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ABSTRACT 

The aim of this brief paper is to give several results concerning the regional controllability of distributed systems gov- 
erned by semi-linear parabolic equations. We concentrate on the determination of a control achieving internal and 
boundary regional controllability. The approach is based on an extension of the Hilbert Uniqueness Method (HUM) and 
Schauder’s fixed point theorem. We give a numerical example developed in internal and boundary sub region. These 
numerical illustrations show the efficiency of the approach and lead to conjectures.  
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1. Introduction 

Many scientific and engineering problems can be mod- 
eled by partial differential equations, integral equations, 
or coupled ordinary and partial differential equations that 
can be described as differential equations in infinite-di- 
mensional spaces using semi groups. Nonlinear integro- 
differential equations, with and without delays, serve as 
an abstract formulation for many partial integrodifferen- 
tial equations which arise in problems connected with 
heat flow in materials with memory, viscoelasticity, and 
other physical phenomena. In particular, Sobolev-type 
equations occur in thermodynamics in the flow of fluid 
through fissured rocks, in the shear of second-order flu- 
ids, and in soil mechanics. So, the study of controllability 
results for such systems in infinite-dimensional spaces is 
important.  

For the motivation of abstract systems and the con- 
trollability of linear systems, one can refer to the books 
by Curtain and Pritchard [1], and by Curtain and Zwart 
[2]. For an earlier survey on the controllability of non- 
linear systems using fixed-point theorems, including non- 
linear delays systems, see [3]. The approximate control-
lability of nonlinear systems when the semigroup gener-
ated by A is compact has been studied also by many au-
thors. The results of Zhou [4] and Naito [5] give suffi- 
cient conditions on B with infinite-dimensional range or 
necessary and sufficient conditions based on more strict 
assumptions on B. Li and Yong [6] studied the same 

problem assuming the approximate controllability of the 
associated linear system under arbitrary perturbation in 

  , .L I L X

 pL 

  Bian [7] investigated the approximate 
controllability for a class of semi-linear systems, [8] used 
the Banach fixed-point theorem to obtain a local exact 
controllability in the case of nonlinearities with small 
Lipschitz constants. Zhang [9] studied the local exact 
controllability of semi-linear evolutions systems. Naito 
[5] and Seidmann [10] used the Schauder fixed-point 
theorem to prove the invariance of the reachable set un- 
der nonlinear perturbations. Klamka [11-13] studied suf- 
ficient conditions for constrained exact controllability in 
a prescribed time interval for semi-linear dynamical sys- 
tems in which the nonlinear term is continuously Frechet 
differentiable are formulated and proved assuming that 
the controls take values in a convex and closed cone with 
vertex at zero. The method used covers a wide class of 
semi-linear abstract dynamical systems and is specially 
useful for semi-linear ones with delays. Balachandran 
and Sakthivel [14] studied the controllability of semi- 
linear integrodifferential systems in Banach spaces by 
using the Schaefer fixed-point theorem. Fabre et al. [15] 
prove approximate controllability in  for 1 ≤ p < 
  by means of a control which can be internal or on 
the boundary and when the nonlinearity is globally Lip-
schitz. Other related abstract results were given by Zua-
zua [16], Lasiecka et al. [17] and Kassara et al. [18]. 

The study of various analytic concepts related to con- 
trollability and stability of such systems is, in general, 
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delicate and considering only linear model can not be 
sufficient in particular when some properties of system 
needs to be satisfied only in some part of the system 
evolution domain. From practical point of view, it is very 
natural to consider the analysis of such systems only in 
some subregion of its evolution system domain. This is 
the aim of regional analysis.  

The regional analysis of distributed parameter system 
has recieved an intensive study in the last three decades.  

