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ABSTRACT 

Motivated by statistical tests on historical data that confirm the normal distribution assumption on the spreads between 
major constant maturity swap (CMS) indexes, we propose an easy-to-implement two-factor model for valuing CMS 
spread link instruments, in which each forward CMS spread rate is modeled as a Gaussian process under its relevant 
measure, and is related to the lognormal martingale process of a corresponding maturity forward LIBOR rate through a 
Brownian motion. An illustrating example is provided. Closed-form solutions for CMS spread options are derived. 
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1. Introduction 

A Constant Maturity Swap (henceforth CMS) spread 
derivative is a financial instrument whose payoff is a 
function of the spread between two swap rates of differ-
ent maturities (e.g., the 10-year swap rate minus the 2- 
year swap rate). This type of derivative, which is be- 
coming increasingly popular among insurance companies 
and pension funds, is traded by parties who wish to take 
advantage of, or to hedge against, future changes in the 
slopes of specific parts of the yield curve. The most com- 
mon CMS spread instruments are CMS spread notes/ 
bonds (steepener or flattener), CMS spread range accrual 
notes/bonds, and CMS spread caps and floors. There are 
other CMS spread derivatives that are not commonly 
traded—such as CMS spread call and put options on 
bonds, CMS spread digital options, and CMS spread 
swaptions—but are embedded in other financial instru-
ments.   

A concrete example is the 15-year CMS spread range 
accrual bond—issued by Fannie Mae [1] on February 27, 
2008 under the reference CUSIP 31398ANE8—semi- 
annually callable after the first year, having a notional of 
100 million US dollar and a coupon of 8.45% that ac-
crues every day the CMS 30-year minus the CMS 10- 
year is positive.1 At origination, buyers of this bond ex-
pected the long end of the yield curve to be upward slop- 
ing most of the time, while the issuer—Fannie Mae— 

expected an inversion of the long end of the yield curve. 
After the bond issuance Fannie Mae did not want to bear 
the yield curve slope non-inversion risk, and then got 
into a cancellable CMS spread swap in which it paid 3- 
month LIBOR minus a fixed spread every quarter.2 The 
proceeds from the swap receiving leg were entirely 
transferred to the bond holders. This Fannie Mae bond 
contains an embedded Bermudan call option on a CMS 
spread bond and a multitude of embedded daily CMS 
spread digital options. The hedging swap with Lehman 
Brothers contains an embedded CMS spread swaption.  

The valuation of these CMS spread instruments is an 
important subject of research for both practitioners and 
academics. The difficulty arises from the fact that unlike 
a single interest rate, a CMS spread rate can allow both 
positive and negative values, as the yield curve moves in 
a way that any part can be either flat, upward or down-
ward sloping. This feature adds an extra complication in 
the pricing of derivative instruments for which a CMS 
spread rate is the underlying. Various attempts have been 
made to value financial derivatives on spread rates. Car-
mona and Durrleman [2] provide an extensive literature 
review on the pricing of spread options on fixed income 
instruments, as well as on equity, foreign exchange, com- 
modities, and energy.  

In the existing literature of valuing CMS spread de-
rivatives based on the LIBOR market model, it is com-
monly assumed that each rate used to calculate the spread 
is lognormally distributed, and there may be a nonzero 
correlation between them. Recent studies in this direction 
are those of Belomestny et al. [3] and Lutz and Kiesel [4] 

*The views expressed herein are the author’s and should not be inter-
preted as reflecting those of the US Department of the Treasury. 
1Fannie Mae previously issued a 10-year CMS spread 10 yrs - 2 yrs 
effective on 25th July 2007, and a 15-year CMS spread 30 yrs - 2 yrs 
effective on 23rd January 2008 under the bond CUSIP 31398AEQ1 and 
31398ALA8 respectively. 

2The counterparty was Lehman Brothers which went bankrupt a couple 
of months after the deal was effective. 
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who approximate the value of CMS spread options in the 
standard lognormal LIBOR market model with determi-
nistic and stochastic volatilities respectively. This current 
approach has the advantage to help understand the influ-
ence of various model parameters—in particular the cor-
relation between the two rates used to calculate the 
spread. But it has a limited analytical tractability, as the 
linear combination of lognormal variables has an un-
known distribution. Closed-form solutions for CMS spread 
options can be obtained only in rare cases, such as the 
case of caplets and floorlets with zero strike in which 
Margrabe [5] exchange option formula can be used. 

