The Best \boldsymbol{m}-Term One-Sided Approximation of Besov Classes by the Trigonometric Polynomials*

Rensuo Li 1, Yongping Liu ${ }^{2 \#}$
${ }^{1}$ School of Information and Technology, Shandong Agricultural University, Tai'an, China
${ }^{2}$ School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing Normal University, Beijing, China Email: rensuoli@sdau.edu.cn, \#ypliu@bnu.edu.cn

Received December 20, 2011; revised February 5, 2012; accepted February 15, 2012

Abstract

In this paper, we continue studying the so called best m-term one-sided approximation and Greedy-liked one-sided approximation by the trigonometric polynomials. The asymptotic estimations of the best m-terms one-sided approximation by the trigonometric polynomials on some classes of Besov spaces in the metric $L_{p}\left(T^{d}\right)(1 \leq p \leq \infty)$ are given.

Keywords: Besov Classes; m-Term Approximation; One-Sided Approximation; Trigonometric Polynomial; Greedy Algorithm

1. Introduction

In [1,2], R. A. Devore and V. N. Temlyakov gave the asymptotic estimations of the best m-term approximation and the m-term Greedy approximation in the Besov spaces, respectively. In [3,4], by combining Ganelius' ideas on the one-sided approximation [5] and Schmidt's ideas on m-term approximation [6], we introduced two new concepts of the best m-term one-sided approximation (Definition 2.2) and the m-term Greedy-liked onesided approximation (Definition 2.3) and studied the problems on classes of some periodic functions defined by some multipliers. We know that the best m-term approximation has many applications in adaptive $P D E$ solvers, compression of images and signal, statistical classification, and so on, and the one-sided approximation has wide applications in conformal algorithm and operational research, etc. Hence, we are interested in the problems of the best m-term one-sided approximation and corresponding m-term Greedy-liked one-sided approximation. As a continuity of works in $[3,4]$, we will study the same kinds of problems on some Besov classes in the paper.

There are a lot of papers on the best m term approximation problem and the best onee-sided approximation problem, we may see the papers [7-10] on the best m

[^0]term approximation problem and see $[11,12]$ on the best one-sided approximation problem.

Let $T^{d}:=[0,2 \pi)^{d}\left(T^{1}=[0,2 \pi)\right)$ be the d dimensional torus. For any two elements $x=\left(x_{1}, x_{2}, \cdots, x_{d}\right)$,
$y=\left(y_{1}, y_{2}, \cdots, y_{d}\right) \in R^{d}$, set $e_{k}(x):=e^{i k x}$,
$k=\left(k_{1}, k_{2}, \cdots, k_{d}\right) \in Z^{d}$, where $x y$ denotes the inner product of x and y, i.e., $x y=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{d} y_{d}$.

Denote by $L_{p}\left(T^{d}\right)(1 \leq p \leq \infty)$ the space of all 2π periodic and measurable functions f on R^{d} for which the following quantity

$$
\begin{gathered}
\|f\|_{p}:=\left(\int_{T^{d}}|f(x)|^{p} \mathrm{~d} x\right)^{1 / p}, 1 \leq p<\infty \\
\|f\|_{\infty}=\operatorname{ess} \sup _{x \in T^{d}}|f(x)|, p=\infty
\end{gathered}
$$

is finite. $L_{p}\left(T^{d}\right)$ is a Banach space with the norm $\|\cdot\|_{p}$. For any $f \in L_{p}\left(T^{d}\right)$, we denote by

$$
\hat{f}(k)=\frac{1}{(2 \pi)^{d}} \int_{T^{d}} f(x) e_{k}(x) \mathrm{d} x,\left(k \in Z^{d}\right)
$$

the Fourier coefficients of f (see [13]).
For any positive integer m, set $n=n(m)=:\left[m^{1 / d}\right]$. For any $f \in L_{1}\left(T^{d}\right)$, as Popov in [11,12], by using the multivariate Fejér kernels,

$$
\begin{aligned}
\Phi_{n}(x) & :=(\pi / 2)^{2 d} \prod_{i=1}^{d}\left(\frac{\sin n x_{i} / 2}{n \sin x_{i} / 2}\right)^{2} \\
x & =\left(x_{1}, x_{2}, \cdots, x_{d}\right) \in T^{d}
\end{aligned}
$$

we defined

$$
\begin{align*}
& T_{m}^{+}(f, x):=T_{m}(f, x) \\
& +\sum_{|l|=0}^{n-1} \Phi_{n}(x-2 \pi l / n) \sup _{|y-2 \pi l / n| \leq \pi / n}\left|f(y)-T_{m}(f, y)\right|, \tag{1}
\end{align*}
$$

and called it to be the best m-term one-sided trigonometric approximation operators, where and in the sequel the operator $T_{m}(f, x)$ is the best m-term trigonometric approximation operators and $\sum_{|l|=0}^{n-1}$ denotes
$\sum_{l_{1}=0}^{n-1} \sum_{l_{2}=0}^{n-1} \cdots \sum_{l_{d}=0}^{n-1}$. It is easy to see that
$f(x) \leq T_{m}^{+}(f, x)$.
Meantime, for any $f \in L_{1}\left(T^{d}\right)$, we also defined

$$
\begin{align*}
& g_{m}^{+}(f, x):=g_{m}(f, x) \\
& +\sum_{|l|=0}^{n-1} \Phi_{n}(x-2 \pi l / n) \sup _{|y-2 \pi l / n| \leq \pi / n}\left|f(y)-g_{m}(f, y)\right|, \tag{2}
\end{align*}
$$

where $g_{m}(f, x)=\sum_{i=1}^{m} \hat{f}(k(i)) e_{k(i)}$ and $\left\{\hat{f}(k(i)\}_{i=1}^{\infty}\right.$ is a sequence determined by the Fourier coefficients
$\{\hat{f}(k)\}_{k \in Z^{d}}$ of f in the decreasing rearrangement, i.e., $|f(k(1))| \geq|f(k(2))| \geq \cdots$.