The term “regional analysis” has been used to refer to 
control problems in which the target of our interest is not 
fully specified as a state, but refers only to a smaller re- 
gion   of the system domain. This concept has been 
widely developed and interesting results have been ob- 
tained, in particular, the possibility to reach a state only 
on an internal subregion   of  (El Jai et al. [19]) or 
on a part of the boundary  of (Zerrik et al. [20]). 
The principal reason for introducing this concept is that, 
first it makes sense for the usual controllability concept 
closer to real world problem and, second, it can be ap- 
plied to systems which are not controllable on the whole 
domain. Here we are interested on regional controllabil- 
ity of semi-linear parabolic systems. More precisely the 
question concerns the possibility of regional controllabil- 
ity for semi-linear system in the case where the desired 
state is given only on an internal subregion 




  of   
or on a part of the boundary 

 1,n 
 [0, ]Q T 

[0, ].T  

 of  .  
The interest of this work focused on the development 

of an approach that leads to numerical implementation 
for the computation of the control which steers the sys- 
tem from an initial state to a given regional internal and 
boundary state. A typical motivating example is the case 
of a biological reactor, where the problem is to regulate 
the concentration of a susbstratum at the bottom of the 
reactor [21].   

In Section 2, first we present some preliminary mate- 
rial and state internal regional controllability problem of 
semi-linear systems. Next, we concentrate on the deter- 
mination of a control achieving regional internal control- 
lability, and we develop a numerical approach that leads 
to a useful algorithm and successfully tested through a 
diffusion process. Section 3 is focused on the regional 
boundary target control problem, and an approach is de- 
veloped that leads to a numerical algorithm for the com- 
putation of a control which achieves regional boundary 
controllability. Numerical illustrations show the effi- 
ciency of the approach and lead to conjectures.  

2. Regional Internal Controllability 

2.1. Statement of the Problem 

Let  be a regular bounded open set of IRn,  with 
boundary . For a given time T > 0, let , 
and  We consider a semi-linear parabolic 

system excited by controls which can be applied via var-
ious types of actuators given by the following equation  

       

 
   0

, , ,

,  0

,0  

y
x t Ay x t Ny x t Bu t Q

t
y t

y x y x




  


 













  (2.1) 



where A is a second-order linear differential operator, 
which generates a strongly continuous semi-group   
  S t 2L 

0t
 on Hilbert space  and N a locally lipschitz 

continuous nonlinear operator.   2,pB IR L  ,   
 2

0y L  U and u   where   

      2 20, ; ;p
uU u L T IR y T L   



 

where p represents the number of actuators. We denote by 
U the completion of the space U  endowed with the 
standard norm of  2 0, ;L T  . Denote by  .yu  the 
solution of (2.1) when it is excited by a control u, suppose 
that    2 2. 0, ;y L T Lu  

 , ,D f
. Let us recall that an actuator 

is conventionally defined by a couple  where 
D    is the geometric support of the actuator and f is 
the spatial distribution of the action on the support D, see 
[22]. In this case,      .Bu t f x u t D  In the case of 
pointwise actuator (internal or boundary),  D b
f

 and 

b , where b  is the Dirac mass concentrated at  
in this case, the actuator is denoted by 

;b
, bb   and 

     Bu t x u t
y

b

Let u  be the solution of (2.1) excited a control u and 
assume that 

.  

    2 2. 0, ; ,y L T L   see [23].  u

For    , open, nonempty and of positive Lebesgue 
measure, we consider the operator restriction  

   2 2:

           

L L

y y


 





∣

 

and 
  denotes the adjoint operator.  

Definition 1  
 System (2.1) is said to be  -exactly regionally con- 

trollable if for all  2 ,dy L   there exists a control 
u U  such that   .u dT y   y

 System (2.1) is said to be 


 -approximately regionally 
controllable if for all 2

dy L    and for all 0  , 
there exists a control u U  such that   

   
 2 .u d L

y T y 
   

The notion of regional controllability considered as a 
particular case of output controllability was introduced 
and developed for linear system in (El Jai et al. [19], 
Zerrik et al. [20]).   

It is clear that: 
 If system (2.1) is regionally controllable on   then it 

is regionally controllable on any 1 .    
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 In the linear case, one can find states which are ap- 
proximately regionally controllable on   but not 
controllable on the whole domain  , see [19,22].  