Our approach is to model the CMS spread rate directly 
with a distribution that allows for both positive and nega-
tive values in its range. We center the CMS spread rate 
on its forward value, and each forward CMS spread rate 
is assumed to be driven by a Gaussian stochastic process 
under its relevant measure, and is related to the log-
normal martingale process of a forward LIBOR rate of 
the same maturity through a Brownian motion. Models 
based on our approach have two relative advantages. 
Firstly they are more flexible for analytical tractability 
and can lead to close-form solutions for CMS spread op- 
tions. Secondly they can be calibrated directly with CMS 
spread instruments, and hence they reduce arbitrage risks 
in the valuation of more complex CMS spread deriva0 
tives.  

The rest of this paper is structured as follows. The next 
section test and confirm the normality assumption of 
some CMS spread rates. Section 3 presents the proposed 
model and shows how forward CMS spread rates for 
different maturities can be simultaneously modeled under 
a single measure. Section 4 provides a numerical illus-
trates of the model. Closed-form solutions for CMS spread 
caplets, floorlets, and digital options are derived in Sec- 
tion 5. A final section concludes the study. 

2. A Test of Normality for CMS Spreads 

In this section we use Jarque-Bera (JB) test to access the 
normality assumption on the spreads between the CMS at 
key maturity points of the yield curve—2, 5, 10, and 30 
years. These points are the maturities of the most traded 
fixed income instruments. Furthermore, the CMS spreads 
5-year minus 2-year, 10-year minus 5-year, 30-year mi-
nus 10-year, and 30-year minus 2-year can be viewed as 
representing the short-end, the middle, the long-end, and 
the entire yield curve respectively.  

The JB test can be used to access the normality as-
sumption of the spread between these indexes. The JB 
test statistic is distributed as a Chi-square random vari-
able with two degrees of freedom, and measures the de-
parture of the skewness and kurtosis of a series from 
those of the Normal distribution. The null hypothesis is a  

joint hypothesis of both the skewness and excess kurtosis 
being zero. Any deviation from the normal distribution 
increases the JB which the statistic is given by the fol-
lowing formula   22JB 3 4 6N    , where   
is the sample skewness,   is the sample kurtosis, and 

 is the sample size. Historical CMS data have been 
obtained from BloombergTM database.3 Table 1 presents 
the values of the statistics as results of the JB test. 

N

The first row shows CMS spread rates for which the 
JB test has been done. The second row presents the test 
statistics results with their associated p-values when we 
use 1-year weekly average of CMS spread data—from 1 
January 2007 to 31 December 2007. The third shows the 
test statistics results for 10-year quarterly average of CMS 
spread data—from 1 January 1998 to 31 December 2007. 
Overall, at 5 percent level of significance the normality 
assumption is accepted for each CMS spread and for both 
cases of the 1-year and the 10-year historical data. Based 
on this level of significance it is realistic to model the 
CMS spread rate as normally distributed in the valuation 
of both short and long maturity derivatives. The follow-
ing section then proposes a Gaussian market models to 
value interest derivatives on CMS spread rates. 

3. The Model  

Let us consider a finite time horizon  in which 
trading is done. We assume the uncertainty in our econ-
omy is modeled by a complete filtered probability space,  

[0, ]T

   0
, , , :T t t T 

  F  F M , in which  is the set of  

all possible states of nature,  is a filtration that   0t t T 
F

satisfies the usual conditions and it is generated by two 
independent source of risk (two standard Brownian mo-
tions), and  is a probability measure that belongs to 

, the class of equivalent probability measures on 


M
 F, T

Let 
1i i

. 
 T

1N 


 be an increasing sequence of dates from 

which reset dates of financial derivatives will be taken. 

1i i iT T:  
T

 will denote the day-count fraction between 
times i  and 1iT  . Let   1 1: 0i iP t t T    be the 
price process of the risk-free discount bond paying one 
monetary unit at time 1iT  . According to the asset pric-
ing theory one can find a probability measure, 1i , 
equivalent to , for which  is the 
numeraire as in Geman et al. [6]. Following Jamshidian 
[7], 

  1 1: 0i iP t t T   
1i  will be called 1iT  -forward measure. 