It is easy to see that two operators T_{m}^{+}and g_{m}^{+}are non-linear. We will see that for any $x \in T^{d}$, $g_{m}^{+}(f, x) \geq f(x)$ (see Lemma 3.12)).
The main results of this paper are Theorems 2.5 and 2.6. In Theorem 2.5, by using the properties of the operator $T_{m}^{+}(f, x)$, we give the asymptotic estimations of the best m-term one-sided approximations of some Besov classes under the trigonometric function system. From this it can be seen easily that the approximation operator $T_{m}^{+}(f, x)$ is the ideal one. In Theorem 2.6, by using the properties of the approximation operator $g_{m}^{+}(f, x)$, the asymptotic estimations of the one-sided Greedy-liked algorithm of the best m-term one-sided approximation of Besov spaces under the trigonometric function system are given.

2. Preliminaries

For each positive integer m, denote by Σ_{m} the nonlinear manifold consists of complex trigonometric polynomials T, where each trigonometric polynomial T can be written as a linear combination of at most m exponentials $e_{k}(x), k \in Z^{d}$. Thus $T \in \Sigma_{m}$ if and only if there exits $\Lambda \subset Z^{d}$ such that $|\Lambda| \leq m$ and

$$
T(x)=\sum_{k \in \Lambda} c_{k} e_{k}(x)
$$

where $|\Lambda|$ is the cardinality of the set Λ.
Let D be a finite or infinite denumerable set. Denote by $l_{p}(D)(1 \leq p \leq \infty)$ the space of all subset of some complex numbers $X=\left\{x_{j}\right\}_{j \in D}$ with the following finite
l_{p} norm

$$
\|X\|_{l_{p}(D)}:=\left(\sum_{j \in D}\left|x_{j}\right|^{p}\right)^{1 / p}, 1 \leq p<\infty ;\|X\|_{l_{\infty}}:=\sup _{j \in D}\left|x_{j}\right| .
$$

For any $f \in L_{1}\left(T^{d}\right)$, let $\{\hat{f}(k)\}_{k \in Z^{d}}$ be the set of Fourier coefficients of f. As in the page 19 of [14], denote by

$$
\|f\|_{l_{p}}=\left\|\{\hat{f}(k)\}_{\mathbb{Z}^{d}}\right\|_{l_{p}\left(\mathbb{Z}^{d}\right)}
$$

the l_{p} norm of the set of Fourier coefficients of f.
Throughout this paper, let \mathcal{T}_{n} denote the set of the trigonometric polynomials of d variables and degree n with the form $T=\sum_{|k| \leq n} \hat{T}(k) e_{k}$ and $\mathcal{A}_{q}\left(\mathcal{T}_{n}\right)$ denote the set of all trigonometric polynomials T in \mathcal{T}_{n} such that

$$
\|T\|_{\mathcal{A}_{q}\left(\mathcal{T}_{n}\right)}:=\left\|\{\hat{T}(k)\}_{k \in Z^{d}}\right\|_{l_{q}\left(z^{d}\right)} \leq 1
$$

Here we take as $\hat{T}(k)=0$ if $|k|>n$, $|k|:=\max \left\{\left|k_{1}\right|,\left|k_{2}\right|, \cdots,\left|k_{d}\right|\right\}$.

Definition 2.1. (see cf. [1]) For a given function f, we call

$$
\sigma_{m}(f)_{p}:=\inf _{T \in \Sigma_{m}}\|f-T\|_{p}
$$

the best m-term approximation error of f with trigonometric polynomials under the norm L_{p}. For the function set $A \subset L_{p}\left(T^{d}\right)$, we call

$$
\sigma_{m}(A)_{p}:=\sup _{f \in A} \sigma_{m}(f)_{p}
$$

the best m-term approximation error of the function class A with trigonometric polynomials under the norm L_{p}.

Definition 2.2. (see $c f$. $[3,4]$) For given function f, set $\sum_{m}^{+}:=\left\{T \mid T \in \sum_{2 m}, T \geq f\right\}$. The quantity

$$
\sigma_{m}^{+}(f)_{p}:=\inf _{T \in \Sigma_{m}^{+}}\|f-T\|_{p}
$$

is called to be the best m-term one-sided approximation error off with trigonometric polynomials under the norm L_{p}. For given function set $A \subset L_{p}\left(T^{d}\right)$, the quantity

$$
\sigma_{m}^{+}(A)_{p}:=\sup _{f \in A} \sigma_{m}^{+}(f)_{p}
$$

is called to be the best m-term one-sided approximation error of the function class A with trigonometric polynomials under the norm L_{p}.

Definition 2.3. (see cf. [3,4]) For given function f, we call $g_{m}^{+}(f, x)$ (given by relation (2)) the Greedy-liked algorithm of the best m-term one-sided approximation of f under trigonometric function system. For given function set $A \subset L_{p}\left(T^{d}\right)$, we call

$$
\alpha_{m}^{+}(A)_{p}:=\sup _{f \in A}\left\|f-g_{m}^{+}(f, x)\right\|_{p}
$$

the Greedy-liked one-sided approximation error of the best m-term one-sided approximation of function class A given by trigonometric polynomials with norm L_{p}.

As in $[1,15]$, denote by $B_{s}^{\alpha}\left(L_{q}\right), \alpha>0,0<q, s \leq \infty$, the Besov space. The definition of the Besov space is given by using the following equivalent characterization. A function f is in the unit ball $U\left(B_{s}^{\alpha}\left(L_{q}\right)\right)$ of the Besov space $B_{s}^{\alpha}\left(L_{q}\right)$, if and only if there exist trigonometric polynomials $R_{j}(x):=\sum_{|k| \leq 2^{j}} c_{j k} e_{k}(x)$, such that

$$
\begin{align*}
f(x):=\sum_{j=0}^{\infty} R_{j} & (x) \text { and } \\
& \left\|\left(2^{j \alpha}\left\|R_{j}\right\|_{q}\right)_{j=0}^{\infty}\right\|_{l_{s}\left(\mathbb{Z}_{+}\right)} \leq 1 . \tag{3}
\end{align*}
$$

$$
\alpha(p, q):=\left\{\begin{array}{lc}
d\left(\frac{1}{q}-\frac{1}{p}\right)_{+}, & 0<q \leq p \leq 2 \text { and } 1 \leq p \leq q \leq \infty \tag{4}\\
\max \left\{\frac{d}{q}, \frac{d}{2}\right\}, & \text { otherwise }
\end{array}\right.
$$

and

$$
\beta(p, q):=\left\{\begin{array}{cc}
d+\alpha(p, q), & 0<q \leq p \leq 2 \text { and } 1 \leq p \leq q \leq \infty, \tag{5}\\
\alpha(p, q), & \text { otherwise. }
\end{array}\right.
$$