To study the controllability of the system (2.1), we 
consider its corresponding linear system   [N

         

 
   0

, , ,

, 0

,0

D

y
x t Ay x t Ny x t f x u t

t

y

Q

y t

x y x






  



Copyright © 2012 SciRes.    

0 in (2.1)],

   

 
   0

, ,

, 0

,0

y  x t Ay x
t

y t

y x y x




















t Bu t Q 




       (2.2) 

The problem of regional controllability on   for (2.1) 
can be stated as follows:  

Problem 

 
nd a control 

u dT y 

For  a desired state, fi

 such that 
dy

u U y




   (2.3) 

More precisely, it is asked to find a control which steers 
system (2.1), at time T, to a desired state defined in sub-
region   

u

.  

2.2. Hilbert Uniqueness Approach 

The aim of this section is to give an extension of regional 
controllability and Hilbert uniqueness method introduced 
in the linear case by (El Jai et al. [19]) and [24] which 
allows the characterization of a control  solution of 
(2.3). The system (2.2) is approximately controllable in 
  and system (2.1) is excited by a zone actuator  ,D f . 
System (2.1) may be rewritten in the form  

 
 









 

 (2.4) 

    2 2 2 2: 0, ; 0, ;N L T L L T L and the operator   
verify  

       
 

2 222 0, ;0, ;
,

,

L LL TT L
N x c x

c c T




 
      (2.5) 

   2 such that 0 on \G g L gLet       

   

 
   0

, ,

, 0

,

x t A x t Q
t

t

x T x

 

 
 


 


 
 









        (2.6) 

Which has a unique solution  2 20, ;L T L  

G

 see 
[25].  

For a given 0  , we consider the system (2.6) and 
define the mapping  

    2

1
2 2

0 0
, d

T

G L D
f t t           (2.7) 

Which is a norm on G; since the system (2.2) is ap-
proximately controllable in  .  

Consider the system 
 

           

 
   

2

0

, , , ,

, 0

,0

DL D

y
x t Ay x t Ny x t t f f x Q

y x

   

 
 

t
y t

y x













                   (2.8) 



and the associated linear system  

         

 
   

2

0

, , ,

, 0

,0

DL D

y
x t Ay x t t f f x Q

t
y t

y x y x

 




 


 
 




                            (2.9) 




The system (2.8) may be decomposed in the following three systems 

   

 
   

1
1

1

1 0

, ,

,    0

,0

x t A x t Q
t

t

x y x




 


  















                                           (2.10) 



and  
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       

 
   

2
2

2

2

2 0

, , ,

,    0

,0

L D
  

D
x t A x t t f

t
t

x y x




  





 
 



f x Q 




                      (2.11) 

  is the solution of (2.6) and where 

   

 
   

3
3 1

3

3 0

, ,

,    0

,0

 2 3x t A x t N
t

t

x y x




     







 
 



Q 




: G G 

                        (2.12) 

 

We denote the completion of the set G with respect to 
the norm (2.7) again by G.  

given by (2.14). 
Sketch of the proof: The proof may be easily achieved 

with the following two steps:  Let  be defined by    0 2P T
P

   
where   

  3

Step 1: We prove that K is a compact operator and then 
deduce that 

.  
K  is also compact.  Now, with the nonlinear operator  

  0 2P T P T 

  1y P T  

  
  

1

0 1

T P T

P T

 



:

    
Step 2: Applying the Schauder fixed-point theorem, we 

see that the operator K

 0N

 has a fixed point. For more de- 
tails we refer the reader to [26].  The problem of regional controllability (2.3) turns up to 

solve the equation  which is 
equivalent to  

0 d  Remark 1 
The above approach is a generalization of the Hilbert 

uniqueness method given in the linear case   and 
the operator 

     
 

2 3d

d

P T y P

y K







 





   

 
   coincides with the isomorphism  .  

Algorithm 1 
Summing up, in the zone case, the regional controlla- 

bility is obtained via the following simplified algorithm  
where K G G

  
  is the operator defined by the formula 

 K 0 3P T 

 
 . Then we have 

   0 1 0Tdy K P           (2.13) 

The linear system (2.9) is approximately regionally 
controllable in  , then  is one to one see [19]. 

