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ABSTRACT 

In this paper, Bezier surface form is used to find the approximate solution of delay differential equations (DDE’s). By 
using a recurrence relation and the traditional least square minimization method, the best control points of residual 
function can be found where those control points determine the approximate solution of DDE. Some examples are given 
to show efficiency of the proposed method. 
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1. Introduction 

Delay differential equations are type of differential equa-
tions where the time derivatives at the current time de-
pend on the solution, and possibly its derivatives, at pre-
vious times. A class of such equations, which involve 
derivatives with delays as well as the solution itself has 
been called neutral DDEs over the past century (see [1, 
2]). 

The basic theory concerning the stable factors and 
works on fundamental theory, e.g., existence and unique- 
ness of solutions, was presented in [1,2]. Since then, 
DDE have been extensively studied in recent decades 
and a great number of monographs have been published 
including significant works on dynamics of DDEs by 
Hale and Lunel [3], on stability by Niculescu [4], and so 
on. The interest in study of DDEs is caused by the fact 
that many processes have time-delays and have been 
models for better representations by systems of DDEs in 
science, engineering, economics, etc. Such systems, 
however, are still not feasible to actively analyze and 
con- trol precisely, thus, the study of systems of DDEs 
has actively been conducted over the recent decades (see 
[1, 2]). 

In this paper, we show a novel strategy by using the 
Bezier curves to find the approximate solution for delay 
differential equations by Bezier curves. Other numerical 
methods for DDEs are available in (see [5-8]). In Section 
2 delay differential equations will be introduced. Exam-
ple of Time-Delay System will be stated in Section 3. In 
Section 4 delay differential equations with proportional 
delay will be introduced. Bezier curves and degree eleva-

tion will be stated in Sections 5 and 6 respectively. In 
Section 7 solution of delay differential equation using Be- 
zier control points presented and aforementioned method 
will be implemented on it. In Section 8, solved numerical 
examples, showed the efficiency and reliability of the 
method. Finally, Section 9 will give a conclusion briefly. 

2. Delay Differential Equations  

Most delay differential equations that arise in population 
dynamics and epidemiology model intrinsically nonnega- 
tive quantities. Therefore it is important to establish that 
nonnegative initial data give rise to nonnegative solutions. 
Consider the following 

      , ,u t f t u t u t h 

 , ,

         (2.1) 

with a single delay h > 0. Assume that f t u y  and 
 , ,u t u y  are continuous on R3. Let sf R  be given 

and let  : ,s h s R    be continuous. We seek a so- 
lution  u t  of (2.1) satisfying 

    ,u t t s h t s    

s t s

         (2.2) 

and satisfying (2.1) on   0 for some  
 u s

. 
Note that we must interpret  as the right-hand de-
rivative at s. 

Now, we present a typical example of physical sys-
tems that exhibit time-delay phenomena. The example 
selected in this section fit nicely into the model (2.1). 

3. Example of Time-Delay System 

The existence of delays (or gestation lags) in economic 
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systems is quite natural since there must be finite period 
of time following a decision for its effects to appear. In 
one model [9] of aggregate economy, we let  Y t  be 
the income which can split into consumption  C t

 
, in-

vestment I t  and autonomous expenditure. 
Thus 

       Y t C t  I t E t

    ,C t cY t

   

         (3.1) 

Define 

             (3.2) 

where c is a consumption coefficient. From (3.1) we get 

 
1

I t E t

c





Y t            (3.3) 

It is assumed that there is finite interval of time be-
tween ordering and delivery of capital equipment fol-
lowing a decision to invest  .D t

,

 

 In terms of the stock 
of capital assets  we have  U t

 D t h U t              (3.4) 

   d .
t

t h
D

1
I t

h
 



 D t
 Y t

 U t

            (3.5) 

Economic rationale implies that  is determined 
by the rate of saving (proportional to ) and by the 
capital stock . This means that 

       1 ,U tD t c Y t   

0

       (3.6) 

where   0,    and ε is a trend factor. Combining 
(3.4) and (3.5), we obtain: 

     1
I t U

h
t h U t              (3.7) 

By (3.3) and (3.7), we arrive at 

         1

1
Y t U t h

h c
  1

E t
U t

c
  

   (3.8) 

Finally, it follows from (3.5), (3.6) and (3.8) that 

     U t U t U t h
h h

   E t     

       

         1

0
,

0,

m

m

m k
k kk

u t a t u p t

u t b t u p t f t

t

 





  




   1

0
0 , 0,1, , 1.

m k
ikk i

c u i m



     
 

  (3.9) 

which expresses the formation of the rate of delivery of 
the new equipment. This is a typical functional differen-
tial equation (FDE) of retarded type. 

