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ABSTRACT 

In a previous work, we developed a consistent TAC 
(tissue attenuation coefficient) estimator using bubble 
echoes. Based on temporal averaging, we can improve 
the estimation precision of TAC for the tissue bounded 
between two vessels. In this paper, we extend it to use 
frequency diversity for saving interrogation time by 
transmit multiple narrowband signals in each pulse. 
At first, we analyze the deterministic and stochastic 
properties of the diversity signals. Then a multi-band 
maximum likelihood diversity combiner is developed. 
We also provide diversity gains of different diversity 
estimators for comparing their estimation efficiencies. 
In the experimental work, we design a simplified 
phantom for demonstrating the performance of the 
purposed estimator. It is shown that the TAC estima-
tion rate can be improved by frequency diversity. The 
convergence rates of single-band and multi-band es-
timators are compared and it is shown that the multi- 
band estimator is more consistent than the single- 
band estimator.  
 
Keywords: Tissue Characterization; Ultrasound Contrast 
Agent; Tissue Attenuation Coefficient 

1. INTRODUCTION 

Ultrasound attenuation is the energy loss of signal after 
propagating through a medium. For the medium of soft 
tissue, Kuc assumed that its attenuation coefficient is 
constant over the entire sample volume and the back- 
scattering is a Gaussian random process [1]. In such case, 
he presented a spatial averaging method to estimate tis- 
sue attenuation coefficient (TAC), which is estimated by 
the power difference of tissue echoes based on the fol- 
lowing equation [2]: 

   1 2attenuation 10log 10log
dB

P f P f fd    (1) 

where  1P f  and  2P f  are the PSD’s of echo sig- 
nals at two different ranges, d is the depth of isonified 
tissue, f is the signal frequency and   is the TAC. By 
spatial averaging, its estimation precision is bounded by 
the available number of spatial samples; thus the estima- 
tion error will be large, if the sampling area is small. 

In our previews work [3], as shown in Figure 1, we 
proposed a method to estimate TAC of the separating 
tissue between two vessels using the second harmonic of 
microbubble, which is a single-band estimator. Assum- 
ing that the distribution of microbubbles inside the ves- 
sels are identical then we can estimate the TAC using Q 
independent samples of the logarithmic power as: 

   1 2

1 ˆ ˆˆ 10log 10log
4

P f P f
fL

         (2) 

where L is the tissue length. The TAC estimate can be 
statistically decomposed to be: 

1

1 1
ˆ

4

Q

q
qfL Q

 


             (3) 

where q  is the random error defined in [3] and rewrit- 
ten in Eq.12. This estimator has a variance which can be 
reduced by the factor of 1 Q . Since the Q sample are 
collected in time, the advantages are that the sample 
volume (spatial resolution) can be a small region between 
two vessels and the TAC can be estimated precisely 
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Figure 1. The schematic diagram for estimating tissue 
attenuation coefficient using echoes from two range gates. 
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using a large amount of temporally collected data; the 
disadvantages are that this method needs to maintain 
narrow band to avoid Doppler effect and it may take a 
long interrogation time, pQT  ( pT  is the pulse repeti- 
tion time), to collect Q independent samples.  

Since bubbles are non-linear scatters, we may generate 
multiple harmonic bands of microbubbles for frequency 
diversity to save the interrogation time. In case K diver- 
sity frequencies are available for each transmission, then 
for M transmissions, there are Q M  samples for 
estimating the TAC, which can be collected with an in- 
terrogation time of 

K

pMT  ( pQT ) only. 
Theoretically, two possible strategies can be exploited 

to generate diversity frequencies, one is to transmit high- 
power pulses to generate the bubble harmonics, subhar- 
monic and ultra-harmonics [4,5] and the other is to trans- 
mit multiple excitation frequencies as done by Newhouse 
et al. [6]. In general, the high-power strategy is very ef- 
fective in generating bubble harmonics, however not 
every frequency is suitable for TAC estimation. There 
are two concerns in the selection of power strategy: 1) 
the linearity between the echo powers of bubbles at two 
different range gates, and 2) its effect to the life-time of 
bubbles. 