1

  1
0 1 0P T

Apply  the equation (2.13), we have 

   1 1
dy K             

Now, we define the nonlinear operator K

  1
0 1

 by 

     1 1
0 dyK K

 Step 1: We take the following initial conditions  , 
y , f, D and d  .  

 Step 2: Using the pseudo-code.  
 Resolution of (2.6) and obtaining .  
 Resolution of (2.10) and obtaining 1  .

.

.
 Resolution of (2.11) and obtaining 2  
 Resolution of (2.12) and obtaining 3  
 Calculation of 1  and obtaining  K 0 . 
 Resolution of  0KP T           (2.14) 0   and obtaining 0 .  
 Until  0 0K .     

     2,
L D

t f . Then the problem (2.3) of system (2.7) turns up to 
search a fixed point of 

u t   Step 3: The control 
K , then we have 

Proposition 1 2.3. Simulations 
Assume that (2.5) holds. If the linear system (2.9) is 

approximately regionally controllable in The goal of this section is to test the efficiency of the 
previous algorithm. The obtained results are related to 
the considered subregion, the desired state and the ac- 
tuator structure. Let 

 , then the  

control      2,
L D

t fu t   steers the system (2.8) to  

   0,1 0,1 ,    and consider the 
one-dimensional diffusion system described by 

d  in y   at t  where ,T   is the solution of the 
system (2.6) and K   0  is a fixed point of the operator 

       

   
 

2

2
1

, 0.1  , , , [0,1] [0, ]

0, 1, 0 [0, ]

,0 0 [0,1]

j j j
j

y y
x t x t Bu t y y T

t x

y t y t T

y x

  




 
       

 



              (2.15) 
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2.3.1. Zone Actuator 
In this case      x u tD  where Bu t   0.22,0.37D  
The subregion under consideration is  0.30,0.58


 

 
.  

  1 0.9 0Let .4 10d  be the de- 
sired regional state in 

y x x  x x x 
 . Using the previous algorithm1, 

the simulation gives the Figure 1.  
The regional desired state  is reached with error  dy

 
 2

2

d Lu
y T y 

 
107.16 10    

and transfer cost 
2

u 11.57 10 

 t  0.67.b 


. 

2.3.2. Pointwise Actuator 
In this case  where   bu tBu

 . We consider the subregion 0.38,0.68
 0.4x 

  
Let d  be the desired 

regional state on 
y x   2 1 0.9x x x  

Figure 1. Desired state (continuous line) and final state 
(dashed line) on the region ω.  

 . The simulation gives the Figure 2. 
The regional desired state  is reached with error  dy  

 
 2

2

d Lu
y T y 

 
91.15 10    

and transfer cost 
2

u 28.75 10  . 

2.3.3. Relation between the Subregion and Location of 
the Pointwise Actuator 

The following simulation results show the evolution of 
the desired state error with respect to the actuator loca- 
tion. Figure 3 shows that:  
 For a given subregion   and a desired state, there is 

an optimal actuator location (optimal in the sense that 
it leads to a solution which is very close to the desired 
state).  

 When the actuator is located sufficiently far from the 
subregion  , the estimated state error is constant for 
any location.  

 

Figure 2. Desired state (continuous line) and final state 
(dashed line) on the region ω.    The worst locations correspond to non strategic ac- 

tuators in  0,1  , as developed in the linear case 
see [19].  

Figure 4 shows that, for a given subregion and a 
desired state, there is an optimal actuator location in the 
sense that it leads to a smaller transfer cost.  

The results are similar for other types of actuators.  

 

3. Regional Boundary Controllability 

The aim of this section is to give an extension of the 
concepts of regional internal controllability [26] to the 
case where is a part of the boundary of the domain. The 
developed   method is original and leads to a numerical 
algorithm illustrated by simulations.  

3.1. Considered System and Problem Statement  
Let  be a bounded open domain in IRn (n = 1, 2, 3) 
with a regular boundary  . For T , we write  


0

Figure 3. The evolution of the estimated state error with 
respect to the actuator locations.  
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Figure 4. The evolution of the transfer cost with respect to 
the actuator locations.  
 