4. Delay Differential Equations with  
Proportional Delay 

In this paper, approximate analytical solutions with high 
accuracy can be obtained by carrying out in the Bezier 
control points method. 

Consider the following neutral functional-differential 
equation with proportional delays (see [10-12]), 

    (4.1)

 

with the initial conditions 

         (4.2) 

  a t  and Here, 0,1, , 1b t k m k  are given 
analytical functions, and  , , , ikp ikc   denote given 
constants with  0 1 0,1, , .p k m   k

The existence and the uniqueness of the analytic solu-
tion of the multi-pantograph equation are proved in [13], 
the Dirichlet series solution is constructed, and the suffi-
cient condition of the asymptotic stability for the analytic 
solution is obtained. It is proved that the θ-methods with  

 

a variable stepsize are asymptotically stable if 
1

1.
2

 

           

       1

0
,

0,

mm
m

m k
k kk

u t u t a t u p t

b t u p t f t

t






 

 




 

  

Some numerical examples are given to show the proper-
ties of the θ-methods. 

In order to apply the Bezier control points method, we 
rewrite Equation (4.1) as 

 

Neutral functional-differential equations with propor-
tional delays represent a particular class of delay differ-
ential equation. Such functional-differential equations play 
an important role in the mathematical modeling of real 
world phenomena [14]. Obviously, most of these equa-
tions cannot be solved exactly. It is therefore necessary 
to design efficient numerical methods to approximate 
their solutions. Ishiwata et al. used the rational approxi-
mation method [15] and the collocation method [16] to 
compute numerical solutions of delay differential equa-
tions with proportional delays. Hu et al. [17] applied lin-
ear multistep methods to compute numerical solutions for 
neutral delay differential equations. Wang et al. obtained 
approximate solutions for neutral delay differential equa-
tions by continuous Runge-Kutta methods [18] and one- 
leg θ-methods [13,19]. 

5. Bezier Curves 

A Bezier curve of degree n can be defined as follows (see 
[19]): 

 ,0
, , ,

n

i i ni

t a
C t PB t a b

b a

    
      (5.1) 

where ,

i n i

i n

nt a t a b t
B

ib a b a b a

                      
 are the Bern-  
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 

0P

1P

2P

3P

stein polynomials over the interval ,a b

iP

   



, 0,1 ,

1 .
n i

t t

t


 

 C t

. The Bezier 
coefficient  is called the control point (see Figure 1). 
In particular 

 

  

,0

,

n

i i ni

i
i n

C t PB

n
B t t

i



 
  
 


     (5.2) 

If  be a vector-valued polynomial, then C t

,P P

 is 
called a parametric Bezier curve. The control polygon of 
a Bezier curve comprise of the line segments 1i i  

. If  is a scalar-valued polynomial, 
we call the function 

0, 1   C t
 

1, ,i n
y C t

1 1, ,P P

 an explicit Bezier curve 
by  (see [20,21]).   ,t C t 

6. Degree Elevation 

Suppose we were designing with Bezier curve as de-
scribed, and use a Bezier polygon of degree n to ap-
proximate the desired given shape. Suppose the degree 
polygon dose not feat neatly the desired shape. 

One way to proceed in such a situation is to increase 
the flexibility of the polygon by adding another vertex 
(control point) to it. As a first step, one might want to 
add another vertex, yet leave the desired curve of the 
shape unchanged, this corresponds to raising the degree 
of the Bezier curve by one (see Figure 2). Therefore, we 
are looking for a curve with control vertices 0 1n

, ,P P

 
that describes the same curve of the shape as the original 
polygon  (see [21-25] for more details).  0 n

We rewrite our given Bezier curve as 

       
 
   

 
   

   

1

1, 1

1

1 1

n i

n i

i i n

P t

t

PB t

 



  





 

1

,

0

0

0
1

0

1

1 !1
1

1 ! 1 !

