{1+w}\right)^{2}+1$. Then φ is an analytic, bijective mapping of Δ in the w-plane onto Ω in the z-plane with $\varphi(0)=0$. Let $f \in F$. Then $f(\Omega) \subseteq \Phi$ by 4). Let $g=f \circ \varphi$, and let $G(w)=\left(\frac{1+w}{1-w}\right)^{2}$. Then G is an analytic, bijective mapping of Δ onto Φ with $g \prec G$. Define $s(G)$ to be the collection of all functions h analytic in Δ with $h \prec G$. By a result due to D . A. Brannan, J. G. Clunie, and W. E. Kirwan [3],
$\overline{\operatorname{co}} s(G)=\left\{h\right.$ analytic in $\left.\Delta: h(z)=\int_{\partial \Delta}\left(\frac{1+\bar{\zeta} z}{1-\bar{\zeta} z}\right)^{2} \mathrm{~d} v(\zeta)\right\}$,
where v is a probability measure and $\overline{c o} s(G)$ denotes the closed convex hull of $s(G)$. Let $F(z)=-z+1$. Then $F: \Omega \rightarrow \Phi$ is an analytic bijection with $F(0)=1$. Since $g \in s(G)$,

$$
g(w)=\int_{\partial \Delta}\left(\frac{1+\bar{\zeta} w}{1-\bar{\zeta} w}\right)^{2} \mathrm{~d} v(\zeta)
$$

for $w \in \Delta$ and v a probability measure. Since φ is injective with $\varphi(\Delta)=\Omega$, we have
$g(w)=f(\varphi(w))=f(z)$.

Hence

$$
\begin{aligned}
f(z) & =\int_{\Delta \Delta}\left(\frac{1+\bar{\zeta} \varphi^{-1}(z)}{1-\bar{\zeta} \varphi^{-1}(z)}\right)^{2} \mathrm{~d} v(\zeta) \\
& =\int_{\Delta \Delta}\left(\frac{1+\bar{\zeta} \frac{1-\sqrt{1-z}}{1+\sqrt{1-z}}}{1-\bar{\zeta} \frac{1-\sqrt{1-z}}{1+\sqrt{1-z}}}\right)^{2} \mathrm{~d} v(\zeta) \\
& =\int_{\Delta \Delta}\left(\frac{(1+\bar{\zeta})+(1-\bar{\zeta}) \sqrt{1-z}}{(1-\bar{\zeta})+(1+\bar{\zeta}) \sqrt{1-z}}\right)^{2} \mathrm{~d} v(\zeta) .
\end{aligned}
$$

By 3) $f(z)=\overline{f(\bar{z})}$ whenever $z \in(-\infty, 1)$. Since Ω is symmetric about the real axis, by the identity theorem $f(z)=\overline{f(\bar{z})}$ throughout Ω. Let $X=\{\zeta \in \partial \Delta: \operatorname{Im} \zeta \leq 0\}$. For any measurable subset A of X define $v^{*}(A)=1 / 2(v(A)+v(\bar{A}))$. We have

$$
\begin{aligned}
f(z)= & \frac{1}{2}[f(z)+\overline{f(\bar{z})}] \\
= & \frac{1}{2} \int_{\partial \Delta}\left\{\left(\frac{(1+\bar{\zeta})+(1-\bar{\zeta}) \sqrt{1-z}}{(1-\bar{\zeta})+(1+\bar{\zeta}) \sqrt{1-z}}\right)^{2}\right. \\
& \left.+\left(\frac{(1+\zeta)+(1-\zeta) \sqrt{1-z}}{(1-\zeta)+(1+\zeta) \sqrt{1-z}}\right)^{2}\right\} \mathrm{d} v(\zeta) \\
= & \int_{X} \frac{\left([\operatorname{Re} \zeta]^{2}-1\right) z^{2}-4 z+4}{(\operatorname{Re} \zeta+1)^{2}-4(\operatorname{Re} \zeta+1) z+4} \mathrm{~d} v^{*}(\zeta) \\
= & \int_{-\pi}^{0} \frac{1 / 4\left(\cos ^{2} \theta-1\right) z^{2}-z+1}{\left(1-\frac{1+\cos \theta}{2} z\right)^{2}} \mathrm{~d} \sigma(\theta) \\
= & \int_{0}^{1} \frac{t(t-1) z^{2}-z+1}{(1-t z)^{2}} \mathrm{~d} \mu(t) .
\end{aligned}
$$

where $\sigma(\theta)=v^{*}\left(e^{i \theta}\right)$ and $\mu(t)=\sigma\left(\cos ^{-1}(2 t-1)\right)$. This integral representation does not characterize F, as the following theorem shows.

