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ABSTRACT 

In this paper, we continue studying the so called best m-term one-sided approximation and Greedy-liked one-sided ap- 
proximation by the trigonometric polynomials. The asymptotic estimations of the best m-terms one-sided approximation 
by the trigonometric polynomials on some classes of Besov spaces in the metric   1d

pL T p  

   

 are given. 

 

Keywords: Besov Classes; m-Term Approximation; One-Sided Approximation; Trigonometric Polynomial; Greedy 
Algorithm 

1. Introduction 

In [1,2], R. A. Devore and V. N. Temlyakov gave the 
asymptotic estimations of the best m-term approximation 
and the m-term Greedy approximation in the Besov 
spaces, respectively. In [3,4], by combining Ganelius’ 
ideas on the one-sided approximation [5] and Schmidt’s 
ideas on m-term approximation [6], we introduced two 
new concepts of the best m-term one-sided approxima- 
tion (Definition 2.2) and the m-term Greedy-liked one- 
sided approximation (Definition 2.3) and studied the 
problems on classes of some periodic functions defined 
by some multipliers. We know that the best m-term ap- 
proximation has many applications in adaptive PDE solvers, 
compression of images and signal, statistical classifica- 
tion, and so on, and the one-sided approximation has 
wide applications in conformal algorithm and operational 
research, etc. Hence, we are interested in the problems of 
the best m-term one-sided approximation and corre- 
sponding m-term Greedy-liked one-sided approximation. 
As a continuity of works in [3,4], we will study the 
same kinds of problems on some Besov classes in the 
paper. 

There are a lot of papers on the best m term approxi- 
mation problem and the best onee-sided approximation 
problem, we may see the papers [7-10] on the best m 

term approximation problem and see [11,12] on the best 
one-sided approximation problem. 

 1: 0, 2π 0, 2π
ddT T 

 1 2, , , d

 be the d dimensional  Let 
x x x x  ,  torus. For any two elements 

 1 2, , , d
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and called it to be the best m-term one-sided trigonomet- 
ric approximation operators, where and in the sequel the 
operator m  is the best m-term trigonometric 
approximation operators and   denotes  

1 2

1 1

0 0 d

n n

l l

 

 


 , .m

1

0
.

n

l



   It is easy to see that  
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m

m i     k ig f x   f
   

1

ˆ
i

f k ik i e  and  
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a sequence determined by the Fourier coefficients  

 of f in the decreasing rearrangement, i.e.,   ˆ
dk Z

f k


     1 2f k f k 

m


m

. 

It is easy to see that two operators  and T g  are 
non-linear. We will see that for any ,dx T

   ,
   

mg f x f x

 , ,T f x

 ,T f x
 ,

  (see Lemma 3.1 2)). 
The main results of this paper are Theorems 2.5 and 

2.6. In Theorem 2.5, by using the properties of the op- 
erator m  we give the asymptotic estimations of 
the best m-term one-sided approximations of some Besov 
classes under the trigonometric function system. From 
this it can be seen easily that the approximation operator 

m  is the ideal one. In Theorem 2.6, by using the 
properties of the approximation operator m



g f x



 x

, the 
asymptotic estimations of the one-sided Greedy-liked 
algorithm of the best m-term one-sided approximation of 
Besov spaces under the trigonometric function system 
are given. 

2. Preliminaries 

For each positive integer m, denote by m  the non- 
linear manifold consists of complex trigonometric poly- 
nomials T, where each trigonometric polynomial T can 
be written as a linear combination of at most m exponen- 
tials , . Thus mke dk Z T   if and only if there 
exits dZ   such that m   and  

     ,k k
k

c e x

T x  

where  .
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 j
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the best m-term approximation error of f with trigono- 
metric polynomials under the norm Lp. For the function 
set   ,d
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  : s  upm mp p
f A
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the best m-term approximation error of the function class 

 set  

 

A with trigonometric polynomials under the norm Lp. 
Definition 2.2. (see cf. [3,4]) For given function f,

 : , .T T T f
     The quantity  

2m m

  : inf
m
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f f T






   

is called to be the best m-term one-sided approximation 
error of f with trigonometric polynomials under the norm 
Lp. For given function set   ,d

pA L T  the quantity  

  : s upm mp p
f A

A f




is called to be the best m-term one-sided approximation 

,4]) For given function f, we 
ca

    

error of the function class A with trigonometric polyno- 
mials under the norm Lp.  

Definition 2.3. (see cf. [3
ll  ,mg f x  (given by relation (2)) the Greedy-liked 

algorith e best m-term one-sided approximation of 
f under trigonometric function system. For given function 
set 

m of th

  ,d
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   : sup
p

,m m
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A
p
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the Greedy-liked one-sided approximation the 
best m-term one-sided approximation of function class A 

 0,1, 2,   1 ,q  . In the case  we can   error of Here 

given by trigonometric polynomials with norm Lp. 
As in [1,15], denote by   ,s qB L  0  , 0 ,q s   , 

the Besov space. The definition of the Besov space is 
gi  equivalent ch acterizationven by using the following ar .  
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the unit ball with respect to this seminorm. 
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  s qL  of the Besov spaces  

, :p q
 

 , ,p q   we have  For the unit ball U B

 s qL , Devore an v in [1] gave the followB Temlyako -
ing result: 

d 

Theorem 2.4. (c.f. [1]) For any 1 p   , 0 q , 
s   , let  ,p q  be defined as in (4). Then, for 
  ,p q  the estimate  
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 2q p

m s
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is valid.  
In this paper, we give the following results about the 

 one-sided approximation and corresponding 
G
best m-term

reedy-liked one-sided algorithm of some Besov classes 
by taking the m-term trigonometric polynomials as the 
approximation tools. Our results is the following theo- 
rems. 
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positive constant C independent of n, such that  



R. S. LI, Y. P. LIU 186 

   
1

1 1

| | 0

π .
| | 0

2π 2
p

n n
d p

l
l

n a
 



 



  (6) 
Proof. For the integral properties of  n

n l

p

x l n a C   



x

l 

  mainly 
determined by the properties of free variables in the 
neighborhood of zero, we have  

 

   

 
  
 

1

2π d

pp

l

1 1
dn

 

  

1

| | 0 | | 0

1

21
2

2
| | 0 1

21 2π

0
| | 0 1

2π
2π

2π 2sin1
π 2 d

2π sin 2π 2

2π 2sin

2

d

d

n

n l nT
l lp

pp
d dn

d i i
lT

l i
i i

dn
i ip

l
l i

i

x l n a

n x l n
a x

n x l n

n x l n
a

n x



 



 



 


     

     

                





 

 

 

x l n a x
  

  

  

 

1

2

1 121 1π π1
2π

| | 0 | | 01

d
π 2

sin d 2π .i

i

pp

i

i

pp p
dn nn l dp pi

l i ll
l li i

x
l n

y
a n y n a

y

 


 

         

     
    

    
   

 

 
The proof of Lemma 3.2 is finished.  
Proof of Theorem 2.5. First, we consider the upper 

estimation. For a given function  d
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By (19) and (20), we can get  
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In the following we will give the lower estimation. By 
on 2.3, we have  
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And by Theorem 2.4, we have
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