1 !1

1 ( 1)! !

1 1

n
i

i

n
i

i

n n

i i n

i

i

i i

C t t C t tC t

nn i

n i n i

ni
Pt

n i n i

n i i
PB t

n

t

n





 



  

 
 

  


 

  

  
 

 





 

 

The upper index of the first sum may be extended to n 
+ 1, since the corresponding term is zero. The summation 
indices of the second sum may be shifted to index 1 and 
n + 1, but one may choose the lower index zero since 
only a zero term is added. Thus we have 

 

 

 

, 1

, 1

1 , 1

1

1

n

i i n

i i n

t

n i
PB t

P B t





 

1 1
0

1

0

1

0

1

n

i ii

n

i

n

i

C t P B

n
i

n















 











        (6.1)

 

Combining both sums and computing coefficients  

 

Figure 1. A degree three Bezier curve and its control poly-
gon.  
 

 

Figure 2. Repeated degree elevation. 
 
yields:  

1
1 1 , 0,1, , 1,

1 1i i i

i i
P P P i n

n n
        



1P

  (6.2) 

where i  is the control point of the Bezier curve C t  
when it is elevated to degree n + 1. Now, the new control 
polygon consists of n + 2 control points. 

7. Solution of Delay Differential Equation 
Using Bezier Control Points 

Consider the following boundary value problem 

       
           

       

   

0 1

1

0

, , , ,

, 0,

d 0 d 1
, , 0,1, , 1,

d d

m

mm
m

m
k

k k
k

i i

i ii i

L u t u p t u p t u p t

u t u t a t u p t

b t u p t f t t

u u
i m

t t



 





  

  

   





    (7.1)

 

where L is differential operator with proportional delay, 
 f t 0 1kp  is also a polynomial in t, and  (k = 0, 

1, ··· , m) [26]. 
We propose to represent the approximate solution of 

(7.1)  u t  in Bezier form. The choice of the Bezier 
form rather than the B-spline form is due to the fact that 
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the Bezier form is easier to symbolically carry out the 
operations of multiplication, comparison and degree ele-
vation than B-spline form. We choose the sum of squares 
of the Bezier control points of the residual to be the 
measure quantity. Minimizing this quantity gives the ap- 
proximate solution. So, the obvious spotlight is in the 
following, if the minimizing of the quantity is zero, so 
the residual function is zero, which implies that the solu-
tion is the exact solution. We call this approach the con- 
trol-point-based method. The detailed steps of the method 
are as follows (see [24]): 
 Step 1. Choose a degree n and symbolically express 

the solution  u t  in the degree  n n m  Bezier 
form 

 u u t    ,0
,

n

i i ni
a B t



0 1, , , na a a

         (7.2) 

where the control points  are to be de-
termined. 

 Step 2. Substituting the approximate solution  

 

u u t  
into the differential Equation (7.1), we gain the re-
sidual function  

          , .mp t f t 

  

  

0deg ,

eg .

n b t

f t



 R t

 ,0
,

k

i i ki
b B t



, , ,b b b
a

i

0 1, , ,R t L u t u p t u p t u  

This is a polynomial in t with degree ≤ k, where  

  
  

  
1

1

max deg ,

1 deg , ,

1 deg ,dm

k n m a t

n b t

n m b t

  

  

  

 

So the residual function  can be expressed in 
Bezier form as well, 

 R R t           (7.3) 

where the control points 0 1 k  are linear func-
tions in the unknowns i . These functions are de-
rived using the operations of multiplication, degree 
elevation and differentiation for Bezier form. 

 Step 3. Construct the objective function 2
0

.
k

iF b


   
Then F is also a function of , , , . 0 1 n

 Step 4. Solve the constrained optimization problem: 
a a a

 
   

2
0 10

min , , ,

d 0 d 1
, ,

d d

k

i ni

i i

i ii i

F b a a

u u

t t
 




 

  ,

0,1, , 1,

a

i m 

 

  (7.4)
 

by some optimization techniques, such as Lagrange 
multipliers method, we can be used to solve (7.4). 

 Step 5. Substituting the minimum solution back into 
(7.2) arrives at the approximate solution to the dif-
ferential equation. 

8. Numerical Examples 

In this part, we used the mentioned control-point-based 

method on Bezier control points to solve DDE’s and 
system of DDE’s. 