For the linearity issue, it was found by Shi et al. [4] 
that powers of the first and second harmonics of bubble 
echo can keep a linear relation to its input acoustic pres- 
sure in double logarithmic scales; however the ultrahar- 
monic and sub-harmonic components cannot. If this rela- 
tion is nonlinear, Eq.1 will not hold any more, it will 
become: 

   1 2attenuation 10log 10log

                      
dB

P f P f

fd C

 

 
   (4) 

where C is an unknown bias term, since it is insonifica- 
tion- power dependent. This will make TAC estimation 
complicated. 

Another concern is the available life-time of bubbles, 
which limits the maximum number of pulses M. Since 
the ultra-harmonic and sub-harmonic components can 
only be generated by high insonification power, which 
might cause cavitation (bubble destruction) and thus re- 
duce the life-time of bubbles. Based on these two reasons, 
the low-power approach given below is preferred.  

Newhouse et al. [6] proposed a technique to use the 
nonlinear property of bubble oscillation for bubble sizing 
by transmitting two excitation frequencies ( 1f  and 2f ) 
simultaneously. They derived the nonlinear response of 
bubble harmonic terms including the second harmonic 
frequencies: 12 f  and 22 f , and the inter-modulation 
frequencies: sum frequency 1 2f f  and difference fre- 
quency 2 1f f . In this approach, the bubble harmonics 
and inter-modulation frequencies can be generated by 
low power excitation, which is important to keep a linear 

relation between its input acoustic pressure and echo power 
in logarithmic scales, and keep the life-time of bubbles. 
The second harmonics and inter-modulation frequencies 
are considered to be the four diversity frequencies for 
developing the proposed TAC estimator with frequency 
diversity. 

In the following sections, we analyze properties of the 
diversity signals and present a suitable diversity com- 
bining method for these signals to estimate TAC. To 
accomplish this task, a nontrivial issue about diversity 
frequency selection is identified. The diversity frequen- 
cies are analyzed and determined in Section 2, then we 
develop the diversity method and define the gains of dif- 
ferent diversity methods in Section 3. In experimental 
works of Section 4, the performances of different diver- 
sity methods are verified. Finally a brief discussion and 
conclusion in Section 5 are presented. 

2. THE DIVERSITY SIGNALS 

For the low-power (multiple-excitation) approach, two 
important issues that affect the performance of the di- 
versity technique are examined: 1) since multiple exci- 
tation frequencies are used, their harmonic frequencies 
and inter-modulated frequencies may collide (or over-lap) 
each other. Proper selection of the frequency spacing is 
required to avoid the frequency collision problem; and 2) 
the statistical independency of the diversity signals. 

2.1. Frequency Spacing Selection 

Following Newhouse’s approach, we transmit a dual- 
frequency signal 

        0 cos cos ,c cs t p t t t         

where  p t  is the pulse envelope 2π .f    The band- 
width of  p t  is defined to be pB

12

, which determines 
the range resolution and puts a lower bound for the fre- 
quency spacing as follows. The bubble response has four 
bands which are the second harmonics at 2 cf f  and 

 22 2 cf ff    , the sum frequency at  

1 2 2 cf f ff f      

and the difference frequency at 2 1f fff  
f f
 . The first 

three frequencies are equally spaced and 1 22 2 f  . 
For convenience, these frequencies are denoted as 

2 2 ;k cf f k f     0,1, 2,k 

and called second- harmonic group also. Theoretically, 
the bandwidth of each frequency band is , this sets a 
constraint for the frequency spacing that 

2 pB
f  must be 

larger than , i.e., 2 pB 2 pBf  ,to avoid band overlap- 
ping. 

To allow the four bubble frequencies to be useful for 
frequency diversity, they must be kept away from the 
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transmitting frequencies, 1f  and 2f . A reasonable 
choice is to keep second-harmonic group above all 
transmitting frequencies, then it requires 
  1 22 p pf B f B  

 22 cf
, which is equivalent to requiring 

that c p f Bf   . This requirement can be 
simplified to be  2c pf Bf   or  1 2 pf f B   . 
In summary, the frequency spacing must be constrained 
by , otherwise the bubble fre- 
quencies may collide the transmitting frequencies. 