For the unit ball $U\left(B_{s}^{\alpha}\left(L_{q}\right)\right)$ of the Besov spaces $B_{s}^{\alpha}\left(L_{q}\right)$, Devore and Temlyakov in [1] gave the following result:
Theorem 2.4. (c.f. [1]) For any $1 \leq p \leq \infty, 0<q$, $s \leq \infty$, let $\alpha(p, q)$ be defined as in (4). Then, for $\alpha>\alpha(p, q)$ the estimate

$$
\sigma_{m}\left(U\left(B_{s}^{\alpha}\left(L_{q}\right)\right)\right)_{p} \asymp m^{-\alpha / d+\left(\frac{1}{q}-\max \left\{\frac{1}{p}, \frac{1}{2}\right\}\right)_{+}}
$$

is valid.
In this paper, we give the following results about the best m-term one-sided approximation and corresponding Greedy-liked one-sided algorithm of some Besov classes by taking the m-term trigonometric polynomials as the approximation tools. Our results is the following theorems.

Theorem 2.5. For any $1 \leq p \leq \infty, 0<q, s \leq \infty$, let $\beta(p, q)$ be defined as in (5). Then, for $\alpha>\beta(p, q)$, we have

$$
\sigma_{m}^{+}\left(U\left(B_{s}^{\alpha}\left(L_{q}\right)\right)\right)_{p} \asymp m^{-\alpha / d+\left(\frac{1}{q}-\max \left\{\frac{1}{p}, \frac{1}{2}\right\}\right)} .
$$

Theorem 2.6. For $1 \leq p \leq \infty, 1 \leq q \leq \infty, 0<s \leq \infty$

Here $\mathbb{Z}_{+}=\{0,1,2, \cdots\}$. In the case $1<q<\infty$, we can take $R_{j}=f_{j}:=\sum_{2^{j-1} \leq|k|<2^{j}} \hat{f}(k) e_{k}, j \geq 1, f_{0}:=\hat{f}(0) e_{0}$, $k=\left(k_{1}, k_{2}, \cdots, k_{d}\right) \in Z^{d},|k|=\max \left\{\left|k_{1}\right|,\left|k_{2}\right|, \cdots,\left|k_{d}\right|\right\}$.

We define the seminorm $|f|_{B_{s}^{\alpha}\left(L_{q}\right)}$ as the infimum over all decompositions (3) and denote by $U\left(B_{s}^{\alpha}\left(L_{q}\right)\right)$ the unit ball with respect to this seminorm.

Throughout this paper, for any two given sequences of non-negative numbers $\left\{\alpha_{n}\right\}_{n=1}^{\infty},\left\{\beta_{n}\right\}_{n=1}^{\infty}$ if there is a nonnegative constant c independent of all n, such that $\alpha_{n} \leq c \beta_{n}$, then we write $\alpha_{n} \ll \beta_{n}$. If both $\alpha_{n} \ll \beta_{n}$ and $\beta_{n} \ll \alpha_{n}$ hold, then we write $\alpha_{n} \asymp \beta_{n}$.

For any $1 \leq p \leq \infty, 0<q, s \leq \infty$, set
and for $\alpha>\beta(p, q)$, we have

$$
m^{-\alpha / d+(1 / q-1 / p)_{+}} \ll \alpha_{m}^{+}\left(U\left(B_{s}^{\alpha}\left(L_{q}\right)\right)\right)_{p} \ll m^{-\alpha / d+(1 / q-1 / 2)_{+}}
$$

when $1 \leq p \leq 2$, and

$$
m^{-\alpha / d+(1 / q-1 / 2)_{+}} \ll \alpha_{m}^{+}\left(U\left(B_{s}^{\alpha}\left(L_{q}\right)\right)\right) \ll m^{-\alpha / d+\max \{1 / q, 1 / 2\}}
$$

when $2 \leq p \leq \infty$.

3. The Proofs of the Main Results

In order to prove Theorem 2.5 and Theorem 2.6, we need following lemmas for $\Phi_{n}(x)$.

Lemma 3.1. For the d variable trigonometric polynomial $\Phi_{n}(x)$ of degree n above, we have

1) If $x \in T^{d}$ then $\Phi_{n}(x) \geq 0$;
2) If $|x| \leq \pi / n$ then $\Phi_{n}(x) \geq 1$;
3) $\sum_{|l|=0}^{n-1} \Phi_{n}(x-2 \pi l / n) \leq C_{1}$, where C_{1} is a constant independent of n;
4) $\int_{T^{d}} \Phi_{n}(x) \mathrm{d} x \leq C_{2} / n^{d}$, where C_{2} is a constant independent of n.

Proof. We only prove 4).
If $0 \leq t \leq \pi$, then from $t / \pi \leq \sin t / 2 \leq t / 2$, we have

$$
\int_{T^{d}} \Phi_{n}(x) \mathrm{d} x=(\pi / 2)^{2 d} \prod_{i=1}^{d} \int_{0}^{2 \pi}\left(\frac{\sin n x_{i} / 2}{n \sin x_{i} / 2}\right)^{2} \mathrm{~d} x_{i} \asymp(1 / n)^{2 d} \prod_{i=1}^{d} \int_{0}^{\pi}\left(\frac{\sin n x_{i} / 2}{x_{i}}\right)^{2} \mathrm{~d} x_{i} \asymp n^{-2 d} \prod_{i=1}^{d} n \int_{0}^{n \pi / 2}\left(\frac{\sin y_{i}}{y_{i}}\right)^{2} \mathrm{~d} y_{i} \asymp n^{-d}
$$

4) follows from above equalities.