Example 8.1. As a practical example, we consider 
Evens and Raslan [6] the following pantograph delay 
equation:  

   1 1
exp , 0 1, 0 1

2 2 2 2

t t
u t u u t t u

           
   

. 

The exact solution is   expu t t . Now we try to 
find a degree two approximate solution. Let  

       0 0,2 1 1,2 2 2,2u t a B t a B t a B t   .  

Substituting it into the above delay differential equation 
gives  R t

   

 as: 

 

     
   

2 2
1 1 2 2

3 4 4 4 2
1 1 2 1

0 0,4 1 1,4 2 2,4

3 3,4 4 4,4

1 1
exp

2 2 2 2

13 11 7 5
3 2 2

4 2 16 8
1 1 1 1

16 16 32 64

,

t t
R t u t u u t

t a a t a t t a t

a t t a t a t a t

b B t b B t b B t

b B t b B t

        
   

       

    

  

 

       
         

4 3

0,4 1,4

22 3 4
2,4 3,4 4,4

1 , 4 1 ,

6 1 , 4 1 , .

B t t B t t t

B t t t B t t t B t t

   

 

where  

    

 

 

Then construct the function 
2 2

0 1 2 1 1 2

2 2

2 1 2 1

193 141 5 1
, , 2

64 64 8 2

75 51 103 5 7 39

64 64 4 32
.

64 16

F a a a a a a

a a a a

      

     

   
   
   

   
   
   

 

 2, ,0 1FMinimizing a a a   00 1a  with u  and u(1) 
= a2 = exp(1). We obtain  

 1

174691 189589
exp 1

488905 488905
a   .  

Thus the approximate solution is  

  21 0.822827885 0.8954539433u t t t   .  

In Figure 3 compare approximated and exact value of 
 u t . Figure 4 shows the residual function. 
Example 8.2. Consider the previous example with de-

gree raising in Bezier control points. 
Let  

       
     
     

0 0,8 1 1,8 2 2,8

3 3,8 4 4,8 5 5,8

6 6,8 7 7,8 8 8,8 .

u t a B t a B t a B t

a B t a B t a B t

a B t a B t a B t

  

  

  
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 Figure 3. Approximate and exact solution of u(t) for Exam-

ple 8.1. Figure 4. Residual function for Example 8.1. 
 

 R t  as: Substituting it into the delay differential equation leads to 

  8 6
3 3

7
1 1

4 5
2 2

1799 71715

64 32
5895 15239 18

64 32
48293 5607 1

16 2

R t a t a t

a t a t

a t a t

    

 

 

7 8 7 8 8 6
3 6 6 7 5 5

6 5 4 3 2 8 3
1 1 1 1 1 2

3577 16135 3577 10087
9 588 4

256 64 128 8
389 12355 4845 521 7091

538
16 8 4 128 4
97

a t a t a t a t a t a t

a t a t a t a t a t a t

    

     


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8 118 2947 700
32 16

88739 385 2953
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a t a t a t a t a t a t

a t a t a t a t a t a t a t

a t t t

    

     

   

8 7
8 7

6 7
4 5

257 2177
280

512 32
277935 34055

128 64

a t a t

a t a t

  

  3 8 4 5

8 6 5 9 10 8 9 9
4 4 8 2

9 9 9 10 10
5 7 3 4 8 2 1

263 2527 6279
0

512 8 32
967 85225 3 1 1 7

8 35
28 32 1024 4096 1024 128

1 21 35 1 7 1

256 256 512 4096 1024 512

t t t t

t a t t t a t a t a t

a t a t a t a t a t a t

  

     

     

 

1 2

9 6 9
1 7

247 3619 8

4 256 1
5 7

56
256 256

t a a t

a t a t a t

   

  

   

10 10
5 7

0 0,10 1 1,10 2 2,10

7 1

512 512 1024
a t a t

b B t b B t b B

  

           
       

10

10 10 10 3 2
6 3 4 2 4 3

3 3,10 4 4,10 5 5,10 6 6,10

7 7,10 8 8,10 9 9,10 10 10,10

7 7 35
56 280 168

512 2048

.

a t a t a t a t a t a t

t b B t b B t b B t b B t

b B t b B t b B t b B t

    

