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ABSTRACT 

In this work, a new class of variational inclusion involving T-accretive operators in Banach spaces is introduced and 
studied. New iterative algorithms for stability for their class of variational inclusions and its convergence results are 
established. 
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1. Introduction  
Variational inequality theory provides us with a simple, 
natural, general and unified framework for studying a 
wide range of unrelated problems arising in mechanics, 
physics, optimization and control theory nonlinear pro- 
gramming, economics, transportation, equilibrium and 
engineering sciences. 

In recent years, variational inequality has been ex- 
tended and generalized in different direction. A useful 
and important generalization of the variational inequality 
is called variational inclusions see [1-7]. 

Suppose E is a real Banach space with dual space E*, 
norm .  and dual pairing .,.

: 2

, 2E is the family of all 
nonempty subsets of E, CB(E) is the family of all non- 
empty closed bounded subset of E and the generalized 
duality mapping E

qJ E


  is defined by  
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where q > 1 is a constant. In particular, 2J  is the usual 
normalized duality mapping. It is known that, in general 

   2

2q

qJ u u
 0J u  for all  and qu J  is simple 

single valued, if E* is strictly convex. The modulus of 
smoothness of E is the function    , 0,  : 0E  
defined by  

   1
sup 1:

2E t u v u v      1, .u v t
   

 
 

A Banach space E is called uniformly smooth if  

0
lim 0E

t

t

t






> 0

. E is called q-uniformly smooth, if there  

  such that  exists a constant 

  , 1.q
E t t q  

> 0qc ,u v E

 

Note that Jq is single valued, if E is uniformly smooth. 
Xu and Roach [8] and Xu [9] proved the following re- 
sults. 

Lemma 1.1. Let E be a real uniformly smooth Banach 
space. Then E is q-uniformly smooth if and only if there 
exists a constant  such that for all    

 , .
q q q

q qu v u q v J u c v   

:T E E
: 2

 

Definition 1.1. [10] Let  be a single-valued 
operator and EM E   be a multivalued operator. 
M is said to be T-accretive if M is accretive and  
  T M E E  > 0 hold for all  .  

Remark 1.1. 1) From [11] it is easily establish that if 
T I  (the identity map on E), then the definition of I- 
accretive operator is that of m-accretive operator. 

2) Example 2.1 in [11] shows that an m-accretive 
operator need not be T-accretive for some T. 

Let , :T E E :N E E E 
: 2

 be two single valued 
mappings. Let EM E E 

t E  ., : 2
 be a set-valued mapping 

such that for each fixed , EM t E 
, , :

 be a 
T-accretive operator. For given f g p E E

u E
 are map- 

pings, consider the following problem of finding   
such that  

     0 , , ,f u N u u M pu gu          (1) 
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which is called the generalized nonlinear implicit quasi 
variational inclusions.  

Special Cases: 
1) If E is a Hilbert space, then problem (1) is equiva- 

lent to finding  such that  u E

 
 , ,

 
   
Dom .,

0 ,

pu M gu

f u N u u



  M pu gu

 ,

      (2) 

which is called the generalized nonlinear implicit quasi 
variational inclusions, considered by Ding [12] and Fang 
et al. [13].  

2) If  M u t  ,u t E
u E

M u  for all , then problem 
(2) is equivalent to finding   such that  

 
  
Dom

0 ,

pu M

f u N u



     ,u M pu

: 2

        (3) 

where EM E 

 ,

 is a maximal monotone mapping. 
The problem (3) was considered by Huang [14].  

3) If  ,M u t   E
u E

u t  for each t , then prob- 
lem (2) is equivalent to finding  such that  

  
       , ,

Dom .,

, , ,

pu gu

f u N u u v pu pu

 

   gu v gu 

 R    t E

 (4) 

where  such that for each : E E  , 
 is a proper convex lower semi- 

continuous function with  
 ., :t E R   

    ., .t  

0f 
u E

  
 

.,

, ,

u

M pu u

:T E E
: 2

Range Domp          (5) 

The problem (4) was considered by Ding [15] for g to 
be an identity mapping.  

4) If  and g is the identity mapping, then prob- 
lem (1) is equivalent to finding  such that  

 
Dom

0 ,

pu M

N u u




        (6) 

which is called the generalized strongly nonlinear im- 
plicit quasi variational inclusions, considered by Shim et 
al. [16].  

Remark 1.2. For a suitable choice of f, g, p, N, M and 
the space E, a number of classes of variational inequali- 
ties, complementarity problems and the variational in- 
clusions can be obtained as special cases of the general- 
ized nonlinear implicit quasivariational inclusions (1). 