Similarly, we have

Lemma 3.2. For $1 \leq p \leq \infty, a_{j} \geq 0, \quad l \in Z^{d}$ there is positive constant C independent of n, such that

$$
\begin{aligned}
& \left\|\sum_{|l|=0}^{n-1} \Phi_{n}(x-2 \pi l / n) a_{l}\right\|_{p} \leq C\left\{(2 \pi / n)^{d} \sum_{|l|=0}^{n-1} a_{l}^{p}\right\}^{1 / p} . \\
& \left\|\sum_{|l|=0}^{n-1} \Phi_{n}(x-2 \pi l / n) a_{l}\right\|_{p}=\left\{\left(\frac{1}{2 \pi}\right)^{d} \int_{T^{d}}\left(\sum_{|l|=0}^{n-1} \Phi_{n}(x-2 \pi l / n) a_{l}\right)^{p} \mathrm{~d} x\right\}^{1 / p} \\
& =\left\{\left(\frac{1}{2 \pi}\right)^{d} \int_{T^{d}}\left(\sum_{|l|=0}^{n-1}(\pi / 2)^{2 d} a_{l} \prod_{i=1}^{d} \frac{\sin ^{2}\left(n\left(x_{i}-2 \pi l_{i} / n\right) / 2\right)}{\left(n \sin \left(x_{i}-2 \pi l_{i} / n\right) / 2\right)^{2}}\right)^{p} \mathrm{~d} x\right\}^{1 / p} \\
& \ll\left\{\sum_{|l|=0}^{n-1} a_{l}^{p} \prod_{i=1}^{d} \int_{0}^{2 \pi}\left(\frac{\sin ^{2}\left(n\left(x_{i}-2 \pi l_{i} / n\right) / 2\right)}{\left(n\left(x_{i}-2 \pi l_{i} / n\right) / 2\right)^{2}}\right)^{p} \mathrm{~d} x_{i}\right\}^{1 / p} \\
& \ll\left\{\sum_{|l|=0}^{n-1} a_{l}^{p} \prod_{i=1}^{d} n^{-1} \int_{-\pi l_{i}}^{n \pi-\pi l_{i}}\left(\frac{\sin ^{2} y_{i}}{y_{i}^{2}}\right)^{p} \mathrm{~d} y_{i}\right\}^{1 / p} \ll\left\{(2 \pi / n)^{d} \sum_{|| |=0}^{n-1} a_{l}^{p}\right\}^{1 / p} .
\end{aligned}
$$

The proof of Lemma 3.2 is finished.
Proof of Theorem 2.5. First, we consider the upper estimation. For a given function $f \in L_{p}\left(T^{d}\right), T_{m} \in \sum_{m}$ set

$$
\begin{aligned}
& T_{m}^{+}(f, x) \\
& :=T_{m}+\sum_{|l|=0}^{n-1} \Phi_{n}(x-2 \pi l / n) \sup _{|y-2 \pi| / n \mid \leq \pi / n}\left|f(y)-T_{m}(y)\right| .
\end{aligned}
$$

$$
\sigma_{2^{m d}}^{+}\left(U\left(B_{\infty}^{\alpha}\left(L_{2}\right)\right)\right)_{\infty} \leq \sup _{f \in U\left(B_{\infty}^{\alpha}\left(L_{2}\right)\right)}\left\{\inf _{T \in \Sigma_{2^{m d}}}\left(\|f-T\|_{\infty}+\left\|\sum_{\| l \mid=0}^{n-1} \Phi_{n}(x-2 \pi l / n) \sup _{|y-2 \pi l / n| \leq \pi / n} \mid f-T\right\| \|_{\infty}\right)\right\}
$$

$$
\begin{equation*}
\leq \sigma_{2^{m d}}\left(U\left(B_{\infty}^{\alpha}\left(L_{2}\right)\right)\right)_{\infty}+\sup _{f \in U\left(B_{\infty}^{\alpha}\left(L_{2}\right)\right)}\left\|\sum_{\| l=0}^{n-1} \Phi_{n}(x-2 \pi l / n) \sup _{|y-2 \pi l / n| \leq \pi / n} \mid f-T_{2^{m d}}(f)\right\|_{\infty}=: S_{1}+S_{2}, \tag{7}
\end{equation*}
$$

where we have written $n=2^{m}$ in (7).
By the conditions of Theorem 2.5, for any given natural number m, we have $\alpha>\alpha(p, q)=d / 2$. Notice that $1 / q-\max \{1 / p, 1 / 2\}=0$ in Theorem 2.4. Thus,

By Lemma 3.1 2) and Remark 1.1, we have $f(x) \leq T_{m}^{+}(f, x)$ and $T_{m}^{+}(f, x)$ is a linear combination of at most $2 m$ exponentials $e_{k}(x), \quad k \in Z^{d}$.

When $p=\infty, q=2, s=\infty$, by Definition 2.2, we have

$$
\begin{align*}
S_{2} & :=\sup _{f \in U\left(B_{\infty}^{\alpha}\left(L_{q}\right)\right)}\left\|\sum_{l l \mid=0}^{n-1} \Phi_{n}(x-2 \pi l / n) \sup _{|y-2 \pi l / n| \leq \pi / n} \mid f(y)-T_{2^{m d}}(f, y)\right\|_{\infty}=\sup _{\left.f \in U\left(B_{\infty}^{\alpha}\left(L_{q}\right)\right)\right)}\left\|\sum_{\| l==0}^{n-1} \Phi_{n}(x-2 \pi l / n) a_{l}\right\|_{\infty} \tag{9}\\
& \ll(2 \pi l / n)^{d} n^{d}\left\|f(y)-T_{2^{m d}}(f, y)\right\|_{\infty} \ll\left\|f-T_{2^{m d}}\right\|_{\infty} \ll 2^{-m \alpha},
\end{align*}
$$

where $\quad a_{l}:=\sup _{|y-2 \pi /|n| \leq \pi / n}\left|f(y)-T_{2^{m d}}(f, y)\right|$.
By the monotonicity of σ_{m}^{+}and (8), (9), we have

$$
\begin{equation*}
\sigma_{m}^{+}\left(U\left(B_{s}^{\alpha}\left(L_{q}\right)\right)\right)_{\infty} \ll m^{-\alpha / d} \tag{10}
\end{equation*}
$$