    

   

 
Then construct the function  

 0 1 2 3 4 5 6 7 8, , , , , , ,F a a a a a a a a a

  00 1u a

 

and minimizing F with  

1 1.125570325,a  2 1.268969764,a 

3 1.433189859,a     4

5 1.838975663,a

1.621779319,a 

   6a 

7 2.380493436.a

2.089850744,

and   and u(1) = a8 = 
exp(1). We obtain    

Thus the approximate solution is    
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     
 
 
 

8 7

6

2

8

1 9.004562600 1

35.53115339 1 80.2586

113.5245523 1 102.982

58.51582083 1 19.043947

2.718281828 .

u t t t t

t t

t t

t t

t

   

  

  

  



 
 
 

52 3

4 34 5

6 7

3210 1

6371 1

49 1

t t

t t

t t







 

In Figure 5 compare approximated and exact value of 
 u t . Figure 6 shows the residual function. 
 

 

Figure 5. Approximate and exact solution of u(t) for Exam-
ple 8.2. 
 

 

Figure 6. Residual function for Example 8.2. 

Example 8.3. Consider the following second order li-
near DDE (see [5]): 

     3
, 0 1,

4 2

t
u t u t u f t t

       
 

 

  2 2t t  0 0,uwhere   , with initial conditions   
 0 0u  , and the exact solution is .   2u t t
Let  

       
     
     

0 0,8 1 1,8 2 2,8

3 3,8 4 4,8 5 5,8

6 6,8 7 7,8 8 8,8 .

u t a B t a B t a B t

a B t a B t a B t

a B t a B t a B t

  

  

  

0 0,a  1 0,a

 

By applying this algorithm, we obtain     

2

1

28
a  , 3

3

28
a  , 4

3

14
a  , 5

5

14
a  , 6

15

28
a  , 7

3

4
a   

8 1a  . Thus the approximate solution is and 

       
     

6 5 42 3 4

3 25 6 7 8

1 6 1 15 1

20 1 15 1 6 1 .

u t t t t t t t

t t t t t t t

     

      
 

Figure 7, compare the exact and approximate solution of 
 u t

 

. Figure 8 shows the residual function. 
Example 8.4. Consider the following second order li-

near DDE (see [10]): 

     

3
4 2

1
( )

2 3 2 4

4
21 , 0 1,

2 3
0 0 0 0,

t t t
u t u t u u u

t
t t t t

u u u

                
     

     

   

 

 

 

Figure 7. Approximate and exact solution u(t) for Example 
8.3. 
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Figure 8. Residual function for Example 8.3. 
 
where the exact solution is   4u t t

 
  
  

2 2,8

5 5,8

8 8,8 .

a B t

t a B t

t a B t







0, 1 0,a

. Let  

   
  
  

0 0,8 1 1,8

3 3,8 4 4,8

6 6,8 7 7,8

u t a B t a B t

a B t a B

a B t a B

 

 

 

 
 

By applying this algorithm, we obtain  0a    

2a 0, 3a   0, 4

1
,

70
a   5

1
,

14
a   6a 

3
,

14
 7

1

2
a    

and . Thus the approximate solution is 8 1a 

 
 

4 3

6 7 8

1

.1 1

t

t t t



  

 u t

1 , 0 1,

1, 0,

t

t

  

 

y  1 

   
 

4 5

2

1 4

6 4

u t t t t

t t

  

 
 

Figure 9, compare the exact and approximate solution of 
. Figure 10 shows the residual function. 

Example 8.5. In this example the following first order 
linear DDE’s is considered (see [13]): 

  
 

u t u t

u t

  
 

Since  and ,  0 0
    0 1y y    y t  

has a jump at t = 0. The second derivative  y t  

   1 ,y t  

 

y t  

and therefore it has a jump at t = 1. 
Now we try to find an approximate solution. Let  

       3 3,3t a B t

0 1a 
3127 3 0a 

0 0,3 1 1,3 2 2,3u t a B t a B t a B   . 

By applying this algorithm, we acquire ,  
, , . Thus  1a  0.7806290653 2a  0.335917

 

Figure 9. Approximate and exact solution u(t) for Example 
8.4. 
 