 12Bp f f B    2 p

Based on the above constraint, it can be found that the 
difference frequency f f    is located below the 
transmitting bands and far away from the second har- 
monic group. This situation make its signal to noise ratio 
(SNR) be another concern in frequency spacing selection, 
since the bubble frequencies are located on the two ends 
of the transducer passband, where system gains are low. 
To have more bubble frequencies for diversity, a rea- 
sonable choice is to select a set of 1f , 2f  and f  
such that the second harmonic group can be close to the 
center frequency of transducer. This choice will push the 
difference frequency f f    close to direct current 
(DC), where SNR is low and thus it must be discarded. 
In addition, based on Eq.3, the TAC estimation error is 
inversely proportion to frequency; this is in favor of the 
second harmonic group also. Therefore, in this paper, we 
choose only the second harmonic group to be the diver-
sity frequencies. 

2.2. Independency of Diversity Signals 

To evaluate the performance of the proposed TAC diver- 
sity estimator, the stochastic properties of the diversity 
signals must be known. Using the notations defined in [3] 
and referring to Figure 1, for the frequency 

2 2k c ,f f k f    the bubble echo attenuated by a tissue 
(i.e. echo from vessel 2) with length L is: 

     22 ,  0,1,2k k kX t L f Y t k        (5) 

where   2 2 20
22 , 10 kf L

kL f    is the tissue attenuation 
factor at 2kf  and  is the pre-attenuated bubble 
echo (i.e. bubble echo in vessel 1): 

 kY t

      2 2 2
1

cos 2π 2
N

k j k k
j

Y t A f f t 


    j  (6) 

where 2 jA  is the scattering coefficient and j  is the 
time delay of the j-th microbubble. 2 jA  is a random 
bubble response, which depends on bubble radius 0  
and other physical constants.  j L   j , where c

jL    is the length between transducer and the j-th mi- 
crobubble in a range-gated vessel and c is the sound 
speed. 

Before checking the independency of the diversity 
signals, their correlation property is derived first. The 
correlation of the two pre-attenuated signals,  kY t  and 

 Y t

         

         

         

E Y

, is: 
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 

  
 
       





 







 

(7) 

Since the time delay j  is uniformly distributed in 
blood flow, its associated phase will be a uniform distri- 
bution in  0,2π

k
. In such case,  would 

be zero for 
   kE Y t Y t  

  , which results in that each two fre- 
quency bands are uncorrelated. When the number of 
bubble N is large,  tk  will be a zero mean Gaussian 
random process, then we can summarize that 

Y
 kY t  and 

 Y t  are independent to each other. By the same way, 
we can further show that k  X t  and  X t  are inde- 
pendent also, since attenuation is not a random factor. 

3. DIVERSITY METHOD 

Based on the TAC estimator developed in [3], there are 
different places to do diversity combing. Corresponding 
to the stages of signal processing, three possible diver- 
sity combining methods can be developed. The diversity 
signals may be combined at 1) power, 2) difference of 
logarithmic power or 3) TAC of each single-band esti- 
mate. Their differences are in combining method and 
available diversity gain. The combining method depends 
primarily on the statistical properties of the three quanti- 
ties above. After analyzing the joint distribution of the 
multiple-frequency observations, the proposed combin- 
ing method will be given in 3.1. 

For the first combining method, let  be power of 
the pre-attenuated signal  and  be power 
of the attenuated signal 

 1P k
2P k kY t

 k


X t  at the frequency 2kf , 

they can be expressed explicitly as: 

    2

1 1
1

N

j k
j

P k A f


  2             (8) 

      2

2 2 2 2
1

2 , ;  0,1, 2
N

k j k
j

P k L f A f k


     (9) 

Based on the results in [4], the samples of  1P k  and 
 2P k  follow chi-square distribution with two degree of 

freedom. In this case, joint distribution of the ratio of 
 1P k  to  2P k  is asymmetric and non-central. Since 

the joint distributions are frequency dependent, it’s dif- 
ficult to develop a TAC estimator. This is why estimator 
for this method is not developed. 
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For the second combining method, there is no such 
difficulty as the first one due to the logarithmic transform. 
Taking the logarithm of the  1P k  and  given in 
Eq.8 and Eq.9, we have 