When $p=q, s=\infty$, for any $f \in U\left(B_{s}^{\alpha}\left(L_{q}\right)\right)$, then, by the definition of Besov classes, there exists a se-
quence $\left\{R_{j}(x)\right\}_{j=0}^{\infty}$ of the trigonometric polynomials of coordinate degree 2^{j} such that $f(x):=\sum_{j=0}^{\infty} R_{j}(x)$, and

$$
\left\|\left(2^{j \alpha}\left\|R_{j}\right\|_{p}\right)_{j=1}^{\infty}\right\|_{I_{\infty}} \leq 1
$$

In particular, take $R_{0}(x)=T_{1}(f, x)$,

$$
R_{j}(x)=T_{2^{j}}(f, x)-T_{2^{j-1}}(f, x), \quad j=1,2,3, \cdots
$$

Here the operator $T_{m}(f, x)$ are the best m-term trigonometric approximation operators in (1). From the rela-
tion between linear approximation and non-linear approximation and Lemma 3.2, we have

$$
\begin{align*}
\sigma_{2^{m d}}^{+}\left(U\left(B_{\infty}^{\alpha}\left(L_{p}\right)\right)\right)_{p}= & \sup _{f \in U\left(B_{\infty}^{\alpha}\left(L_{q}\right)\right)}\left(\inf _{g \in \Sigma_{2^{m d}}^{+}}\|f-g\|_{p}\right) \leq E_{2^{m d}}\left(U\left(B_{\infty}^{\alpha}\left(L_{p}\right)\right)\right)_{p} \\
& +\sup _{\left.f \in U\left(B_{\infty}^{\alpha}\left(L_{q}\right)\right)\right)}\left\|\sum_{l l=0}^{n-1} \Phi_{n}(\cdot-2 \pi l / n) \sup _{|y-2 \pi l / n| \leq \pi / n} \mid \sum_{j=m+1}^{\infty} R_{j}(y)\right\|_{p} \tag{11}\\
& \ll \sup _{\left.f \in U\left(B_{\infty}^{\alpha}\left(L_{q}\right)\right)\right)^{2}} \sum_{j=m+1}^{\infty} 2^{-j \alpha}\left\|2^{j \alpha} R_{j}\right\|_{p}+\sup _{f \in U\left(B_{\infty}^{\alpha}\left(L_{q}\right)\right) \mid}\left\|\sum_{l l \mid=0}^{n-1} \Phi_{n}(\cdot-2 \pi l / n) a_{l}\right\|_{p} \\
& \ll \sum_{j=m+1}^{\infty} 2^{-j \alpha}+\left\{(2 \pi / n)^{d} \sum_{|l|=0}^{n-1} a_{l}^{p}\right\}^{1 / p}:=S_{1}^{\prime}+S_{2}^{\prime} .
\end{align*}
$$

Here $\quad a_{l}=\sup _{|y-2 \pi l / n| \leq \pi / n}\left|\sum_{j=m+1}^{\infty} R_{j}(y)\right|$. Under the condition of Theorem 2.5, it is easy to see that

$$
\begin{equation*}
S_{1}^{\prime}=\sum_{j=m+1}^{\infty} 2^{-j \alpha} \ll 2^{-m \alpha} \tag{12}
\end{equation*}
$$

Next, we will estimate S_{2}^{\prime}. Set $h(y)=\sum_{j=m+1}^{\infty} R_{j}(y)$, and

$$
\tau_{1}(h, 1 / n)_{p}=\left\{\int_{T^{d}}\left(\sup _{y \in U(x, 2 \pi / n)}|h(y)-h(x)|\right)^{p} \mathrm{~d} x\right\}^{1 / p}
$$

Since the measure of the neighborhood

$$
U(2 \pi j / n, \pi / n)=\prod_{i=1}^{d}\left[\frac{2 j_{i} \pi}{n}-\frac{\pi}{n}, \frac{2 j_{i} \pi}{n}+\frac{\pi}{n}\right] \text { is }(2 \pi / n)^{d}
$$

so, by the definition of Besov classes and Minkowskii inequality, we have

$$
\begin{aligned}
S_{2}^{\prime}(f) & :=\left(\sum_{|l|=0}^{n-1} \int_{U(2 \pi / / n, \pi / n)} a_{l}^{p} \mathrm{~d} x\right)^{1 / p}:=\left(\sum_{|l|=0}^{n-1} \int_{U(2 \pi l / n, \pi / n)_{y \in U(2 \pi / / n, \pi / n)}}|h(y)|^{p} \mathrm{~d} x\right)^{1 / p} \\
& \leq\left(\sum_{|l|=0}^{n-1} \int_{U(2 \pi l / n, \pi / n)} \sup _{y \in U(2 \pi l / n, \pi / n)}\left(|h(y)-h(x)|+|h(x)|^{p} \mathrm{~d} x\right)^{1 / p}\right. \\
& \leq\left\{\sum_{|l|=0}^{n-1} \int_{U(2 \pi / n, \pi / n)}\left(\sup _{y \in U(2 \pi / / n, \pi / n)}|h(y)-h(x)|\right)^{p} \mathrm{~d} x\right\}^{1 / p}+\left\{\sum_{|l|=0}^{n-1} \int_{U(2 \pi / n, \pi / n)}|h(x)|^{p} \mathrm{~d} x\right\}^{1 / p} \\
& \ll\left\{\int_{T^{d}}\left(\sup _{y \in U(x, 2 \pi / n)}|h(y)-h(x)|^{1 / p} \mathrm{~d} x\right\}^{1 / p}+\left\{\int_{T^{d}}|h(x)|^{p} \mathrm{~d} x\right\}^{1 / p}=\tau_{1}(h, 1 / n)_{p}+\|h\|_{p} .\right.
\end{aligned}
$$