Let  be a strictly monotone operator and 
EM E E 

  ,  .

 be a T-accretive operator. Fang and 
Huang [11] defined the resolvent operator   

     1(., )
, .,M t

TJ v T M t 


  v v E 

:T E E
: 2

    (7) 

By Theorem 2.2 in [11], we know that if  
is a strictly accretive operator and EM E E 

(., )
, :M t

T

 is a 
T-accretive operator, then the operator J E E 

:T E E
> 0

 

is a single valued. From the proof of Theorem 2.3 in [11], 
it is easy to obtain the following result.  

Lemma 1.2. [10] Let  be a strictly accre- 
tive operator with constant   and for each fixed 
t E , : 2EM E E 

(., )
, :M t

T

 be a T-accretive operator then 
the operator J E E   is Lipschitz continuous with  

constant 
1

, i.e.,  


   (., ) (., )
, ,

1
, .M t M t

T TJ u J v u v u v E  
    

   2
q q q qa b a b  

       
 

2 max , 2 max ,

2 .

q qq q

q q q

a b a b a b

a b

  

 

   (8) 

Lemma 1.3. Let a and b be two nonnegative real 
numbers. Then  

.            (9) 

Proof.  

 

Definition 1.2. Let nM
0,1, 2,n

 and M be a maximal mono- 
tone mappings for  . The sequence  nM

Gn
 

is said to be graph converges to M (write M M ) 
if for every    , there exists a sequences ,u v Graph M

  , nu v Graph M nu u nv v
n 

n

n n  such that  and  
as .  

Lemma 1.4. [3] Let M  and M be the maximal mono- 

tone mappings for  Gn. Then 0,1,2,n M M

    ,nM M

 if 
and only if  

J u J u 

u E

            (10) 

  1MJ I M    .    and for every > 0 , where 
 n ,  n  and b Lemma 1.5. Let a n  be three se- 

quences of nonnegative numbers satisfying the following 
condition. There exists a positive integers  such that  

c

0n

 1 01 ,  for  n n n n n na t a b t c n n            (11) 

 0,1nt 
0

n
n

t




, where   lim 0n
n

b




0
n

n

c

,  and  






 0na  n . Then  as .  

 0inf :a n n   0.n . Then Proof. Let  
> 0.

 Sup- 
pose that > 0na  Then  0 .n n for all  It 
follows from (11), that  

1

1 1

2 2

n n n n n n

n n n n n

a a t t b c

a b t t c



 

    

      
 

.n n 0n  ,n 
1 0n n

      (12) 

for all 0  Since b  as  there exists 
 such that  

1

1
, for all .

2 nb n n    
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 Combining (11) and (12), we have  , 0, if ;qTu Tv J u v u v

1a a
1

2n n n nt c  

1n n

 

for all , which implies that  

1

1

2 n n
n n

t a  
1 1

.n
n n

c
 

 

 

0

 

This is a contradiction. Therefore,  

 0
jna 

j

 and so there 

exists a subsequence    such that  

as .  It follows from (11) that  

na
jna 



1j j j j jn n nb t c  

.j 
j 1k 

E
: 2

n na a


 

and so  as  A simple induction leads 
to  as  for all  and this means 
that  as .n  This completes the proof.  

1
0

jna



0
0

j kn 

a
a 


:T E 

n

Lemma 1.6. Let  be a strictly accretive op- 
erator and for a fixed t , E EM E E 

  ,

 be a 
T-accretive operator in the first variable. If u is a solu- 
tion of the problem (1) if and only if  

    (., )
,

M gu
Tg u J T pu f  u N u u  

> 0

 

where   is a constant and  
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u E
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Proof.  is a solution of (1)  
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2. Existence and Uniqueness Theorems 

In this section, we show the existence and uniqueness of 
solutions for the problem (1) in terms of Lemma 1.6. 