 

Figure 10. Residual function for Example 8.4. 
 
the approximate solution is  

     
 

3 2

2

1 2.341887196 1

1.007751938 1 .

u t t t t

t t

   

 

 u t

 

Figure 11 shows the approximate value of .  

9. Conclusion  

In this paper, we use the control-point-based method to 
solve delay differential equations. In this method, firstly,  
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Figure 11. Approximate u(t) for Example 8.5. 
 
the rough solution is expressed in Bezier form, then the 
residual function is minimized to find the best approxi-
mate solution. Some examples are given to verify the 
reliability and efficiency of the proposed method. 

REFERENCES 
[1] G. Adomian and R. Rach, “Nonlinear Stochastic Differ- 

ential Delay Equation,” Journal of Mathematical Analysis 
and Applications, Vol. 91, No. 1, 1983, pp. 94-101.  
doi:10.1016/0022-247X(83)90094-X 

[2] F. M. Asl and A. G. Ulsoy, “Analysis of a System of Lin- 
ear Delay Differential Equations,” Journal of Dynamic 
Systems, Measurement and Control, Vol. 125, No. 2, 2003, 
pp. 215-223. doi:10.1115/1.1568121 

[3] J. K. Hale and S. M. V. Lunel, “Introduction to Func- 
tional Differential Equations,” Springer-Verlag, Berlin, 
1993.  

[4] S. I. Niculescu, “Delay Effects on Stability: A Robust 
Control Approach,” Springer, Berlin, 2001. 

[5] A. K. Alomari, M. S. M. Noorani and R. Nazar, “Solution 
of Delay Differential Equation by Means of Homotopy 
Analysis Method,” Acta Applicandae Mathematicae, Vol. 
108, No. 2, 2009, pp. 395-412.  
doi:10.1007/s10440-008-9318-z 

[6] D. J. Evans and K. R. Raslan, “The Adomian Decomposi-
tion Method for Solving Delay Differential Equation,” 
International Journal of Computer Mathematics, Vol. 82, 
No. 1, 2005, pp. 49-54.  
doi:10.1080/00207160412331286815 

[7] S. J. Liao, “Series Solutions of Unsteady Boundary-Layer 
Flows over Plate,” Mathematical Analysis and Applica- 
tions, Vol. 117, No. 3, 2006, pp. 239-263.  
doi:10.1111/j.1467-9590.2006.00354.x 

[8] F. Shakeri and M. Dehghan, “Solution of Delay Diffren- 

tial Equation via a Homotopy Perturbation Method,” Ma- 
thematical and Computer Modelling, Vol. 48, No. 3-4, 
2008, pp. 486-498. doi:10.1016/j.mcm.2007.09.016 

[9] H. Gorecki, S. Fuksa, P. Grabowski and A. Korytowski, 
“Analysis and Synthesis of Time Delay Systems,” John 
Wiley and Sons, New York, 1989. 

[10] X. Chen and L. Wang, “The Variational Iteration Method 
for Solving a Neutral Functional-Differential Equation 
with Proportional Delays,” Computers and Mathematics 
with Applications, Vol. 59, No. 8, 2010, pp. 2696-2702.  
doi:10.1016/j.camwa.2010.01.037 

[11] Z. Fan, M. Liu and W. Cao, “Existence and Uniqueness 
of the Solutions and Convergence of Semi-Implicit Euler 
Methods for Stochastic Pantograph Equations,” Mathe- 
matical Analysis and Applications, Vol. 325, No. 2, 2007, 
pp. 1142-1159. doi:10.1016/j.jmaa.2006.02.063 

[12] R. Bellman and K. L. Cooke, “Differential-Difference 
Equations,” Academic Press, London, 1963.  

[13] W. Wang, T. Qin and S. Li, “Stability of One-Leg θ- 
Methods for Nonlinear Neutral Differential Equations 
with Proportional Delay,” Applied Mathematics and Com- 
putation, Vol. 213, No. 1, 2009, pp. 177-183.  
doi:10.1016/j.amc.2009.03.010 

[14] A. Bellen and M. Zennaro, “A Reviw of DDE Meth- 
ods,” In: G. H. Golub, C. H. Schwab, W. A. Light and E. 
Suli, Eds., Numerical Methods for Delay Differential 
Equations, Numerical Mathematics and Scientific Com-
putation, Clarendon Press, New York, 2003, pp. 36-60. 