 2P k

 1 10 logkB P 1 k

k

             (10) 

 2 2 210 log 2 ;  for 0,1,2k kB P k f L k      (11) 

They are the pre-attenuated logarithmic-power of bub- 
ble echoes from vessel 1 and 2 and they have a same 
probability density function (pdf). Both 1k  and 2k  
have non-central and asymmetric distributions. For con- 
venience, we define the difference of the logarithmic- 
powers to be: 

B B

   
 

1 2

2 1 2

2

10 log 10log

2

2

k

k k k

k k

D P k P

f L B B

f L


 

 

  

 

      (12) 

where 1 2k k kB B    is the pre-attenuated logarithmic- 
power difference of the bubble signals from two vessels. 
Follow Kuc’s approach, when 1kB  and 2k  have the same 
pdf, then k

B
  can be approximated to be a zero mean 

Gaussian random variable with a same variance 2
  for 

all k. Since Dk’s are independent Gaussian, their joint 
distribution is: 

 
 

2
2

3 2
0

0 1 2 2 2

2
1

, , exp
2π 2

k k
k

D f L
p D D D

 



 





         
   







m
k

 

(13) 

Using this distribution, it is possible to find a maxi- 
mum likelihood estimator (MLE) for the TAC, which is 
to be developed in Subsection 3.1. 

For the third combining method, since it is done after 
the TAC of each band is found, a simple average is suf- 
ficient to provide a reasonable diversity estimate, which 
is named equal-diversity estimator. Its performance will 
be analyzed at 3.2. 

3.1. The ML Combiner 

To estimate TAC precisely we need enough statistic sam- 
ples. Since the bubble scattering process is ergodic in 
time, we can collect M independent echoes for each di- 
versity signal. For convenience, we rewrite the difference 
of the logarithmic-power for each diversity signal to be: 

22m
k kD f L                (14) 

Based on the joint pdf of Eq.13, a likelihood function 
of the TAC  can be found to be: 

   1 2 3
1

, ,
M

m m m

m

L D p D D D

Applying Eq.13 to Eq.15, the log like-lihood function 
of   can be found to be: 

   

 

2

2 2

22
0 1

3
log 2π

2

1
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2

M
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k k

k m

M

D f L





 


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 

 
  

 



   (16) 

Then the MLE of   can be found by solving: 

 
2

2 22
0 1

d 1
2 2

d

M
m
k k k

k m

D f L f L



   

 
0   

 


  (17) 

The resultant ML estimate of TAC is: 

   

2 2

2 2
0 1 0 1

2 2
2 2

2 2
0 1 0

2 2
ˆ

2 2

M M
m m
k k k k

k m k m
MLE M

k k
k m k

D f L D f L

f L M f L
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  

 
 

 
   (18) 

which is unbiased with the following variance: 

 
 

   

2
22

22
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ˆvar
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

 
 
 
 




(19) 

This estimator is asymptotically consistent, since 

 
 

2

2
2

2
0

ˆlim var lim 0
2

MLEM M

k
k

M f L


 



 


     (20) 

To summarize, the properties of this estimator are: 
1) The multi-band TAC estimator Equation (18) will 

be unbiased, if the microbubbles inside vessel1 and ves- 
sel 2 have identical distribution such that k  can be 
approximated to have a Gaussian pdf. If this condition is 
not hold, not only the estimation value of TAC becomes 
bias but also the estimation variance Eq.19 will be in-
creased by an amount of . 1 2k k

2) This TAC estimator is asymptotically consistent, 
the estimation variance can be reduced by increasing the 
number of pulses M and/or the number of diversity fre- 
quencies. It means that we can use a small number of 
pulses to get a desired precision using frequency diver- 
sity, thus the estimation time can be saved. 

B B

3.2. Diversity Gain 

In last section we have already developed a multi-band 
ML estimator, this section we will discuss the differences 
between this multi-band MLE and other diversity meth- 
ods based on their diversity gain. Since the efficiency of 
a TAC estimator can be represented by its estimation 
variance, diversity gain can be defined as the inverse 
ratio of the variance of a multi-band MLE to that of a 
single-band estimator. This section is composed of 1) 

 


         (15) 
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diversity gain of the multi-band ML estimator and 2) 
comparison of the difference between the equal-diversity 
estimator Eq.23 and the multi-band ML estimator Eq.18. 

