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ABSTRACT 

In this paper, stable indirect adaptive control with recurrent neural networks (RNN) is presented for square multivari- 
able non-linear plants with unknown dynamics. The control scheme is made of an adaptive instantaneous neural model, 
a neural controller based on fully connected “Real-Time Recurrent Learning” (RTRL) networks and an online parame- 
ters updating law. Closed-loop performances as well as sufficient conditions for asymptotic stability are derived from 
the Lyapunov approach according to the adaptive updating rate parameter. Robustness is also considered in terms of 
sensor noise and model uncertainties. This control scheme is applied to the manipulator robot process in order to illus- 
trate the efficiency of the proposed method for real-world control problems.  
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1. Introduction 

Research in non-linear control theory has been motivated 
by the inherent characteristics of the dynamical systems 
to control. Many systems are non-linear, their dynamics 
are not perfectly known and therefore not exactly mod- 
elled. Control engineers have hardly worked to improve 
the usual control methods as PID in order to guarantee 
closed loop stability in the presence of unmodeled dy- 
namics and external disturbances. But, despite these ef- 
forts, conventional linear control techniques cannot meet 
all requirements to satisfy system performances, and adap- 
tive control seems today an efficient strategy to study the 
stabilization and tracking of highly uncertain dynamical 
systems.  

Since neural networks (NNs) have the advantages of 
inherent approximation capabilities and learning ability, 
they have been successfully implemented for identifica- 
tion and control of non-linear systems [1-10]. Especially, 
RNNs are suitable for dynamic mappings and lead to 
good control performance in the presence of unmodeled 
dynamics [10-12]. 

It is well known that FFN and RNN could be used as 
components in feedback systems [13]. The control sys- 
tem must satisfy three main conditions: boundedness of 
the NN weights, boundedness of the tracking error and 
stability of the global system under control. In an attempt 
to guarantee these criterions, a considerable research ef- 
fort has concerned the design of neural networks con- 
trol with high accurate tracking performances and strong 

robustness [14]. A major design technique has emerged 
with the use of the Lyapunov theory. The main advan- 
tage of this approach is that the parameter adaptation 
laws ensure the asymptotic stability of the closed-loop 
system.  

The adaptive neural controllers can be classified ac- 
cording to three structures, such as, inverse model [15], 
direct [1,5,14] and indirect [9,10,13] control design. 
Neural control schemes can also be divided into “pure” 
neural controllers [1,11,13] and neural controllers com- 
bined with other conventional control strategies such as 
back stepping and sliding mode [5,14,16]. In that case, 
the role of neural networks is to approximate the non- 
linear part of the input-output relation. 

For multivariable nonlinear systems, due to the cou- 
plings among various inputs and outputs, the control pro- 
blem is more complex and few results are available in the 
literature. In [8,9] the authors presented a stable adaptive 
control scheme for a multivariable nonlinear systems 
with a triangular structure using multilayer neural net- 
works. The control design is based on integral type 
Lyapunov function and the block-triangular structure 
properties. These control schemes, however, cannot be 
extended to the general class of MIMO nonlinear sys- 
tems. 

The preceding works suffer from one or more of the 
following drawbacks: 1) the NNs used are linearly pa- 
rameterised, whereas a non-linear model is necessary in 
order to control non-linear systems. 2) The system to be 
controlled is of a special known structure, (e.g., a train- 
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gular structure). Such results cannot be directly applied 
to an entirely unknown system. 3) The performances, for 
example stability and robustness, are locally guaranteed. 
4) The model and/or the controller are fixed at the end of 
the training phase and the operational phase perform- 
ances can be strongly degraded. It is often difficult to 
obtain the data which cover the whole range of the proc- 
ess excitation (problem of sufficient excitation).  

In contrast to the above, the result presented in this 
paper avoids these drawbacks by establishing a stable 
adaptive control scheme based on the use of recurrent 
neural networks. In order to prove the industrial interest 
of the method for engineers, the application and valida- 
tion of IDNC have been applied to robot manipulator 
which is a nonlinear system, multivariable with time- 
varying and/or inaccurately-known parameters. The con- 
trolled process is considered as a “black box” whose op- 
erating model is completely unknown. The main advan- 
tage of the proposed method is that models of the sys- 
tems do not have to be known. Starting from zero values, 
weights, updating rates and time parameters of both 
adaptive instantaneous neural model and controller one, 
adapt themselves in order to track continuously the plant 
dynamics.  

This paper is organized as follows. Section 2 describes 
IDNC structure, adaptation algorithm, stability and ro- 
bustness conditions. Section 3 deals with the manipulator 
robot definition. In Section 4 the experiment results are 
presented. Finally Section 5 concerns our conclusions 
and perspectives.  