 0,Q T  ,  0,T    and consider the fol- 
lowing semi-linear parabolic system  

       

 

   0

, ,

, 0

,0
A

y
,x t Ay x t Ny x t

t
y

t

y x y x




   
 


 


Bu t Q





   (3.1) 

where 
 A is a second-order linear differential operator, which 

generates a strongly continuous semi-group   
0t

S t


 
on Hilbert space  1  .  X H

 , , .R X 

 

 N a locally lipschitz continuous nonlinear operator. 
 y X  0

pB I

 u U   where   2 0, ; pL T I 
uU u T X  with  R y

y
U

 ;

u

We denote by U the completion of the space  en- 
dowed with the standard norm of 

 be the solution of (3.1) excited by a control u. 

2 0, pL T 
.T

.  
Assume that u  The controls may 

be applied via various types of actuators see [22].  
  2. 0,y L ; X

The associated linear system is 

     

 

   0

, ,

, 0

,0
A

y
  x t Ay x t

t
y

t

y x y x





 














Bu t Q

 

 



     (3.2) 

For Γ being a regular subset of  which has posi- 
tive Lebesgue measure, consider the restriction operator  

   
1 1

2 2:  

 |

H H

y y 

  


 

where 
  denotes its adjoint operator.  

 Let us  
1

1 2
0 : H H    0 whilst  



 is consid- 

ered for the adjoint operator.  
We introduce the definition. 
Definition 2 
The system (3.1) is said to be -exactly (resp.  - 

approximately) regionally controllable if for all   

 
1

2
dy H  0 (resp. for all   

u U

) there exists a con- 

trol  0 u dy T y    (resp.    such that 

   
1

20 u d H
y T y   

).  

This definition generalizes the standard ones of exact 
and approximate controllability on the whole domain .  

Remark 2 
1) The notion of regional controllability considered as 

a particular case of output controllability was introduced 
and developed for linear system in [20].  

 -exactly (resp. 2) A system which is  -approxi- 
mately) regionally controllable is 1 -exactly (resp. 1  - 
approximately) regionally controllable for all 1   .  

3) The above definitions do not allow for pointwise or 
boundary controls since, for such.  

 ,pB IR X  and the solution  4) systems 
   2.y L .u    However, the extension can be carried 

out in a similar manner if one takes regular controls such 
that    1y T Hu  

y ,  

 0

For  desired state, fined a control 

 such that  
d

u d

y

u U y T y 


  

 [27].  
In the sequel, we explore the possibility of finding a 

control which ensues the transfer of system (3.1) to de- 
sired d  on the boundary subregion  consider 
the problem  

   (3.3) 

3.2. Theoretical Approach 

Firstly, the following result provides a link between re- 
gional internal controllability see [26] and regional boundary 
controllability for semi-linear systems.  

Consider the linear and continuous extension operator  

   
1

12:R H H   0 ,Rg g such that   for all 

 
1

2g H .   For  
1

2
dy H , we denote by   dy

dy

 the 

extension of  to   and we define  

   

 
1

2

1
1 2

d

d d

d

y H

D Ry H y H

V suppRy
 

       
  

 

0r 

 

 ,r
z

F B z r


   and  Let  integer small, we set 
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r rF V   ,B z r , where  is the open ball of radius r 
and center z, see [28]. Then, we have the following result.          

Proposition 2 
If the system (3.1) is r -exactly (resp. r -approxi- 

mately) regionally controllable, then it is -exactly (resp. 
-approximately) regionally controllable.  