In the previous work [3], we showed that the variance 
of the single-band TAC estimator Eq.2 is: 

 
 

2
2

2
ˆvar

4 cf L M





           (21) 

Its value is frequency dependent. Since the distribution 
of Eq.3 is Gaussian, the single-band TAC estimator is a 
ML estimator also. For quantifying the performance of 
the multi-band ML estimator, its diversity gain is defined 
to be the inverse of the ratio of its variance Eq.19 to 
Eq.21 as:  

2

0

1
2ML

k c

k f
G

f

 
 

 
               (22) 

This result shows that larger frequency spacing ( f ) 
will yield larger diversity gain. 

For the third combining method in Section 3, it is the 
equal-diversity estimator: 

2

0

1
ˆ

3
ˆ

E k
k

 


                 (23) 

where ˆ
k  is the single-band TAC estimator Eq.3 for 

frequency = 2k . Comparing to the multi-band MLE of 
Eq.18, the equal-diversity estimator is easy to implement. 
This estimator can be rewritten as: 

f

2

0 1 2

1
ˆ

3 2

mM
k

E
k m k

D

f ML


 

             (24) 

Its variance is equivalent to the average variance of the 
single-band estimator given in Eq.3. The diversity gain 
of the equal-diversity estimator can be found to be: 

112
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2EQ
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k f
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



       
     

  


          (25) 

To compare these two diversity strategies, we can 
calculate the ratio their diversity gains given in Eq.22 
and Eq.25: 

2 2
2 2

0 0

1
1 1

9 2 2ML EQ
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k f f
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f f




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   
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



 



  (26) 

The value of ML EQ  is very close to 1.0, if G 

  

4. EXPERIMENT 

A simple in vitro experimental system is built to verify 
the estimation efficiency that can be improved by fre-
quency diversity. In this experiment, we like to 1) check 
the correlation of diversity signals and different pulse M 
2) check the consistency and the convergence rate with 
and without diversity 3) compare the diversity gain of the 
multi-band MLE to the single-band estimator and 4) 
compare efficiency of the multi-band MLE to the equal- 
diversity combiner. 

4.1. Experimental Setup 

The block diagram of the experimental system is pre- 
sented in Figure 2. Figure 3 present the phantom of 
Figure 2, which is made by jelly T (Juliana, Taiwan) 
because this material has low acoustic attenuation. The 
phantom has two flows to produce two gated signals as 
given in Figure 1. The diameter of the flows is 5 mm. 
Since the phantom is soft and may be dissolved by flow, 
to maintain the structure the thickness of the tubes is set 
to be 1 mm. To avoid shadowing effect of flow 1, these 
two flows are positioned at different elevations within  
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Figure 2. The block diagram of experimental system. 

 
Liver 
1cm 

Flow2 
5mm 

Flow1 
5mm 

Jelly T 

V380 

1.2cm  2 ck f f  is sufficiently small or the number of di- 
versity frequencies is large. Such case happens when 
bandwidth of the diversity signal is small, then perform- 
ance of the ML combiner approaches that of the equal- 
diversity combiner. 

Figure 3. The phantom is made by Jelly T, which 
has low acoustic impedance. A fresh pork liver used 
for estimating TAC. The contrast agent used is 
Sonovue. An intravenous drip is used to simulate 
microbubbles in blood flow. 
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the beam width. Between these two flows, a fresh pork 
liver with a thickness of 1 cm is inserted to introduce the 
desired attenuation for flow 2. Pork liver is selected be- 
cause it has almost constant TAC over entire region; it 
helps in checking the consistency and convergence rate 
of estimators. Before experiment, the pork liver is de- 
gassed by a vacuum machine for two hours to avoid free 
gas interference. The contrast agent (microbubble) used 
is Sonovue (BRACCO, Milan Italy). Its concentration is 
10 ml in 4.5 liters of dextrose solution. An intravenous 
drip is used to simulate microbubbles in blood flow. A 
single transducer is used for both transmitting and re- 
ceiving. The transducer is slicked on the phantom where 
the distance between flow1 and transducer is 5 cm.  