At any given time it T , let us define  
  : 0iS t t T  i  to be the stochastic process of the 

forward CMS spread rate for the maturity date . Here iT
 iS t  denotes the view of investors at time  of what  t     

3The CMS tickers are represented as USSWAPyy, where yy is the year 
indicator. For Example the tickers for CMS 30 yrs and CMS 2 yrs are 
USSWAP30 and USSWAP02 respectively. 

Copyright © 2012 SciRes.                                                                                 JMF 



L. TCHUINDJO 

Copyright © 2012 SciRes.                                                                                 JMF 

191

 
Table 1. JB statistics and associated p-values. 

CMS Spread 5 yrs - 2 yrs 10 yrs - 2 yrs 30 yrs - 2 yrs 10 yrs - 5 yrs 30 yrs - 5 yrs 30 yrs - 10 yrs 

1 year weekly 
average 

3.85859 
(14.53%) 

3.67926 
(15.89%) 

3.72086 
(15.56%) 

4.67236 
(9.67%) 

4.75436 
(9.28%) 

4.32966 
(11.48%) 

10 years quarterly 
average 

5.51943 
(6.33%) 

5.45094 
(6.55%) 

5.21446 
(7.37%) 

5.19099 
(7.46%) 

4.77346 
(9.19%) 

3.83152 
(14.72%) 

 
will be the level of the CMS spread rate at time i . Be-
cause the value of the forward CMS spread rate can be 
either positive or negative, we assume its dynamics is 
driven by a Gaussian process. A martingale spread meas- 
ure for this forward CMS spread exists. But as noticed by 
Antonov and Arneguy [8], the corresponding numeraire 
process for this measure is difficult to calculate. To over- 
come this difficulty, we define the dynamics of this for- 
ward CMS spread directly under the 1i -forward meas- 
ure as a Brownian motion with a drift. This drift arises 
from the convexity adjustment and the change of meas- 
ure. Hence the stochastic differential equation of the for- 
ward CMS spread rate is represented as  

T

T 

tional source of risk. This assumption has the implication 
that traders can have different views on the entire yield 
curve on the one hand and on the slope of a part of the 
yield curve on the other hand.4 The forward LIBOR rate 
is then assumed to be driven by the two Brownian mo-
tions and its dynamics under the 1i -forward measure is 
given by the following stochastic differential equation 

T 

              1 1d d i i
i i i i iL t t L t t W t t W t      d , 

(2) 

subject to the initial forward LIBOR rate  0iL , and 
where : [0, ]i T    is a deterministic bounded func-
tions that is square integrable on , and  [0, ]T

  : 0 it T 
T

1iW t  is a standard Brownian motion 
under the 1i -forward measure. This additional Brow- 
nian motion is independent of i . The 
function 

 1iW t t T : 0
: [0, ] [i T 1, 1]     is the correlation coeffi- 

cient between  iS t  and   L tln , and  i

      1d d d i
i i iS t t t t W t     ,        (1) 

subject to the initial forward CMS spread rate  0iS , 
and where : [0, ]i T    and : [0, ]i T    are de- 
terministic bounded functions that are integrable and 
square integrable on  respectively, and  

 is a standard Brownian motion 
under the -forward measure. 

[0, ]T

it T 
1iT 

  1 : 0iW t
    1 22

1i it t    is the orthogonal complement of  
  i t . 

Equation (1) defines the stochastic differential equa-
tion of the forward CMS spread rate under its relevant 
measure, the 1iT  -forward measure. This equation can 
lead to closed-form solutions to value financial deriva-
tives that depend on a CMS spread rate at a single matur-
ity date such as CMS spread caplets, floorlets, and digital 
options. However, for valuing financial derivatives that 
involve forward CMS spread rates at more than one ma-
turity date, all rates needed to be modeled simultaneously, 
i.e., under a single measure as in the following proposi-
tion. 

At any given time  let us define  

i  to be the stochastic process of the 
it T

  : 0iL t t T 
i -tenor forward LIBOR rate maturing at time . Here 

 denotes the interest rate available at time  for a 
risk-free loan which is effective at time  and matures 
at time 1 . As in the standard LIBOR market model, 
let us assume the dynamics  i t  under 1iT

iT
t

the 

 iL t

iT 

iT

of L  - 
forward measure to be a lognormal martingale. 