Definition 2.1. Let E be a real uniformly smooth Ba- 
nach space and  be two single valued op- 

erators; T is said to be 
1) Accretive if  

 , qTu Tv J u v  0, ,u v E    

or, equivalently  

 2, 0Tu Tv J u v  , , ;u v E    

2) Strictly accretive if T is accretive and  

   

> 0r

 

 

3) Strongly accretive if there exists a constant  
such that  

, , ,
q

qTu Tv J u v r u v u v E     

 

 

or, equivalently  
2

2, , , ;Tu Tv J u v r u v u v E       

4) Lipschitz continuous if there exists a constant s > 0 
such that  

, , ;Tu Tv s u v u v E    

> 0

 

5) Strongly accretive with respect to g if there exists a 
constant   such that  

 , , ,
q

qTu Tv J gu gv gu gv u v E     

 

 

or, equivalently  
2

2, , , .Tu Tv J gu gv gu gv u v E     

:N E E E  :

 

Definition 2.2. Let  and g E E  
be the maps, then 

1) .,.N
> 0

 is said to be strongly accretive with respect 
to first argument if there exists a constant   such 
that  

     ,. ,. , , ,
q

qN u N v J u v u v u v E     

     

 

or, equivalently  
2

2,. ,. , , , ;N u N v J u v u v u v E     

> 0

 

2) N is said to relaxed accretive with respect to g if 
there exists a constant   such that  

     ,. ,. , ,

, ;

q

qN u N v J gu gv gu gv

u v E

    

 

> 0

 

3) N is Lipschitz continuous in first argument if there 
exists a constant   such that  

   ,. ,. , , .N u N v u v u v E    

: E

 

Theorem 2.1. Let E be a q-uniformly smooth Banach 
space and T E  be a strongly accretive and 
Lipschitz continuous with positive constants   and   
respectively. Let  be the strongly accretive 
and Lipschitz continuous with positive constants 

:p E E
  and 

  respectively. Let  be Lipschitz con- 
tinuous with positive constants 

, :f g E E
  and   respectively. 

Let :N E E E 
1p
> 0

 be relaxed accretive with respect to 
 in the first and second arguments with constants 

  and > 0  respectively, where 1  is 
defined by 

:p E E
      p u T p u T pu 1  for all u E . 

Assume that N is Lipschitz continuous with respect to 
first and second argument with constants > 0  and 
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  respectively. Let : 2EM E E   be a T-accre- 
tive operator with second argument. If there exist con- 
stants > 0  and > 0  such that for all , , ,u v w E   

   (., ) (.,
, ,

M gu M
T T

)gvJ w J  w gu gv      (13) 

and  
1

1,Q P


 

 

             (14) 

where  
1

1 1
qq  

    12

1.

q
q q q q q q q q

qP q C         



    

 
*u E

 

 .  Then the problem (1) has a unique solution 
Proof. By Lemma 1.6, it is enough to show that the 

mapping E E *u E has a unique fixed point F :   
where F is defined as follows.  

       (., )
, ,M gu

TF u u pu J T pu f u N u u      

qC Q q    

and  

  

u E

 

(15) 

 . From (13) and (15), we have for all 
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Now since p is strongly accretive and Lipschitz continuous, we have  
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By the strong accretivity of p with constant  , we have  

   1
,

1

q q

q qpu pv u v pu pv J u v pu pv J u v u v         

u v pu pv


   
 

 
that is     , ,  .N u u N v u u v          (20) 

   , ,N v u N v v
 pu pv u v   .             (18) 

 .u v          (21) 

Since f is Lipschitz continuous, we get  
Similarly, by the strong accretivity of T with constant 

  we have  

   f  .u f v u v          (22) 
     T pu T pv pu pv  

By 

.        (19) 
Since :N E E E   is a relaxed accretive with re- 

nd second argumenspect to p in the first a
> 0

 -Lipschitz continuity of N with respect to first 
ent and 

t with constant 
argum  -Lipschitz continuity of N with respect 

nd arguments, we have  
  and > 0  re
have  

spectively, from (18) and (19), we 
to seco
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, , , q
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and similarly  

qq

qq q

u u N v u
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    (24) 

From (23) and (24), Lipschitz continuity of T , 
Lemma 1.1 and Lemma 1.3, we have  

                

    

   

, ,

, , , , ,

2

q

q qq
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q q q qq q q q q q q q
q

qq q q q q q q q
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T pu T pv q N u u N v v J T pu T pv C N u u N v v

T pu T pv u v q u v C u v

q C u v
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Now from (16), (17), (22) and (25), we have  

   

2 .q

q

      11 1
1 2

1
,

qqq q q q q q q q q
q qF u F v q C q C u v

Q P u v u v

            
 




              

       

  (26) 

where  11
qq

qQ q C       and  

    12
q

q q q q q q q q
qP q C                 

 
 n  1 ,n nand 

1
Q P x x


  . 

From (14), we know that 0 < < 1 . Therefore, there 
u E  such that  exists a unique   F u u  . This 

3.

tru urbed iterative 
solving the problem (1) and 

tive se- 
ith er- 

completes the proof.  