The transmitter uses an arbitrary function generator 
(TGA1242, Thurlby Thandar Instruments Ltd., Hunting- 
don, England) to generate signals. Then a power ampli- 
fier (75A250 Amplifier Research, USA) is used to con- 
trol the signal before applying to the T/R switch and pis- 
ton probe, which is a non-focused transducer (V380, 3.5 
MHz, 2.5 cm, Panametrics Waltham, MA, USA). and 
amplified by a low-noise amplifier (5072 PR Panamet- 
rics Waltham, MA, USA) before A/D conversion (AD- 
Link, PCI-9812, 20MHz, 16-bit, Taiwan) The digitalized 
signals were stored in the PC for further processing. 

In the experiment, a dual-frequency signal with center 
frequencies 1.5, and 2 MHz are transmitted to measure 
the echo signals of two bubble flows. These frequencies 
are selected to maintain the transducer gain at second 
harmonic bands. The diversity frequencies are 3, 3.5 and 
4 MHz. In the experiment, the flow width is 5 mm and 
flow separation is 12 mm. The bandwidth of transmis- 
sion signal is selected to be 100 KHz, which has a range 
resolution of 8 mm. Two conditions are achieved by this 
choice. Firstly, it makes the flows be resolvable. Sec- 
ondly, it makes the flows act like point sources in range. 
This ensures that the bubble harmonics can be extracted 
in the spectrum of the range-gated flow echo. The trans- 
mission power is set at a level to make the bubbles gen- 
erate second harmonics with SNR around 10 dB. The 
acoustic pressure is around 455 Kpa, which is measured 
by a hydrophone (NP-1000 PVDF needle hydrophone, 
TNU001A, NTR systems Inc., Seattle, WA) connected to 
a 30-dB preamplifier (NTR Systems Inc.). 

The PRF is set at 1 KHz to ensure the independency of 
each sample. The flow speed is about 2.45 m/s, which is 
slightly faster than blood flow. A fixed flow speed helps 
in comparing the estimation efficiencies of different es- 
timators. For each frequency, the measurement is re- 
peated for 2000 times to get 2000 A-lines. Each A-line 
sample use a rectangular window to select the echo from 
flow1 and flow 2. Each windowed signal is processed 
according to Eq.10 and Eq.11 by FFT. The peak values 
of frequencies in the second-harmonic group are read to 

estimate TAC using Eq.18. 

4.2. Experimental Results 

Before we check the performances of diversity estimator 
and single-band estimator, firstly we show the correla- 
tion property in both time domain (pulse to pulse) and 
frequency domain (diversity frequencies using Equation 
(7)) for the second harmonic group. Figure 4 present the 
signals of second harmonic group for successive five 
echoes. These signals are extracted by a Gaussian shape 
filter with center frequency being 3.5 MHz and band- 
width being 1.2 MHz (i.e. ). The waveforms 
look different to each other. To check the correlation 
quantitatively we introduce a correlation coefficient of 
two pulses as: 

2 2 pBf 

   

   

0

2 2

0 0

d
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d d

T

r s

T T

r s

p t p t t

p t t p t t




 
     (27) 

where  rp t  and  sp t  are the r-th and s-th pulse 
echoes. The correlation coefficient of pulse 1 to others 
are are –0.2520, 0.4374, –0.3895 and –0.1197. These 
results can be considered as low correlation. 

To check the property of the diversity signals, we cal- 
culate the cross correlation function of Eq.7 using 2000 
pulse echoes. The diversity signals are extracted by three 
Gaussian filters with center frequencies: f21 = 3 MHz, f22 
= 3.5 MHz and f23 =4 MHz. The correlation function are 
estimated by sample mean method: 

       
1

1ˆ
M

m m
k l k l

m

E Y t Y t Y t Y t
M 

          (28) 

where  m
kY t  and  m

lY t  are the m-th samples of  kY t  
and  Y t . Figure 5 present the correlation function of 

   1 1t Y tÊ Y    and    1 2t Y tÊ Y   . In this figure, the 
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Figure 4. Pulse echo signals of second harmonic group of 
nearby five echoes. In this case, the correlation coefficient 
of pulse1 to other pulse are –0.2520, 0.4374, –0.3895 and 
–0.1197. 
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self-correlation function is much greater than cross-cor- 
relation function. The oscillation of cross-correlation is 
due to difference frequency components in Eq.7. Figure 
6 presents the correlation functions of the three fre-
quency components. In this figure, it demonstrates that 
the intensity correlation can be reduced by increasing 
frequency spacing (i.e., difference frequency).  