2. Adaptive NN Control 

The proposed control scheme is an Indirect Neural net- 
work Controller (IDNC) composed of two separate fully 
connected recurrent neural networks: the Neural Con- 
troller (NC) and the Adaptive instantaneous Monitoring 
Network (AMN) [13]. The aim of AMN is to provide an 
estimation of the process output(s) during a short time 
window in order to drive NC. The subscripts m and c are 
used to distinguish the AMN and NC respectively. The 
updating of NC and AMN is synchronous (Figure 1, the 
dash lines show the RTRL paths to update the parameters 
of AMN and NC). Discrete time is considered and for 
simplicity, let us refer to instant t = kΔT by using the 
integer k, with ΔT the sampling period.  

Let us define NIN and NOUT respectively as the number 
of plant inputs and outputs and assume that NIN = NOUT, 
where IN and OUT represent the set of input and output 
indexes.  

When the process is running, the neural networks con- 
tinuously adapt. Comparison of the physical measure- 
ments with the neural network inputs and outputs is real- 
ised at each time. All the measured and manipulated  
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Figure 1. Structure of the indirect neural network control, 
the dimension of Y(t), 


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(t) and (t) is NOUT, the dimension 
of U(t) is NIN. 
 
variables X correspond to physical signals (angular posi- 
tions, spherical-coordinates, etc.) and have positive val-
ues constrained into an interval .  min max

The activation function of the neurons are hyperbolic 
functions, therefore the network outputs evolve into the 
interval  .  

The algebraic expression of this transformation is giv-
en by:  

min max min max[ : ] [ : ]X X X X

   

            (1) 

Let us notice that there is no pre or post-training phase 
but only an on-line updating of the weights, time pa- ra-
meters and adaptation parameters. 

To avoid the problem of persistent excitation and to 
provide an instantaneous model that adapts itself when 
plant or environment changes, AMN parameters are up- 
dated in real time. Since adaptation continues as long as 
the controller drives the process (it is not our intention to 
memorize the dynamics of the controlled system). The 
idea is to compute an instantaneous behavioural model 
from input and output data of the plant. This instantane- 
ous model is used to automatically update the controller 
parameters in order to track the process variations. The 
real time adaptation provides an efficient compensation 
of the unpredictable process disturbances and sensor. 

The autonomous evolution of AMN and NC starts from 
zero values. It results in a compact structure with a small 
number of nodes (Nm = NIN + NOUT neurons for AMN and 
Nc = 2 × NOUT neurons for NC) [13,17]. The dynamics of 
Nm and Nc neurons are given according to “Equations (2) 
and (3)” respectively.  
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    (3) 

where B(k) = (Bi(k))  IRNm and D(k) = (Di(k))  IRNc are 
considered as constant during each sampling period with: 
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i(k) corresponds to the ith plant desired output to be
tracked. Ŷi(k), Wij(k) (resp. Ui(k), ij(k)) and 1/ represen
respectively the ith neuron state, weights value from jth to 
ith 

 
t 

neuron and the adaptive time parameter of NC (resp. 
AMN). 

The development of autonomous adaptation algorithm 
parameters are given by “Equations (6), (7) and (8)”. 
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small parameter uncertainties and
n have an unfavourable impact on performance as well 

as stability. In addition, the dynamic behaviour of the 
networks can lead to instability of the plant.  

The application of the following theorems [11,17-20], 
guarantee the stability and robustness properties of the 
closed loop system. 

Theorem 1  
Let  be the adaptive updating rate of both the model 

and control network
fined by:  
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2where b ac    depends on the updating procedure 
and must be non-negative. 

Theorem 2  
 be the ad

ared to the process dynamics. 
Th

Let  aptive learning rate of both the moni- 
toring and control networks. Suppose that the sensor 
no ies compise quickly var
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sufficient condition holds: 
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Theorem 3  
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A sufficient condition on the uncertainty parameters 

(W, ) for rob t stability is given by: 
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where 


.  is the infinite norm of a matrix and K a con- 
fidence band of uncertainties which dep
nominal parameters of AMN. 

re 2

 on a medical 

 

ends on the 

Figu  sums up different conditions on the networks 
parameters that perform the robustness and the stability 
of the control system. Theorems 1 and 2 constrain ex- 
plicitly the evolution of the adaptation parameter h and 
indirectly the evolution of other parameters. Theorem 3 
describe robustness stability performance 

3. Control Design for the Manipulator Robot 

Our proposed control algorithm is applied
robot designed for dental implantation (Figure 3) [21]. 
The robot is a semi-active mechanical device. It has a 
passive arm and a motorised wrist with three degrees of 
freedom that are not convergent. The base of the medical 
robot is passive, i.e. it is not motorised and can be ma- 
nipulated by the surgeon in any direction. 