For a fixed $\mu=\left(\mu_{1}, \mu_{2}, \cdots \mu_{d}\right) \in \mathbb{Z}_{+}^{d}$, set $D^{\mu}=\frac{\partial^{|\mu|}}{\partial x_{1}^{\mu_{1}} \partial x_{2}^{\mu_{2}} \cdots \partial x_{d}^{\mu_{d}}}$. By the mathematical induction on d, it is easy to see that

$$
\tau_{1}\left(R_{s}, 1 / n\right)_{p} \ll \sum_{|\mu|=1}^{d} n^{-|\mu|}\left\|D^{\mu} R_{s}\right\|_{p}
$$

Notice that $n=2^{m}$. From the properties of smooth modulus [12] and Bernstein inequality, we have

$$
\begin{aligned}
\tau_{1}(h, 1 / n)_{p} & =\tau_{1}\left(\sum_{s=m+1}^{\infty} R_{s}, 1 / n\right)_{p} \ll \sum_{s=m+1|\mu|=1}^{\infty} \sum^{d} n^{-|\mu|}\left\|D^{\mu} R_{s}\right\|_{p} \ll \sum_{s=m+1|\mu|=1}^{\infty} \sum^{d} n^{-|\mu|} 2^{s|\mu|}\left\|R_{s}\right\|_{p} \\
& \leq \sum_{s=m+1|\mu|=1}^{\infty} \sum^{d} n^{-|\mu|} 2^{s|\mu|} 2^{-s \alpha}\left(2^{s \alpha}\left\|R_{s}\right\|_{p}\right) \ll 2^{-m \alpha} \sum_{j=1}^{\infty} 2^{-j(\alpha-d)}
\end{aligned}
$$

By the conditions of Theorem 2.5, and $\alpha>d$, we have

$$
\tau_{1}(h, 1 / n)_{p} \ll 2^{-m \alpha}
$$

From (11), (12) and (3), we have

$$
\|h\|_{p} \ll 2^{-m \alpha}
$$

So

$$
\begin{equation*}
S_{2}^{\prime}:=\sup _{f \in U\left(B_{\infty}^{\alpha}\left(L_{q}\right)\right)} S_{2}^{\prime}(f) \ll \tau_{1}(h, 1 / n)_{p}+\|h\|_{p} \ll 2^{-m \alpha} \tag{13}
\end{equation*}
$$

For sufficiently large m, by (12), (13) and the monotonicity of σ_{m}^{+}, we have

$$
\begin{equation*}
\sigma_{m}^{+}\left(U\left(B_{\infty}^{\alpha}\left(L_{q}\right)\right)\right)_{p} \ll m^{-\alpha / d} . \tag{14}
\end{equation*}
$$

The upper estimations for the other cases can be obtained by the embedding Theorem. In detail, we may show them in the following.

If $2 \leq q \leq p \leq \infty$, then $\|\cdot\|_{p} \leq\|\cdot\|_{\infty}$. So for any
$f \in U\left(B_{\infty}^{\alpha}\left(L_{q}\right)\right)$, by $\left\|\left(2^{j \alpha}\left\|f_{j}\right\|_{q}\right)_{j=0}^{\infty}\right\|_{l_{s}} \leq 1$, we have $2^{j \alpha}\left\|f_{j}\right\|_{q} \leq 1$, for all $j \in \mathbb{N}$. Thus, $2^{j \alpha}\left\|f_{j}\right\|_{2} \leq 2^{j \alpha}\left\|f_{j}\right\|_{q} \leq 1$. Hence we have $\left\|\left(2^{j \alpha}\left\|f_{j}\right\|_{2}\right)_{j=0}^{\infty}\right\|_{l_{\infty}} \leq 1$, i.e., $f \in U\left(B_{\infty}^{\alpha}\left(L_{2}\right)\right)$. So, we have following embedding relation

$$
U\left(B_{\infty}^{\alpha}\left(L_{q}\right)\right) \subset U\left(B_{\infty}^{\alpha}\left(L_{2}\right)\right) .
$$

By (10), we have

$$
\sigma_{m}^{+}\left(U\left(B_{\infty}^{\alpha}\left(L_{q}\right)\right)\right)_{p} \leq \sigma_{m}^{+}\left(U\left(B_{\infty}^{\alpha}\left(L_{2}\right)\right)\right)_{\infty} \ll m^{-\alpha / d}
$$

If $0<q \leq 2 \leq p \leq \infty$, then for any j and $f \in U\left(B_{\infty}^{\alpha}\left(L_{q}\right)\right)$, by (3), we have $2^{j \alpha}\left\|f_{j}\right\|_{q} \leq 1$ (if q takes different values, replacing f_{j} by T_{j}, does not influence the proof). So by Nikol'skii inequality (see [1], p. 102) for the inequality), we have

$$
2^{j \alpha} 2^{-j d(1 / q-1 / 2)}\left\|f_{j}\right\|_{2} \leq 2^{j \alpha}\left\|f_{j}\right\|_{q} \leq 1
$$

Hence $f \in U\left(B_{s}^{\alpha-d(1 / q-1 / 2)}\left(L_{q}\right)\right)$ and we have following embedding formula

$$
U\left(B_{s}^{\alpha}\left(L_{q}\right)\right) \subset U\left(B_{s}^{\alpha-d(1 / q-1 / 2)}\left(L_{2}\right)\right) .
$$

By (10) we can get

$$
\begin{aligned}
\sigma_{m}^{+}\left(U\left(B_{s}^{\alpha}\left(L_{q}\right)\right)\right)_{p} & \leq \sigma_{m}^{+}\left(U\left(B_{s}^{\alpha-d(1 / q-1 / 2)}\left(L_{2}\right)\right)\right)_{\infty} \\
& \ll m^{-\alpha / d+(1 / q-1 / 2)} .
\end{aligned}
$$