Before we show that the TAC estimator Eq.18 can 
converge efficiently, firstly we show the converge prop-
erty using the single-band estimator Eq.3. The experi-
mental data were partitioned to have different number of 
pulses M for estimating the TAC. Figure 7(a) presents 
the estimated TAC values using the second harmonic 
frequency fc = 3 MHz. For M < 2000, there are multiple 
sub-sets of data for estimating the TAC. The different 
estimates are presents as scatter diagrams for M = 5, 25, 
50, 100, 500, 1000, 1500 and 2000 in Figure 7(a). The 
estimate values are spread between –0.5 and 1.6 
dB cm MHz  when M = 5, finally ̂  converges to 
0.4890 dB cm MHz  when M is increased to 2000. In 
this case, we prove that Eq.20 is attained when pulse 
number M is increased.  

To check 2), Figure 7(b) presents the TAC estimation 
values of the multi-band MLE Eq.18 using data of 3, 3.5 
and 4 MHz. In this figure, the estimation values converge 
as the number of pulses M increases. This estimator 
converges consistently as M increased to 2000. The con-
verged value is 0.504 dB cm MHz , this value is very 
close to the single-band estimation value. This shows 
that Eq.18 is also an unbiased estimator. Compare to 
Figure 7(a), the variation of multi-band MLE at each M 
is smaller than that of single-band estimator, this is be-
cause that each pulse has three samples in multi-band 
MLE. This shows that Eq.20 is attained. 
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Figure 5. Correlation function of    1 1Ê Y t Y t
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Figure 6. Cross-correlation function of    1 2Ê Y t Y t   , 

   2 3Ê Y t Y t    and    1 3Ê Y t Y t   . These three figures 

shows that the main component of correlation function (7) is 
the difference frequency term. The intensity of correlation 
can be reduced by increasing frequency spacing. 
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Figure 7. The distribution of estimation values of single 
band (3M Hz) and multiband (3, 3.5 and 4 MHz) estimators. 

 
To check the convergence property of using single- 

frequency estimator (3 MHz) and three-frequency esti- 
mator (3, 3.5 and 4 MHz), we calculate the estimation 
variance with M = [10, 25, 50, 100]. The variances of the 
three-frequency estimator are: 0.0222, 0.0084, 0.0041 
and 0.0028 dB cm MHz . The variances of the single- 
frequency estimator are: 0.0958, 0.0341, 0.0189 and 
0.0087 dB cm MHz . These results shows 1) both esti- 
mators converge according to 1/M and 2) the diversity 
technique works effectively in all cases, since each vari- 

  (upper) 

and    1 2Ê Y t Y t   (lower) which are calculated by 2000 

samples. This figure present cross-correlation of two differ- 
ent diversity frequency is much smaller than correlation of 
the same diversity frequency. 
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ance ratio at certain M are approximately 4.18. This re- 
sult also shows that both time domain and frequency 
domain samples can be considered to be independent 
samples. 

Table 1 can be used to check the diversity gain when 
using two frequencies and three frequencies for diversity 
combining. Since the diversity gain can be calculated by 
Eq.22 as the variance ratio of different estimators and 
their values are independent of the number of pulses M. 
We select M = 5 for the estimators to calculate their 
variances. In this case, each variance value is calculated 
using 400 realizations. For simplicity, we select variance 
ratio of the single-frequency estimator (3 MHz) and the 
two-frequency estimator (3 & 4 MHz) to represent the 
diversity gain of MLE using two frequencies. Theoretical 
value of this ratio is 2.8 using Eq.22 and the experimen-
tal value is 3.1 (0.188/0.059), which is slightly greater 
than theoretical value. This is because that the variance 

2
  is not a constant value for each frequency. Another 

case is diversity gain of MLE using three frequencies. 
The theoretical value is 4.14 using Eq.22, which is also 
smaller than the experimental value 4.18 (0.188/0.045). 
Based on these results, we can conclude that the estima-
tion variance can be decreased by increasing frequency 
bands or using higher frequency for estimation. 