The aim of the controller is to guide the surgeon so 
that it will respect the scheduled orientation.  

The difficulty of the robot control lies in the calcula- 
tion of the inverse model that connects the geometric 
variables to joint variables. Indeed, for a given direction 
of the robot end-effector, joint variables can be calcu- 
lated by solving the inverse model equations which per- 
mits multiple solutions. According to the actual position 
of the actuators and the calculated joint variables, the 
controller must select the optimal solution which pre- 
vents large rotation of the actuators. The IDNC approxi- 
mates both the direct and inverse model of the robot by 
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Figure 2. Updating including the different conditions in the network parameters space evolution. 
 

 

Figure 4. Spherical-coordinates. 
 
converge asymptotically to the reference signal.  

Note that, the angular positions of both actuators, re- 
sulting from  5(c)). 

We observed fast variations of the θ and  spherical- 
rement 

no
 fil- 

te

 

ot. 
 
AMN and NC. T  adapted in real 

me in order to minimise a quadratic cost function. This 

d ones of 
th

ta and 
do

r adaptation 
al

Figure 3. Medical rob

he IDNC parameters are NC, have a smooth form (Figure
ti
cost function is defined according to the difference be- 
tween the orientation of the “robot end-effector” vector 
and the orientation of the “patient” vector and also its 
variation. Maintain the same orientation between the two 
vectors are considered as the control objective. 

The angular positions of both actuators are considered 
as plant inputs. The process outputs and desire

coordinate of the robot end-effector due to measu
ise from the stereo vision cameras (Figure 5(a) and 

(b): zoom 1). This noise can not be absorbed without
ring.  
In order to test the rejection of external disturbances, 

during the time t = 120 s and t = 150 s, we imposed sud- 
den movement on the end-effector of the robot around 
the passive “robot end effector” and “patient” vectors are given 

by the spherical-coordinates (θ and β) (Figure 4). 
The nonlinear process is completely unknown for our 

algorithm which only needs the input and output da

e SCARA (Figure 3). These movements are 
considered additive external disturbances on the angular 
positions of the end-effector. As shown in (Figure 5(a) 
and (b)) (zoom 2) we can see the IDNC can reflect dis- 
turbances. Indeed, the perturbations are completely ab- 
sorbed after a very short time (1 second). 

4. Conclusions  

Robust stable indirect adaptive control with fully con- 
nected neural networks is developed for 

es not require any knowledge about the process model. 
The autonomous evolution starts from zero initial condi- 
tions. It results in a compact structure: the NC has six 
neurons and the AMN has four neurons [20]. 

Figure 5 depicts the tracking performance and angular 
positions of both actuators obtained with ou

nonlinear sys- 
 dynamics. A self tuning of the 

e parameters of AMN 

gorithm. It can be observed from (Figure 5(d)) that, 
after a short adaptation stage, due to |η| and |τ| parameters 
start from zero values, the proposed IDNC achieves good 
results (NMSE = 3.2 e-004). This effect resulted in 
smoothing action of the learning rate stabilisation con- 
straint, which assures that the closed loop system would  

tems with unknown
weights, adaptation rates and tim
and NC networks are proposed. The IDNC parameters 
start at zero initial conditions which ensure that its per- 
formance does not depend on the initialization phase.   
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Figure 5. Experiment results of closed loop system with the adaptation algorithm: (a) and (b) θ and β spherical-coordinate of 
the patient (dashed) and references robot end-effector vectors (solid); (c) angular positions of the first (solid) and second 

nd sufficient conditions are obtained. This is due to ad- 

nd self tuning o
pa

rion does not always fulfil global control 
ob

, 
2005, pp. 261- 04.05.001

(dashed) actuators; (d) Tracking error in log scale between the angular position of the patient and robot end-effector vectors. 
Zoom 1: Tracking of the disturbed reference. Zoom 2: Compensation effect of externs perturbations. Range of vertical axis is 
[–1:1] which reflects angular movements. 
 
Robustness analysis for closed loop systems is performed REFERENCES 
a
aptation rate for stability, noise rejection and robust sta- 
bility under parameter uncertainties. 

Experiment results show that our approach results in 
good performance, simple structure a f the 

rameters. 
The method is easy to implement. However, the new 

stability crite
jectives (such as economic or environmental cost 

functions) that will be considered in our further works.  
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