It is important to note that under the -forward 
measure if the forward LIBOR rate is driven only by the 
same source of risk that drives the forward CMS rate, 
both stochastic processes will be perfectly correlated, and 
hence it will be economically redundant to trade CMS 
spread derivatives, as investors can obtain the same result 
by trading the forward LIBOR rate. Therefore, we as-
sume the forward LIBOR rate to be driven by an addi- 

1iT 

Proposition 1. Under the -forward measure as- 1MT 

 sociated to the numeraire  1 1: 0M MP t t T   : 

1) for i M , the expression of  is given by 
Equation (1). 

 d iS t

2) for i M , 

           
     1

1

d
1

M
k k k k M

i i i i
k i k k

t t L t
S t t t t t W t

L t

  
  




 

 
     

 d d ,                    (3) 

 
4This will be illustrated in the numerical example. 
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where  

     
   

          

            
1

1 1

d d
1

              d d .

M j j

k k k j k j k
j k j j

M M
k k k k

t L t
j

L t t L t t t t t t
L t

t L t t W t t W t

 
   



  

 

 

 
   
 
 

 

  




                   (4) 

3) and for , i M

           
     1

1

d d
1

i
k k k k M

i i i i
k M k k

t t L t
S t t t t t W t

L t

  
  




 

 
     

 d ,                (5) 

where  

         
        

            
1

d (
1

1 1     d d .

j
k

j j
k k k j k j k

j M j j

k k k k

t L t
L t t L t t t t t t

L t

M Mt L t t W t t W t

 
  



  

 

 
    

  

  



) d 



                 (6) 

 
Proof:  
Let us consider two consecutive forward LIBOR rate 

processes, 1 1i i   and i i , 
which their stochastic dynamics are described by Equa-
tion (2) under the i -forward measure and the 1i

  : 0L t t T 

T

  : 0L t t T 

T  -for- 
ward measure respectively. It is straightforward to prove 
that by applying Ito’s lemma on the Radon-Nikodym 
derivative that allows the change of measure from the 

1i -forward measure to the iT -forward measure, and 
using Cameron-Martin-Girsanov theorem (as in e.g. Pels- 
ser [9]) one obtain the following relationships 

T

         

         
 

1

1

d d
1 ( )

d d
1

i i i ii i

i i

i i i ii i

i i

t t L t
W t W t t

L t

t t L t
W t W t t

L t

  


  







  d

d

 

   

 
 

The result of the theorem is then obtained apply the 
above relationships repeatedly backward and forward on 
Equations (1) and (2).  

4. A Numerical Example 

For illustration purpose Table 2 shows the results of a 
one thousand paths of Monte Carlo simulation for gener-
ating forward LIBOR rates and forward CMS spread 
rates with a quarterly frequency over a two-year period. 
The results of this simulation can be used to valuing 
CMS spread derivatives that mature within two years and 
that involve forward CMS spread rates at more than one 
maturity date. This simulation is done under the terminal 
measure, i.e., the measure associated to the discount 
bond maturing in two years.  

Although the CMS spread derivatives are increasing in 
popularity, they are still OTC instruments, and their 

market data are not easily available. Therefore, for sim-
plicity of the illustration we assume all model parameters 
to be constant, i.e.,  ti  , i  t  ,  ti  , 
 ti  , and i  . In the first column we consider 

the initial term structures of forward LIBOR and forward 
CMS spread rates to be flat. Even though we started the 
simulation with flat curves for both the forward LIBOR 
rates and the forward CMS spread rates, the end results 
shows that the expected forward LIBOR rates are in-
creasing while the expected forward CMS spread rates 
are fluctuating around zero. 

5. Closed-Form Solutions for CMS Spread  
Options  

This section presents the derivation of closed-form solu-
tions for valuing simple instruments which payoffs are 
functions of a CMS spread rate at a single maturity date, 
such as CMS spread caplets and floorlets. A CMS spread 
caplet (floorlet) is a call (put) option on a CMS spread 
rate. At maturity the buyer receives a payment from the 
seller if the CMS spread was above (below) the agreed 
strike rate. CMS spread caplets (floorlets) are not gener-
ally traded. However they are useful as they are building 
blocks of over-the-counter traded CMS spread caps 
(floors).  