Proof 

Let  
1

2 ,dy H   then by trace theorem, there exists  

 1
dRy H   with a bounded support such that   

 0 .d dRy y  

Since the system (3.1) is r -exactly controllable, then 
there exists a control  such that  u U

  .
r ru dy T Ry  

  

 

Thus 0  

 0 r
  



r u dy T y

 u dy T y

r

 and then  

.  Consequently, the system (3.1) 

is -exactly controllable. 
Now, if the system (3.1) is  -approximately con- 

trollable, for all 0  , there exists  such that  u U

 
 1

r
u d H

Ry
r r

y T    

0

 

and by continuity of the trace mapping  , we have  

 
 

1

2
r

d H
y

0 0r ruy T R     


    

therefore  

 
 

1

2u d H
y0 r

y T   
  



u

 

Consequently, the system (3.1) is -approximately con- 
trollable.  

Secondly, we develop an approach devoted to charac- 
terize a control  solution of problem (3.3), when the 
system (3.1) is r -approximately controllable. The ap- 
proach we shall use is based on an extension of regional 
controllability techniques for linear systems developed in 
(El Jai et al. [19]) and Hilbert uniqueness method see [24].  

The system (3.2) is excited by a control applied by 
means of a zone actuator  where  is 
the actuator support and 

 ,D f
 20

D    
f L D   defines the spa- 

tial distribution of the control on D, then the system (3.2) 
may be written in the form  

 

   0

, , ,

, 0

,0

D

A

y
x t Ay x t Ny x t f x u t Q

t
y

t

y x y x






    


 (3.4)  


  


   2 2: 0, ; 0, ;N L T X L T X  verify The operator 

     

 
22 0, ;0, ;

,

0 , 1 is a constant.

L T XL T X
N x c x

c c T



   
     (3.5) 

Let G be the set 

  such that 0  \ rG g X g in     

For  
1

2
dy H , we denote by   dy

dy .

 the extension of 

 to   

Consider the system 
0

d

z

z y

  
                (3.6) 

 
where   is the Laplace operator. The system (3.6) has a 
unique solution z in  1H  . Let  the restriction of z 
in 

dz
 1 .H   r

The problem of reaching d  on  may then be 
solved by reaching d  on 

y 
z .r  Then the problem (3.3) is 

formulated as follows:  

 
  

1For , a desired state, find a control 

 such that ?
r

d r

u d

z H

u U y T z




 
  

0 G

(3.7) 

 , the system For 

   

 

   0

, ,

, 0

,

r
r

r

A

r

x t A x t Q
t

t

x T x









 


   


        (3.8)  


  


    2 0 20, ; 0, ;r L T X C T Lhas a unique solution     
[28]. 

In G, we define the mapping 

   2

1/2
2

0
0

, d
T

rG L D
f t t 

 
  
 


r

      (3.9) 

which is a norm on G; since the system is  -approxi- 
mately controllable see [19].  

Consider the system 

           

 

 

2

0

, , , ,

, 0

r DL D

 ,0
A

y
x t Ay x t Ny x t t f f x Q

t

y x

   

 

 

                   (3.10) 

t
y

y x





 





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and its associated linear system is  0rK 

         

 

   

2

0

, , ,

, 0

,0

L D

A

y
r Dx t Ay x t t f

t
y

t

y x y x




   








f x Q 

 

 

(3.11) 

omposed into the fol- The system (3.10) may be dec
lowing three systems  

   

 

 

1

1

1 0

, 0

,0
A

 

1, ,x t A
t

t

x y





 





 


x t Q

x

 

 



       (3.12) 


and 

         

 

 

2
2

2

2

2

, , ,

, 0

,0 0

L D

A

r Dx t A x t t f
t

t

x




    


 
 



f x Q 

 



(3.13) 

where r

  

  is the solution of (3.8) and 

     

 

 

3
3 1

3

3

, ,

, 0

,0 0
A

2 3x t A x t N
t

t

x




      





 



Q 

 



 (3.14) 

eno  G with respect to 
the norm (3.9) again by G.  

Consid : G G   defined by  

 where G

We d te the completion of the set

er the operator 

     0 2P T   e dual of G  and 

.
r r 

is th

P    

Let us now define the nonlinear operator 

  3P T   

0 1

which is equ t to 



  0 2P T  

The problem of regional controllability (3.3) turns up to 
solve the equation  

  
r dz P T

    

ivalen



      2 3r dP T z P T P
       

  
1

0 1

T

P 
 

where :r

 
r d rz K   T

K G G     is the operator defined by 

  3P T , which gives  

      0 1 0r d rz K P T            (3.15) 

Since the linear system r (3.11) is  -approximately 
regionally controllable, then   is one to one see (El Jai et 
al. [19]).  