[15] E. Ishiwata and Y. Muroya, “Rational Approximation 
Method for Delay Differential Equations with Propor- 
tional Delay,” Applied Mathematics and Computation, 
Vol. 187, No. 2, 2007, pp. 741-747.  
doi:10.1016/j.amc.2006.08.086 

[16] E. Ishiwata, Y. Muroya and H. Brunner, “A Super-At- 
tainable Order in Collocation Methods for Differential 
Equations with Proportional Delay,” Applied Mathemat- 
ics and Computation, Vol. 198, No. 1, 2008, pp. 227-236.  
doi:10.1016/j.amc.2007.08.078 

[17] P. Hu, C. Huang and S. Wu, “Asymptotic Stability of 
Linear Multistep Methods for Nonlinear Neutral Delay 
Differential Equations,” Applied Mathematics and Com- 
putation, Vol. 211, No. 1, 2009, pp. 95-101.  
doi:10.1016/j.amc.2009.01.028 

[18] W. Wang, Y. Zhang and S. Li, “Stability of Continuous 
Runge-Kutta-Type Methods for Nonlinear Neutral Delay- 
Differential Equations,” Applied Mathematical Modelling, 
Vol. 33, No. 8, 2009, pp. 3319-3329.  
doi:10.1016/j.apm.2008.10.038 

[19] W. Wang and S. Li, “On the One-Leg θ-Methods for 
Solving Nonlinear Neutral Functional Differential Equa- 
tions,” Applied Mathematics and Computation, Vol. 193, 
No. 1, 2007, pp. 285-301. doi:10.1016/j.amc.2007.03.064 

[20] G. Farin, “Curves and Surfaces for CAGO: A Practical 
Guide,” Morgan Kaufmann, Waltham, 2001. 

[21] G. Farin, “Curves and Surfaces for Computer-Aided Geo- 
metric Design: A Practical Guide,” 4th Edition, Academic 
Press, London, 1997. 

[22] S. Mann, “A Blossoming Development of Spliness,” Mor- 

Copyright © 2012 SciRes.                                                                                  ICA 

http://dx.doi.org/10.1016/0022-247X(83)90094-X
http://dx.doi.org/10.1115/1.1568121
http://dx.doi.org/10.1007/s10440-008-9318-z
http://dx.doi.org/10.1080/00207160412331286815
http://dx.doi.org/10.1111/j.1467-9590.2006.00354.x
http://dx.doi.org/10.1016/j.mcm.2007.09.016
http://dx.doi.org/10.1016/j.camwa.2010.01.037
http://dx.doi.org/10.1016/j.jmaa.2006.02.063
http://dx.doi.org/10.1016/j.amc.2009.03.010
http://dx.doi.org/10.1016/j.amc.2006.08.086
http://dx.doi.org/10.1016/j.amc.2007.08.078
http://dx.doi.org/10.1016/j.amc.2009.01.028
http://dx.doi.org/10.1016/j.apm.2008.10.038
http://dx.doi.org/10.1016/j.amc.2007.03.064


F. GHOMANJANI, M. H. FARAHI 

Copyright © 2012 SciRes.                                                                                  ICA 

196 

gan Claypool, San Rafael, 2004. 

[23] S. Biswa and B. Lovell, “Bezier and Splines in Image 
Processing and Machine Vision,” Springer-Verlag, Berlin, 
2008.  

[24] J. Zheng, T. Sedberg and R. Johansons, “Least Squares 
Methods for Solving Differential Equation Using Bezier 
Control Points,” Applied Numerical Mathematics, Vol. 48, 
No. 2, 2004, pp. 137-152.  

doi:10.1016/j.apnum.2002.01.001 

[25] B. Egerstedt and F. Martin, “A Note on the Connection 
between Bezier Curves and Linear Optimal Control,” IEEE 
Transactions on Automatic Control, Vol. 49, No. 10, 2004, 
pp. 1728-1731. doi:10.1109/TAC.2004.835393 

[26] M. Mahmoud and P. Shi, “Methodologies for Control of 
Jump Time-Delay Systems,” Kluwer Academic Publish- 
ers, London, 2004. 

 
 

http://dx.doi.org/10.1016/j.apnum.2002.01.001
http://dx.doi.org/10.1109/TAC.2004.835393