Theorem 2. Suppose $f: C-[1, \infty) \rightarrow C$ is defined via

$$
f(z)=\int_{0}^{1} \frac{t(t-1) z^{2}-z+1}{(1-t z)^{2}} \mathrm{~d} \mu(t)
$$

where μ is a probability measure.

1) If μ has support $\{0,1\}$, then $f \notin F$.
2) If μ is a point mass, $f \in F$ if and only if μ has support $\{0\}$ or $\{1\}$.

Proof. Let f be as defined in the theorem. Suppose μ has support $\{0,1\}$, and the weight at 0 is a, where $a \in(0,1)$. Since μ is a probability measure, the corresponding weight at 1 is $1-a$. We have
$f(z)=\frac{a z^{2}-2 a z+1}{1-z}$. Since $0<a<1$, the value $z=1+\sqrt{1-1 / a}$ lies in the domain of f, and is mapped to the origin in the w-plane. Therefore $f \notin F$, proving 1).

Observe that point mass at 0 gives $f(z)=-z+1$ and point mass at 1 gives $f(z)=\frac{1}{1-z}$, each of which is an analytic bijection from Ω onto Φ, and clearly in F. Suppose μ has support $\{t\}$, where $0<t<1$. Then

$$
f(z)=\frac{t(t-1) z^{2}-z+1}{(1-t z)^{2}}
$$

Let

$$
\zeta(t)=\frac{1+\sqrt{1-4 t(t-1)}}{2 t(t-1)}
$$

Then $\zeta^{\prime}(t)=0$ precisely when $t=1 / 2$. It follows that ζ lies in the domain of f for each $t \in(0,1)$, and $f(\zeta)=0$. Therefore $f \notin F$.

3. An Application

In [4], T. H. MacGregor and M. P. Sterner investigate multipliers of Hardy spaces of analytic functions using asymptotic expansions and power functions of the form $(1-z)^{-b}$, where b is a complex constant. A subclass of F which multiplies H^{p} into H^{p} is given in the following theorem. Suppose $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$ are analytic in Δ. Then the Hadamard product of f and g is defined by

$$
\left(f^{*} g\right)(z)=\sum_{n=0}^{\infty} a_{n} b_{n} z^{n}
$$

for $z \in \Delta$. We say that f multiplies H^{p} into H^{p} provided $f^{*} g \in H^{p}$ whenever $g \in H^{p}$.

Theorem 3. Let μ be a finite complex-valued Borel measure defined on $[0,1]$ and let

$$
f(z)=\int_{0}^{1} \frac{1}{1-t z} \mathrm{~d} \mu(t)(z \in \Delta)
$$

Then f is a multiplier of H^{p} into H^{p} for every $p>0$. Moreover, there is a constant C_{p} depending only on p such that $\left\|f^{*} g\right\|_{H^{p}} \leq\|\mu\| C_{p}\|g\|_{H^{p}}$ for all $g \in H^{p}$.

Proof. Let f be as described in the hypotheses of the theorem, and suppose $g \in H^{p}$ for some $p>0$. Then for $z \in \Delta$ and $r \in[0,1)$ we have

$$
\begin{aligned}
(f * g)(r z) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z e^{-i \theta}\right) g\left(r e^{i \theta}\right) \mathrm{d} \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \int_{0}^{1} \frac{1}{1-t z e^{-i \theta}} \mathrm{~d} \mu(t) g\left(r e^{i \theta}\right) \mathrm{d} \theta \\
& =\int_{0}^{1}\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{g\left(r e^{i \theta}\right)}{1-t z e^{-i \theta}} \mathrm{~d} \theta\right\} \mathrm{d} \mu(t)
\end{aligned}
$$