Let   : 0G t t T 

1iT

i i  be the price process of a cap-
let or a floorlet that resets at time iT  and pays off at 
time   with a strike rate K . We have 

      1
1

i
i i i t i iG t P t S T K  


   ,     (7) 

where 1    for caplet and floorlet respectively, and 
1i

t
 

iT
 represents the expectation with respect to the 

1 -forward measure and the sigma-algebra . The  tF  
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Table 2. Average of one thousand sample paths of forward LIBOR and forward CMS spread rates in the terminal measure 
with σ = 20%, ρ = 10%, ψ = 0.5%, γ = 0.1%, and δ = 0.25. 

iT  (in yrs) 0 0T   1 0.25T   2 0.5T   3 0.75T   4 1T   5 1.25T   6 1.5T   7 1.75T   

 0 iL T  2.50%         

 1 iL T  2.50% 2.6483%       

 2 iL T  2.50% 2.6484% 2.9422%      

 3 iL T  2.50% 2.6486% 2.9426% 2.9961%     

 4 iL T  2.50% 2.6487% 2.9429% 2.9967% 3.0208%    

 5 iL T  2.50% 2.6489% 2.9432% 2.9973% 3.0216% 3.6086%   

 6 iL T  2.50% 2.6490% 2.9436% 2.9978% 3.0224% 3.6098% 4.2913%  

 7 iL T  2.50% 2.6492% 2.9439% 2.9984% 3.0232% 3.6110% 4.2931% 4.7647% 

−0.0699% 

0.1600% 

0.2344% 

−0.0388% 

−0.0421% 

−0.0212% 

0.1335% 

 0 iS T  0.10%        

 1 iS T  0.10%       

 2 iS T  0.10% −0.0699%      

 3 iS T  0.10% −0.0699% 0.1600%     

 4 iS T  0.10% −0.0699% 0.1601% 0.2345%    

 5 iS T  0.10% −0.0699% 0.1601% 0.2345% −0.0387%   

 6 iS T  0.10% −0.0699% 0.1601% 0.2346% −0.0387% −0.0420%  

 7 iS T  0.10% −0.0699% 0.1602% 0.2346% −0.0386% −0.0420% −0.0211% 

 
 diffe quati  the d CMstochastic

sp
rential e on of forwar S 

read in Equation (1) implies  

     1( ) iT i
i i i t

S T S t     di u W u ,     (8) 

where      diT

i i it
S t S t u u    is the conv

justed forward CMS spread for the maturity , as seen 
 . Note that the second 

exity ad-

i

at time term of the right hand 
side of Equation (8) is normally distributed, as it is a sto-
chastic tegral of a deterministic function times a 
Brownian motion. Hence  i iS T  is normally distributed 
with mean 

T
t

in

 iS t  as the Ito integral is a martingale, and  

variance    2 2 diT

i it
t u u    by Ito’s isometry. Thus,  

Equation s (7) can be rewritten a

    2 2

1 2π

ue
i i i iG t P t S 

 
     

           2
1

d

         ,

i

i i i i i i

t K u t u

P t t d t d t N d t



   





 

    

 

(9

where 

) 

      i i id t S t K t  , and  and     N   
bu- are the standard normal density and cum e di

ctions respectively. 

 in which, at maturity, the 
ho

rally Ho hey are use ul as they are 

ulativ stri
tion fun

Another important CMS spread option is the digital 
option. It is an instrument

lder receives a payment if the CMS spread crosses a 
certain barrier level. CMS spread digital options are not 

building blocks of range accrual CMS spread notes that 
are over-the-counter traded. If   : 0i iD t t T   repre- 
sents the price process of a digital option that pays one 
monetary unit at time 1iT

gene  traded. wever t f

  in case the CMS spread rate 
is greater or less than a strike rate K  at time T  , then i

      
    

1
1

1 

i
i i i i

i i

D t P t S T K

P t N d t

 








 




,       (10) 

where 1    
an the strik
n (9). 

if the CMS spread is greater than and 
less th e respectively, and
Equatio

uing C
ming the CMS spread rate is driven by 

ive the LIBOR rate. Our 
usly calibrated to LIBOR 

 id t   is given in 

6. Concluding Remarks 

We proposed a two-factor model for val MS spread 
derivatives assu
one of the risk sources that dr
proposed model is simultaneo
instruments and CMS spread instruments and is flexible 
enough to take into account various deterministic volatil-
ity and convexity adjustment functions. Furthermore, this 
model is easy to implement, and can be used to value 
Constant Maturity Treasury (CMT) spread derivatives. 
An area of improvement would be to show the consis-
tency between the forward LIBOR rates and the forward 
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CMS spread rates. 
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