1Apply   the equation (3.15), we have  

 1

r dz     1 1
0 1 0rK P T            

Then a solution of problem (3.3) of syst  (3.10) turns 
int of nonlinear operator r

em
Kup to search a fixed po   de- 

fine by  

        1 1 1
0 0 1rr d rK z K P T               

(3.16

Then we
Proposition 3 
If the linear system (3.11) is r

) 

 have: 

 -approx
gionally controllable, then the control   

imately re- 

     2,r r L D
t t f   drives the sys  (3.10) to dy  

in 

u tem  

  at t T , where r  is the solution of the system 
(3  ris a fixed point of the operator K.9) and 0   given by 
(3.16)

Proof 
Step 1: We prove that r

.  

K  is a compact operator. 
Let the ball  0,pB B p  in X, we have  

     3 0r p pK B P T B   , 

and we set  

       3 0 , 0,r p pK B P T B t T     

Where  3 .  is solution of the system (3.14). 

3
0

t S t N

We have 

  
t

      1 2 3 d             

(3.17) 

 3 0 ;C T X   see [23] and there exists 0  such 
that   

, 1c

    3 1 3 .P T c t    
G

Since 

X

 .S  is a strongly continuous semi-group on 
 0,T , then there exists 0M   such that  

    
,

, 0,
L X X

S t M t T    

and from (3.17), we have  

Copyright © 2012 SciRes.                                                                                  ICA 



A. KAMAL  ET  AL. 154 

     

 

3t

 

 

3 t
10

1 2
0 0

d d

d d

iX
i X

t t

X X

t

S t N

Mc

3
0

d
X

Mc

   

   



   
  

 
  




 



 

Since 1  is solution of the system (3.12), then 
   1 0S y    and we have  

  

  

  

 

 1 0
0

t

XX
MT y           (3.18) d

Since 2  is solution of the system (3.13), then we 

 2, dr DL D
f f s  

and 

have  


     2
0

S s s     

     

 

2

2

2

2

22

L D
0

0

drX X

L D G

M f s s


 




 

th

M T f

 

en 

   2

22
2 0

0

t

L D GX
f2d M T       (3.19) 

thus 

   

 

2

22 3 2
3 0 0L DX GX

M cT y M cT f  

3
0

d
t

X

t

Mc   
 

By Gronwall’s lemma, we obtain 

     2

22 3 2
3 0 0 eMcT

L DX GX
t M cT y M cT f      

(3.20) 

then 

  

  
0

2

3

22 3 2

sup

e

Gp

M
1 0

cT

L D

P t

c M cT y M cT p f









 

Hence, 

X

 r pK B  is uniformly bounded. 
Let show that  r pK B  is relatively compact, indee

for 10 t T
d: 

  and 0h  , we have 
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ve from (3.18), (3.19) and (3.20), we ha

    2
2 2

1 1 0 0 1 e
2 McT

X L DX G
B c MT y M T f McT    
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    2

23
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B McM y McT cM T f Mc      

 
Thus 

T

     3 1 3 1 1 1 2G
A AP t h P t     
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L DX
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and 

  2
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P t       Then,  r pK B  

is relatively compact. 
the Arzelà-Ascoli theorem see [29Finally, by 

:r p

,30], 
K B G  is a comp :r pact operator, then K B G
is also compact.  
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g used the fact that 
Let 0 s p  32 such that s A , then we have 

 0r G
K s  0 G  at  such th 0 G

s  . 

Hence, by applying Schauder’s fixed point theorem see 
operator r[30], the K  at least one fixed point, and t
mpleted.  

Algorithm 2 
With the same hypothesis as in the last section, we

th o

he 
proof is co

 have 
e following alg rithm  

 nitial conditions, subreg
 , r

Step 1: we choose the i ion 
 , dy , and e func th tion f , D and  .  