If $0<q \leq p \leq 2$, then for any j and $f \in U\left(B_{s}^{\alpha}\left(L_{q}\right)\right)$, we have $\left\|\left(2^{j \alpha}\left\|f_{j}\right\|_{q}\right)_{j=0}^{\infty}\right\| \leq 1$. By Nikol'skii inequality we have

$$
\left\|\left(2^{j \alpha} 2^{-j d(1 / q-1 / p)}\left\|f_{j}\right\|_{p}\right)_{n=0}^{\infty}\right\|\left\|_{l_{s}} \leq\right\|\left(2^{j \alpha}\left\|f_{j}\right\|_{q}\right)_{j=0}^{\infty}\| \|_{l_{s}} .
$$

Thus we have following embedding formula

$$
U\left(B_{s}^{\alpha}\left(L_{q}\right)\right) \subset U\left(B_{s}^{\alpha-d(1 / q-1 / p)_{+}}\left(L_{p}\right)\right)
$$

By (14), we have

$$
\begin{aligned}
\sigma_{m}^{+}\left(U\left(B_{s}^{\alpha}\left(L_{q}\right)\right)\right)_{p} & \leq \sigma_{m}^{+}\left(U\left(B_{s}^{\alpha-d(1 / q-1 / p)_{+}}\left(L_{p}\right)\right)\right)_{p} \\
& \ll m^{-\alpha / d+(1 / q-1 / p)_{+}}
\end{aligned}
$$

If $1 \leq p \leq q \leq \infty$, then, for any $f \in U\left(B_{s}^{\alpha}\left(L_{q}\right)\right)$, by $\left\|\left(2^{j \alpha}\left\|f_{j}\right\|_{q}\right)_{j=0}^{\infty}\right\|_{l_{s}} \leq 1$, we have $2^{j \alpha}\left\|f_{n}\right\|_{q} \leq 1$, for any $j \in N$. So there hold $2^{j \alpha}\left\|f_{j}\right\|_{p} \leq 2^{j \alpha}\left\|f_{j}\right\|_{q} \leq 1 \quad$ and $\left\|\left(2^{j \alpha}\left\|f_{j}\right\|_{p}\right)_{j=0}^{\infty}\right\|_{l_{\infty}} \leq 1$. Therefore, we have

$$
U\left(B_{s}^{\alpha}\left(L_{q}\right)\right) \subset U\left(B_{s}^{\alpha}\left(L_{p}\right)\right) .
$$

By (14) we have

$$
\sigma_{m}^{+}\left(U\left(B_{s}^{\alpha}\left(L_{q}\right)\right)\right)_{p} \ll \sigma_{m}^{+}\left(U\left(B_{s}^{\alpha}\left(L_{p}\right)\right)\right)_{p} \ll m^{-\alpha / d}
$$

The upper estimation is finished.
By the definition of σ_{m}^{+}and σ_{m}, the lower estimation can be gotten from Theorem 2.4, and the following relation

$$
\sigma_{m}^{+}\left(U\left(B_{s}^{\alpha}\left(L_{q}\right)\right)\right)_{p} \geq \sigma_{2 m}\left(U\left(B_{s}^{\alpha}\left(L_{q}\right)\right)\right)_{p}
$$

Proof of Theorem 2.5 is finished.
Proof of Theorem 2.6. First, we consider the case $1 \leq p \leq 2 \leq q \leq \infty$. By Definition 2.2 and 2.3, we have

$$
\begin{align*}
\sigma_{m}^{+}\left(U\left(B_{s}^{\alpha}\left(L_{q}\right)\right)\right)_{p} & \leq \alpha_{m}^{+}\left(U\left(B_{s}^{\alpha}\left(L_{q}\right)\right)\right)_{p} \\
& \leq \alpha_{m}^{+}\left(U\left(B_{s}^{\alpha}\left(L_{q}\right)\right)\right)_{2} \tag{15}\\
& =\sigma_{m}^{+}\left(U\left(B_{s}^{\alpha}\left(L_{q}\right)\right)\right)_{2}
\end{align*}
$$

By Theorem 2.5, we have

$$
\alpha_{m}^{+}\left(U\left(B_{s}^{\alpha}\left(L_{q}\right)\right)\right)_{p} \asymp m^{-\alpha / d+(1 / q-1 / p)_{+}} .
$$

When $1 \leq p \leq 2$, for $1 \leq q \leq 2$, by Theorem 2.5, the upper estimation is

$$
\sigma_{m}^{+}\left(U\left(B_{s}^{\alpha}\left(L_{q}\right)\right)\right)_{2} \ll m^{-\alpha / d+(1 / q-1 / 2)_{+}}
$$

From (15) we can get
$\alpha_{m}^{+}\left(U\left(B_{s}^{\alpha}\left(L_{q}\right)\right)\right)_{p} \leq \sigma_{m}^{+}\left(U\left(B_{s}^{\alpha}\left(L_{q}\right)\right)\right)_{2} \ll m^{-\alpha / d+(1 / q-1 / 2)_{+}}$.

When $2 \leq p \leq \infty, 1 \leq q \leq 2$, by the relation between best m-term approximation and Greedy algorithm [7], we have

$$
\begin{equation*}
\left\|f-g_{m}(f)\right\|_{p} \ll m^{|1 / 2-1 / p|} \sigma_{m}(f)_{p} \tag{17}
\end{equation*}
$$

For $f \in U\left(B_{s}^{\alpha}\left(L_{q}\right)\right)$, and any l, by (16), (17) and Theorem 2.4, we have

$$
\begin{align*}
a_{l} & :=\sup _{|y-2 \pi| / n \mid \leq \pi / n}\left|f(y)-g_{m}(f, y)\right| \tag{18}\\
& \leq\left\|f-g_{m}\right\|_{\infty} \ll m^{1 / 2} m^{-\alpha / d} m^{1 / q-1 / 2} .
\end{align*}
$$