To check 4), the variances of two diversity methods, 
MLE Eq.18 and equal-diversity Eq.23, are given in Ta-
ble 2. All variance values are calculated using 400 reali-
zations of data. The results show that the estimation 
variances of equal diversity are slightly larger (10%) 
than those of MLE. This is due to that the value of 
   2 ck f f  is 6k  in this experiment, which are 
small values for . This result confirms the re- 
lation given by Eq.26. 

0,1,2k 

 
Table 1. Statistics of the estimated tac using the multiple sec-
ond harmonic bands. Estimation variance is used to check effi-
ciency of each estimator. The sample size Q is 2000 for all 
cases. 

α (dB/cm/MHz) 
Frequency 

(MHz) 
mean Variance 

3 

3.5 

4 

3 & 4 

3.5 & 4 

0.4890 

0.4989 

0.5171 

0.5070 

0.5092 

0.188 

0.156 

0.093 

0.059 

0.063 

3, 3.5 & 4 0.5043 0.045 

Table 2. Estimation variance of equal diversity and MLE The 
results show that the estimation variances of equal diversity are 
slightly larger (10%) than those of MLE. The Sample Size Q is 
5 with 400 estimated values for All Cases. 

variance Frequency 
(MHz) 

MLE Equal diversity 

3 & 4 

3.5 & 4 

3, 3.5 & 4 

0.059 

0.063 

0.045 

0.067 

0.067 

0.048 

 
In this experiment, since the estimation variance of 

equal diversity is slightly larger than MLE and the esti- 
mation variance is quite small so that we can use equal 
diversity to estimate TAC. 

5. DISCUSSION AND CONCLUSION 

In this paper, the single-frequency TAC estimator [4] is 
extended to be a multiple-frequency diversity estimator 
using bubble harmonics. First we developed a strategy to 
select suitable frequency bands for diversity; we also 
model the stochastic attenuation model for the diversity 
frequencies. We presented a MLE of TAC for these fre- 
quency bands and compare its efficiency to that of the 
linear-diversity estimator, which is the simplest diversity 
strategy. 

In the experimental work, we use a dual-frequency 
signal to verify this technique. The experimental results 
show that the frequency diversity works well, which 
confirms that the assumption of independency for each 
frequency band is proper. By checking efficiency of the 
diversity technique, it is found that the variance of loga- 
rithmic-power 2

  is frequency dependent and much 
smaller than what Kuc presented [1]. In the future, we 
like to check the physical and statistical properties of 
bubble echoes and present a statistical model for 2

 . 
Another consideration is about the usage of the dif- 

ference-frequency band, in this paper this band is dis- 
carded due to frequency collision and low SNR. If we 
can overcome these problems, this frequency band can 
still have diversity gain and a MLE include this band can 
be developed. 

Theoretically the TAC estimator may be affected by 
transducer bandwidth, beam width, vessel size, distance 
between vessels, and bubble density mismatch. To com- 
pensate these effects is a possible further development. 

Another possible further development is about the use 
of more than two excitation frequencies to increase num- 
ber of diversity signals. In such case, a more complicated 
frequency-collision problem may occur in the difference- 
frequency band. For example, if we transmit a three- 
frequency signal with frequencies: c , c    and 
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2c   , the bubble echo will consist of two differ- 
ence-frequency signals as: 

  
             

            

            

dx t
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(29) 

It is noted that the first component of Eq.29 consists 
of two different attenuation quantities, therefore it can 
not be used for TAC estimation; only the second com-
ponent is useful. 

In this paper, we have already increased the estimation 
efficiency of TAC estimation using multiple bubble har- 
monics. For completeness, this method may need esti- 
mators for other parameters, e.g., tissue length estimator, 
and need experimental works to demonstrate in vivo ap- 
placations [7]. 
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