Step 2: using th udo-c
 ining .r

 e pse ode. 
Resolution of (3.8) and obta   

 o tion o 3) and
 ation of 0r

Res f (3.12), (3.1  (3.14)  
C 1  an  K

lu
alcul d obtaining  . 

 Resolution f o  0 0rK   and ob taining 0 .  
 Until  0 0 .rK     
 Step 3: The cont l    ro

 2,r r L D
u t t f  . 

3.  Example 

error, the results are related  the choice of the subregion 
and the desired state to be reached.  

Consider the two-dimensional diffusion system 

3. Numerical

In this subsection, we present a numerical example which 
uill strate the previous algorithm. It shows that there exists 

a link between the subregion area and the reached state 

 to
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 (3

,
A A  



3.3.1. Zone Actuator 
We consider 
 The actuator is located in 

   0.36,0.57 0.38,0.58D   . 

 [0,1] [0,1]   , [0,0.1] [0,0.1]r   : Intern subre- 
gion target. 

  0 [0,0.4]   : Boundary subregion target. 

   3 2 0.03
6 2dz x y y   

 
: The desired state

1 1 
 to be 

reached in .  

   3 2 3 21 1 1 1
0.09 0.03

6 6 6 2dy x x x y y
        
  

: The 

extension of desired state dy  on .r  

 Using the previous algorithm 2 in the case zone ac- 
tuator we have Figures 5-8. 

Using the previous algorithm, the regional desired 
state dy  is obtained with error  

 
 2

2
41.0 10 ,13d

L
y 


    0

ru
y T  

and cost 51.03 10 .ru    
 

 

Figure 5. Desired state on the region ωr. 
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Figure 6. Final state on the region ωr. 
 

 

Figure 7. Desired and final state on the region ωr. 
 

 

Figure 8. Trace of desired and final state on the region Γ. 

3.3.2. Relation between the Subregion Area and 
Reached State Error 

The reached state error depends on the area of the subre- 
gion where the desired state has to be given. This error 
grows with the subregion area. It means that the larger 
the region is, the greater the error is (see Table 1). 

The results are similar for other types of actuator. 

3.3.3. Pointwise Actuator 
In this case, we have 
 The actuator is located in  1 2,b b b  with b1 = 

0.162, 2 0.165.b   
        0,1 0,1   , 0,0.2 0,0.5r    Intern subre- 

gion target. 
   0 0,0.5   : Boundary subregion target. 

   3 22 1
0.1z x y y

    : The desired state to b

reached in .
3 5d  

 
e 

  

   3 2 3 22 1 2 1
0.1 0.1

3 5 3 5dy x x x y y
        
  

: The 

extension of desired state dy  on .r  

 Using the previous algorithm 2 in the case point wise 
actuator we have Figures 9-12.  

 
Table 1. The relation between the subregion area and 
reached state error. 

Region  2

2

d f L
y y  
  

  0 0,0.9  46.4754 10  

  0 0,0.8  44.6780 10  

  0 0,0.6  42.2452 10  

  0 0,0.5  41.5075 10  

   0 0,0.4  41.0133 10  

 

 

Figure 9. Desired state on the region ωr. 
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Figure 10. Final state on the region ωr. 
 

 

Figure 11. Desired and final state on the region ωr. 
 

 

Figure 12 egion Γ. 

. Conclusions 

The work is provide an interesting tool to achieve regional 
internal and boundary target for a semi-linear parabolic 
system excited by actuator. The problems of regional 
controllability are solved using linear regional controlla- 
bility techniques and by applying HUM method and fixed 
point theorems. The obtained result leads to an algorithm 
which was implemented numerically. Examples of vari- 
ous situations and simulations are given. 

Various open questions are still under consideration. 
For example, this is the case of the problem where we test 
this algorithm for real applications. This case is presently 
being studied and the results will appear in a separate 
paper.  

The problem of regional controllability problem for 
semi-linear parabolic systems with time delays is of great 
interest and the work is under consideration and will b
the s
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