 Perturbed Algorithm  

In this section, we cons ct some new pert
algorithms with errors for 

s and Stability

prove the convergence and stability of the itera
quences generated by the perturbed algorithms w
rors. 

Definition 3.1. Let T be a self mapping of E and 
 1 ,n nx f T x   define an iterative procedure which 

yields a sequence of point  nx  in E. Suppose that 
x E :Tx x    and  nx  converges to a fixed 
point x  of T. Let  ny E  and let  

 1 .n n ny f y    ,T

1) If lim 0n
n




   that
n

iterative procedure 

implies  lim ny x , then the  

 defined by f T x   is 
said to be T-stable or stable with respect to T.  

2) If n


0n

   implies that lim n
n

y x


 , then the  

e iterativ procedure  nx  is lmost T-stable. 
 stability results of iterative algorithms have been 

 several a 19]. As was sh
he stabi

of the theoretical and numerical interest.  
Remark 3.1. An iterative procedure  n

said to be a
Some
established by
Ha

uthors [17- own by 
rder and Hicks [20], the study on t lity is both 

x  which is T- 
stable is almost T-stable and an iterative procedure 
 nx  which is almost T-stable need not be T-stable [21].  

Algorithm 3.1. Let , , , :f p g T E E  and  
:N E E E  be the five single valued mappings. Let 

 n  of M be the set-valued mapping from E EM   into 
the power set of E such that for each t E ,  .,nM t  
and  t  are T-accretive mappings and  M .,

   ., .,GnM t M t . For any given 0u E , the per- 
turbed iterative sequence  nu  with errors is defined as 
follows:    
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0 0
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lim lim lim 0

.
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s e r
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From Algorithm 3.1, we obtain the following algorithm 
for the problem (3).  

Algorithm 3.2. Let , , :f p T E E  and  
:N E E E  be four single valued mappings. Let 

 nM  and M be T-accretive mappings from E into the 
power of E such that GnM M . For any given 

0u E  , define the perturbed iterative sequences  nu  
with errors as follows:  
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Rem n

nd M
rithms

.  

ark 3.2. For a suitable choice of , , , ,T f g N M  

, Algorithm 3.1 reduces to several known Algo- 
 [22-24] as special cases.  

Theorem 3.1. Let , , ,

a

f p g T  and N be the same as in 
rem 2.1. Suppose that  nM  and M are set-valued 
ings from E E  into the power set of E such that 

t E ,  .,n

exists constants > 0  and > 0  s
, ,u v z

uch that for each 
E  and 0n    

   

 

(., )M u

Theo
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for each M t  and  .,M t  are T-accretive 
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and the condition (13) holds. Let  ny  
E and define a sequence  n

be a sequence in 
  of real numbers as 

follows: 
 

          

 

 

1n n n n nx y z pz T 
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,1 n
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n n n  n  n n n n n n npx f x x x l  y y 

 ,  n ,  n ,  ne ,  nr ,  ns  and 
 nl  are s defined orithm 3.1. Then 
the following ho

ame seq
ld

u
s: 

ences 
 

 in Alg

que  n  defined by Algorithm 3.1 con- 
e unique solution u  of the prob- 

lem

1) The se
verges strongly 

 (1).  

nce u
to th

2) If n n n n      with 
0n






lim 0n
n

  , then lim n
n

y u


 .  

3) If lim n
n

y u  implies that lim 0n
n


 

 .  

Proof. Let u E   be the unique solution of the prob- 
lem (1). It is easy to see that the conclusion (1) follows 
from the conclusion (2). Now we prove that (2) is true. It 
follows from Lemma 1.6 that     

n    and  
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n n n n n n n

n n n n n n

n
n n n

n
n n n n n n n n

n
n n n n n

u x u px pu

T px T pu f x f u N x x N u u

gx gu G e l

y u x u px pu

T px T pu N x x N u u

f x f u x u G e l

y u x u px pu




 



   

  







    



 

  

   



  

  



  

   

     

    

       

   

      

                

   * *

, ,

,

n n n

n
n n n n n n n n n

T px T pu N x x N u u

x u x u G e l




 
   



    

         

(33) 
where  

               ., .,

, ,,  ,
nM gu M gu

n T TG J T pu f u N u u J T pu f u N    
 

              0.u u         (34) 

It follows from (17) and (25), that  
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  1 ,q
q n

q
n nu px pu q      C x u       x ,n nf x f u  x u   

             1 .
q

q nx u      (35) 