By Cauchy's formula,

$$
\begin{aligned}
g(z) & =\frac{1}{2 \pi i} \oint_{|\xi|=r \mid} \frac{g(\xi)}{\xi-z} \mathrm{~d} \xi(|z|<r, 0<r<1) \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{g\left(r e^{i \theta}\right)}{1-\frac{z}{r} e^{-i \theta}} \mathrm{~d} \theta .
\end{aligned}
$$

Hence

$$
\left(f^{*} g\right)(r z)=\int_{0}^{1} g(r t z) \mathrm{d} \mu(t)
$$

Therefore for $0 \leq \rho<1$ and $0 \leq \varphi<2 \pi$ we have

$$
\left(f^{*} g\right)\left(\rho e^{i \varphi}\right)=\int_{0}^{1} g\left(\rho t e^{i \varphi}\right) \mathrm{d} \mu(t) .
$$

Let $G(\varphi)=\sup _{0 \leq x<1}\left|g\left(x e^{i \varphi}\right)\right|$ for $0 \leq \varphi<2 \pi$. Then G is the Hardy-Littlewood maximal function for g, and so lies in $L^{p}[0,2 \pi]$ ([5], p. 12). Moreover, there is a constant C_{p} depending only on p such that $\|G\|_{L^{p}} \leq C_{p}\|g\|_{H^{p}}$ (In fact, for $p \geq 1, C_{p}=1$). Since $0 \leq \rho<1$ and $0 \leq t \leq 1$, we obtain

$$
\left|\left(f^{*} g\right)\left(\rho e^{i \varphi}\right)\right| \leq \int_{0}^{1} \sup _{0 \leq x<1}\left|g\left(x e^{i \varphi}\right)\right||\mathrm{d} \mu(t)|=G(\varphi)\|\mu\| .
$$

Hence

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\left(f^{*} g\right)\left(\rho e^{i \varphi}\right)\right|^{p} \mathrm{~d} \varphi & \left.\leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \right\rvert\, G(\varphi)\|\mu\|^{p} \mathrm{~d} \varphi \\
& \leq\|\mu\|^{p} C_{p}^{p}\|g\|_{H^{p}}^{p}
\end{aligned}
$$

Therefore

$$
\sup _{0 \leq \rho<1}\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\left(f^{*} g\right)\left(\rho e^{i \varphi}\right)\right|^{p} \mathrm{~d} \varphi\right\}^{1 / p} \leq\|\mu\| C_{p}\|g\|_{H^{p}}
$$

If we restrict the measure μ to be a probability measure, then the formula implies the analyticity of f on
$C-[1, \infty)$, the value of f is unity at the origin, and $f(z)$ is real when z is real $(-\infty<z<1)$. Finally, observe that the range of f is contained in $C-(-\infty, 0]$. To see this last statement, fix $z \in C-[1, \infty)$. Then $\{t z: 0 \leq t \leq 1\}$ is the line segment from 0 to z. Hence $\left\{\frac{1}{1-t z}: 0 \leq t \leq 1\right\}$ is the arc of the circle determined by $1, \frac{1}{1-z}$, and 0 , having endpoints 1 and $\frac{1}{1-z}$ and not including the origin. Since μ is a probability measure, $\int_{0}^{1} \frac{1}{1-t z} \mathrm{~d} \mu(t)$ lies in the circular segment which is the closed convex hull of that arc, and this circular segment does not intersect $(-\infty, 0]$. Hence each such multiplier function f lies in F.

REFERENCES

[1] P. L. Duren, "Univalent Functions," Springer-Verlag, New York, 1983.
[2] D. J. Hallenbeck and T. H. MacGregor, "Linear Problems and Convexity Techniques in Geometric Function Theory," Pitman Publishing Ltd., London, 1984.
[3] D. A. Brannan, J. G. Clunie and W. E. Kirwan, "On the Coefficient Problem for Functions of Bounded Boundary Rotation," Annales Academiae Scientiarum Fennicae. Series AI. Mathematica, Vol. 523, 1972, pp. 403-489.
[4] T. H. MacGregor and M. P. Sterner, "Hadamard Products with Power Functions and Multipliers of Hardy Spaces," Journal of Mathematical Analysis and Applications, Vol. 282, No. 1, 2003, pp. 163-176. doi:10.1016/S0022-247X(03)00128-8
[5] P. L. Duren, "Theory of H^{p} Spaces," Academic Press, New York, 1970.

