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ABSTRACT 

The method of 3D polar transformation of full gravity potential gradient vectors is based on the geometric properties of 
the crossing points of complete gradient of the potential to localize the source region that causes the observed anomaly. 
The cross-points—poles—are defined for rectangular polygons of different sizes where the full gradient vector is de-
fined at every vertex. The polygon size range could be specified. The set of poles, positive and negative, is then repre-
sented on the 3D chart in the form of clusters of dots or cubes and can be considered as a model image of the sources, 
intended for visual analysis and further interpretation. 
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1. Introduction 

Developing new methods of data express interpretation, 
that give the first approximation for quantity analysis and 
geological interpretation, is of actual type. Presented me- 
thod of a polar transformation, as Euler deconvolution [1] 
or tensor deconvolution [2], is just a transformation of 
obtained data and is used primary for visual analysis. 
Attention to such kind of methods is due to its low cost 
in computing. The most close to such methods are that 
based on a theory of special points. But the methods 
mentioned above are much more productive but less 
strong with theory. 

2. Theory 

The method described in this paper uses the geometrical 
properties of the full vectors of potential gradient in 
three-dimensional space: they concentrate in the positive 
mass direction and disperse when mass is negative. The 
crossing point of vector-lines lies in nearby of pertur- 
bation mass and coincides with that mass if it is of point- 
type. For brief these points of line crossing are called by 
the authors as poles, because they became a special pro- 
perty—sign of the attached mass (positive or negative).  

All three gradients could be found from the vertical 
one using the method of source-point approximation [3]. 
For survey data the construction of point masses below 
every measure point is build. The gravity effect of such 
construction should be equal to the measured data with 
the given accuracy. When having such a system of masses 
any type of derivatives could be found. For example, the 

first order derivatives could be found by (1).  
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When having the gravity effect of a sphere the cross- 
point of any lines of full gradient vectors coincides with 
the center of that sphere. But the real field is additive and 
complex and it is practically impossible to find 3 vectors 
of attractive force that cross in one point of a realm. 
Nevertheless we had introduced a following algorithm to 
get the coordinates of poles. 

Let’s consider determination of a cross-point coordi- 
nates of a single mass in a plane by one pair of vectors 
(Figure 1). Let us know the attractive force vectors in 
two points A and B. Obviously both of them would look 
in the direction of the attractor and exactly in its center. 
So we could determine the mass center position of the 
body by two coordinates XM and ZM by (2). 

Having 2 vectors we can define 5 types of poles po- 
ssible. When both of the vectors concentrate in the lower 
half-space we got a positive pole, when both of them 
concentrate in the upper part of the half-space we got a 
negative pole. When vectors disperse to lower half-space 
or disperse to upper half-space we got weakly negative or 
weakly positive type respectively. The last type is neu- 
tral. 
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Figure 1. For cross-point coordinates definition. 
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For all calculations in three-dimensional space the 4- 
vertex polygons are used. Every vertex is placed in the 
measured point or in the grid point, if the measured data 
had been gridded and processed. All further calculations 
proceed only with polygons having all vectors directed in 
one half-space at the same time. When all vectors point 
up we got a negative or weakly positive pole, when all 
vectors point down we got a positive or weakly negative 
pole, depending on convergence of vectors. None of other 
combinations is used at the time. Having 4 vertexes we 
can define 6 pairs of vectors (4 at sides and 2 at diagonals) 
to find 6 triplets of pole coordinates. The final coordinates 
of the pole for the polygon are the mean-averaged of all 
got for it. The range of polygon size variations could be 
set by operator. The algorithm uses all possible polygons 
within data grid. 

As a result we got a 3D chart of poles P++ and P−−. 
After some filtering with the chosen algorithm (for ex- 
ample, one from [4]) the chart is divided into set of clu- 
sters. These clusters in turn give us positions and appro- 
ximate shapes of the sources of anomalies. The deve- 
loped program based on this algorithm allows field- 
source bodies to be a sphere, combination of blocks or a 

star-body with an equivalent volume and mass. Having a 
full force vector the attractive mass is calculated as 

2m g r G  , where G is the gravitational constant, g is 
the full force vector, r is a distance from the grid point to 
the pole point. The mass of a cluster is an average mass 
of all parts in it: for sphere and star-body—of all poles 
and for combination of blocks—of all blocks. The ano- 
malous density of a field-source could be determined by 
its mass and volume. 

3. Examples 

As a theoretical example let’s consider results of two 
point source field processing. These sources have differ- 
rent masses and lay on different depths: 0.5 and 0.75 km 
(Figure 2). Determination of the position of sources 
gives results that are close to real. The discrepancies of 
coordinates and mass lay in 2 per cent boundary. Results 
for 5 point-sources show the same quality of localization. 

As follows from the theory of a method [5] the most 
appropriate type of fields to process is a point-source field. 
But the real observed field are too complicated and do not 
have such a morphology. So let’s consider a non-point 
model—the field of a material rod. Such type of model 
could be used in working with mines and pits, gas pipe- 
lines or any lengthy objects. Figure 3 shows the results of 
three rods field processing. It is seen that the red point 
sources are combined in lengthy clusters of rod type. 

Comparing with strong defined poles P++ and P−− the 
weakly defined poles are non-obvious or cryptic for sour- 
ces. During the processing of a real field it is impossible 
to determine the type (positive or negative) of its sources. 
We can not distinguish the portions of softening of con- 
solidated ground from the consolidation of soft soils. So 
the use of weakly determined poles could be informative. 

If, for example, we consider a source field defined by a 
sine function then it could be caused either positive 
masses or negative. Using only strong defined poles gives 
us only one type of sources while weak defined poles 
gives both types (positive and negative). Weak defined 
poles for rod field case is shown in Figure 3 with blue. 

The next example is the field of a lengthy L-rod. Such 
 

     

Figure 2. Model gravity field of two point mass (left) and the result of mass positions determination (right). 
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kind of source could model an ore body. As shown in 
Figure 4 the result cluster shape is in good agreement 
with the source model, but the left part of it is a bit lower. 

The tests show that the best result for complex fields 
could be gained when using the combination of divided 
and processed apart fields. These parted results are to be 
combined in one diagram like one in Figure 5. That fi- 
gure shows the result of 2 km deep reef trap field pro- 
cessing. The trap and its envelope could be located on the 
diagram. 

4. Conclusion 

The geometrical property of an attraction potential gra- 
dient to point to the force sources allows building models 
of equivalent mass distribution. The difference of the 
shown above diagrams from the transformed field dia- 
gram or up- and down-continuous is as follows. Here we 
have a 3D view of equivalent mass source chart with 
definite properties (position, size and mass) in spite of 2D 
field being interpolated in 3D. These diagrams could be 

 

 

Figure 3. 2D field shape for 3 rods and the result of this field processing. 
 

   

Figure 4. L-rod field shape and the result of its processing. 
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Figure 5. The real field and the result 3D chart. Contour marks the known oil reservoir. 
 
used within quality and quantity interpretation of geo- 
physical surveys. 
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