From Lemma 3.2 and relation (17), (18), we have

$$
\begin{aligned}
\alpha_{m}^{+}\left(U\left(B_{s}^{\alpha}\left(L_{q}\right)\right)\right)_{p} & \leq \sup _{f \in U\left(B_{s}^{\alpha}\left(L_{q}\right)\right)}\left(\left\|f-g_{m}\right\|_{p}+\left\|\sum_{|l|=0}^{n-1} \Phi_{n}(x y-2 \pi l / n) \sup _{|y-2 \pi| n \mid \leq \pi / n} \mid f-g_{m}\right\| \|_{p}\right) \\
& \ll m^{-\alpha / d} m^{1 / q-1 / p}+m^{1 / 2} m^{-\alpha / d} m^{1 / q-1 / 2} \ll m^{-\alpha / d+1 / q} .
\end{aligned}
$$

When $2 \leq p \leq \infty$, we consider the case $2 \leq q \leq \infty$. By the $\left\|f_{j}\right\|_{2} \leq\left\|f_{j}\right\|_{q}$, we have

$$
\begin{equation*}
U\left(B_{s}^{\alpha}\left(L_{2}\right)\right) \supset U\left(B_{s}^{\alpha}\left(L_{q}\right)\right) \tag{20}
\end{equation*}
$$

By (19) and (20), we can get

$$
\begin{equation*}
\alpha_{m}^{+}\left(U\left(B_{s}^{\alpha}\left(L_{q}\right)\right)\right)_{p} \leq \alpha_{m}^{+}\left(U\left(B_{s}^{\alpha}\left(L_{2}\right)\right)\right)_{p} \ll m^{-\alpha / d+1 / 2} \tag{21}
\end{equation*}
$$

In the following we will give the lower estimation. By Definition 2.3, we have

$$
\alpha_{m}^{+}\left(U\left(B_{s}^{\alpha}\left(L_{q}\right)\right)\right)_{p} \geq \sigma_{2 m}\left(U\left(B_{s}^{\alpha}\left(L_{q}\right)\right)\right)_{p}
$$

And by Theorem 2.4, we have

$$
\alpha_{m}^{+}\left(U\left(B_{s}^{\alpha}\left(L_{q}\right)\right)\right)_{p} \ll m^{-\alpha / d+(1 / q-1 / p)_{+}}
$$

when $1 \leq p \leq 2$, and

$$
\alpha_{m}^{+}\left(U\left(B_{s}^{\alpha}\left(L_{q}\right)\right)\right)_{p} \gg m^{-\alpha / d+(1 / q-1 / 2)_{+}}
$$

when $2 \leq p \leq \infty$.
This finishes the proof of Theorem 2.6.

REFERENCES

[1] R. A. Devore and V. N. Temlyakov, "Nonlinear Approximation by Trigonometric Sums," Journal of Fourier Analysis Application, Vol. 2, No. 1, 1995, pp. 29-48. doi:10.1007/s00041-001-4021-8
[2] V. N. Temlyakov, "Greedy Algorithm and m-Term Trigonometric Approximation," Constructive Approximation, Vol. 14, No. 4, 1998, pp. 569-587. doi:10.1007/s003659900090
[3] R. S. Li and Y. P. Liu, "The Asymptotic Estimations of Best m-Term One-Sided Approximation of Function Classes Determined by Fourier Coefficients," Advance in Mathematics (China), Vol. 37, No. 2, 2008, pp. 211-221.
[4] R. Li and Y. Liu, "Best m-Term One-Sided Trigonometric Approximation of Some Function Classes Defined by a Kind of Multipliers," Acta Mathematica Sinica, English

Series, Vol. 26, No. 5, 2010, pp. 975-984. doi:10.1007/s10114-009-6478-3
[5] T. Ganelius, "On One-Sided Approximation by Trigonometrical Polynomials," Mathematica Scandinavica, Vol. 4, 1956, pp. 247-258.
[6] E. Schmidt, "Zur Theorie der Linearen und Nichtlinearen Integralgleichungen," Annals of Mathematics, Vol. 63, 1907, pp. 433-476. doi:10.1007/BF01449770
[7] A. S. Romanyuk, "Best m-Term Trigonometric Approximations of Besov Classes of Periodic Functions of Several Variables," Izvestiya: Mathematics, Vol. 67, No. 2, 2003, pp. 265-302. doi:10.1070/IM2003v067n02ABEH000427
[8] S. V. Konyagin and V. N. Temlyakov, "Convergence of Greedy Approximation II. The Trigonometric Systerm," Studia Mathematica, Vol. 159, No. 2, 2003, pp. 161-184. doi:10.4064/sm159-2-1
[9] V. N. Temlyakov, "The Best m-Term Approximation and Greedy Algorithms," Advances in Computational Mathematics, Vol. 8, No. 3, 1998, pp. 249-265. doi:10.1023/A:1018900431309
[10] R. Li and Y. Liu, "The Asymptotic Estimations of Best m -Term Approximation and Greedy Algorithm for Multiplier Function Classes Defined by Fourier Series," Chinese Journal of Engineering Mathematics, Vol. 25, No. 1, 2008, pp. 89-96. doi:10.3901/JME.2008.10.089
[11] V. A. Popov, "Onesided Approximation of Periodic Functions of Serveral Variables," Comptes Rendus de Academie Bulgare Sciences, Vol. 35, No. 12, 1982, pp. 1639-1642.
[12] V. A. Popov, "On the One-Sided Approximation of Multivariate Functions," In: C. K. Chui, L. L. Schumaker and J. D. Ward, Eds., Approximation Theory IV, Academic Press, New York, 1983.
[13] A. Zygmund, "Trigonometric Series II," Cambridge University Press, New York, 1959.
[14] R. A. Devore and G. G. Lorentz, "Constructive Approximation," Spring-Verlag, New York, Berlin, Heidelberg, 1993.
[15] R. A. Devore and V. Popov, "Interpolation of Besov Spaces," American Mathematical Society, Vol. 305, No. 1, 1988, pp. 397-414.

[^0]: *This paper is supported by Shandong Province Higher Educational Science and Technology Program; National Natural Science Foundation of China (project No. 110771019); partly by the research fund for the Doctoral Program of Higher Education and partly by Beijing Natural Science Foundation (Project 1102011).
 ${ }^{\#}$ Corresponding author.