Substituting (35) into (33), we have  

, , 2q q q q q q q q
n n nT px T pu N x x N u u q C               

 

 
 

    ,
n n

n n

x u

l

1 1n n n

n n n n

y u y u

G e

 

 



  
  (36) 

 
     

  

where  

 
1n n n

n n n n n

x u y u

z u G r



  

 



   

   
    (38) 

and again  

 

 

    

11
and 1

qq
q

q q q q q q q
q

Q P Q q C

P q C

 


1

,

2 .
q

q

 

        

     

      
 

(37) 

From (14), at 0 < < 1

  
 

1

1 1

n n n

n n n n n n

n n n n n n

n n n n

z u y u

y u G s

y u G s

y u G s



   

   



 







   

   

     

   

 (39) 

where   1 1 1n we know th  . Similarly, we 
have  

   . 
From (38) and (39), we get  

 

     
      

   
1 1

,

n n n n n n n n n n n

n n n n n n n n n

n n n n n n n n

1nx u y u y u G s G r

y u G s G r

y u G s G r

      

     

   

  





       

     

   

               (40) 

d (40), we get  

 

 

 

since   1 1 1n    . From (36) an

         

            

2

21
1 .

1

n n n n n n n n n n n n n n n n

n n n n n n n n n n n n n

y u G s G r G e l

G s G r G e l

         1 1

1 1

n n n n

n n

y u y u

y u

 

         


          

            
(41) 

 




    

    

 

 1 1 .n n n n n na t a b t c
Let       

From the assumption, we know that  nb ,      na , 

   
 

2

1

.

n n n n n n n n

n n n

b G s G r

G e

,    ,    1

1

n n n n n n na y u c l t       

    

   

   

  (42) 

We can write (42) as follows:  

nc  
and  nt  satisfy the conditions of Lemma 1.5. This im- 

nd so nplies that 0na   a y u . 
he condition (3). Suppose that  Next, we prove t

lim n
n

y u


 . It follows (28), (38) and (39) that nz u   

and nx u . From (31), we have  

 

 

         
          

.,
1 ,

.,
1 ,

1 ,

1 ,

n

n
n

M gx
n n n n n n n T n n n n n n n

M gx
n n n n n n n n n T n n n n

y y x px J T px f x N x x e l

y u e l y x px J T px f x N x x





     

    






            

             
As in the proof of (36), we have  

.

n

u
  (43) 

          
 

.,
,1 ,

.

n
nM gx

n n n n n T n n n n

n n n n n n

y x px J T px f x N x x u

x u G

   

  

         

  
               (44) 

It follows from (43) and (44) that  

1 y u    

 1 1 .n n n n n n n n n n ny u e l x u x u G       
                           (45) 
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Th at lim 0n

n
is implies th 


 . This completes the proof.  

Theorem 3.2. Let f, p, N and T be the same as in Theo-  

ccretive mappings  

from E into the power set of E such that Gn

rem 3.1. Let  nM  and M be T-a

M . M 
Assume that there exists constant > 0  such that 
hold. Let 

(14) 
 n  n be a sequence in E and define y   as 

follows:  

 

      

        

        

1 ,

,

,

, ,

1 ,

1 ,

n n n n n T n n n n n n

nM
n n n T n n n n n n

nM
n n n n n n T n n n n n

x px T x N x x e l

x y pz J T pz f z N z z r

z y y py J T py f y N y y s







  

  

    


       

        
        

       (46) 

(1 )n n

n n n

y y

z

 

 

 

 

nMJ npx f

n  
 
where  n ,  n ,  n ,  ne ,  nr ,  ns  and  nl
same in Algorithm 3.2, then   

 are 

1) The sequence  nu  define orithm 3.2, con- 
verges s

d by Alg
trongly to unique solution u* of the problem (3),  

2) If n n n n      with 


   and  
0

n
n

,  

3) ny u  implies that lim 0n
n

lim
n

0n  , then 

*

*
ny ulim

n

lim
n




 .  

ve o r is to establish existence and 
zed nonlinear implicit quasi 
 in Banach spaces. We de- 

ped the T-r rator with T-accretive map- 
 by using th of Fang and Huang [11] and 

Pe ] and proved that the problem (1) is equivalent 
to a fixed point problem. On the basis of fixed point 
formulation we suggested perturbed iterative algorithm 
with errors and by the theory of Hick and Harder [
proved the convergence and stability of iterativ
quences generated by algorithms. 

A further attention is required for the study of varia- 
tio e useful mathematical 

ols to deal with the problems arising in mathematical 
sciences. 
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