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ABSTRACT

Recently there has been a surge of interest in higher order moment properties of time varying volatility models. Various
GARCH-type models have been developed and successfully applied in empirical finance. Moment properties are im-
portant because the existence of moments permit verification of how well theoretical models match stylized facts such
as fat tails in most financial data. In this paper, we consider various types of random coefficient autoregressive (RCA)
models with quadratic generalized autoregressive conditional heteroscedasticity (GARCH) errors and study the mo-
ments, mean, variance and kurtosis. We also consider the Black-Scholes model with RCA GARCH volatility and show

that these moments can be used to evaluate the call price for European options.
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1. Introduction

It is well-known that many financial time series such as
stock returns exhibit leptokurtosis and time-varying vola-
tility [1]. The generalized autoregressive conditional het-
eroscedasticity (GARCH) and the random coefficient
autoregressive (RCA) models have been extensively used
to capture the time-varying behaviour of the volatility.
Studies using GARCH models commonly assume that
the time series is conditionally normally distributed; how-
ever, the kurtosis implied by the normal GARCH tends
to be lower than the sample kurtosis observed in many
time series Bollerslev [1]. Thavaneswaran et al. [2] use
an ARMA representation to derive the kurtosis of various
classes of GARCH models such as power GARCH, non-
Gaussian GARCH, non-stationary and random coeffi-
cient GARCH. Recently, Thavaneswaran et al. [3], Ap-
padoo et al. [4] have extended the results to stationary
RCA processes with GARCH errors and Paseka et al. [5]
further extended the results to RCA processes with sto-
chastic volatility (SV) errors.

Leptokurtosis is commonly observed in financial time
series, as well as in currency and commodity markets.
The opening and closure of the markets, time-of-the-day
and day-of-the-week effects, weekends and vacation pe-
riods cause changes in the trading volume that translates
into regular changes in price variability. Financial, cur-
rency, and commodity data also respond to new informa-
tion entering into the market, which usually have large
kurtosis. Recently, there has been growing interest in
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using volatility models [3,4]. Most of the studies use
GARCH models with dummy variables in the volatility
equation, and a few of them have been extended to a
more flexible form such as the RCA GARCH. However,
even though much research has been performed on vola-
tility models applied to market data such as stock returns,
more general specifications accounting for RCA with
GARCH errors have been little explored. First we derive
the kurtosis of a simple time series model with behaviour
in the mean. Then we introduce various classes of RCA
GARCH models and study the moments and discuss ap-
plications in option pricing. We extend the results for
RCA GARCH volatility models to RCA quadratic GARCH
models. The RCA GARCH model is appropriate for time
series where significant autocorrelation exists. Option
pricing with RCA model with quadratic GARCH errors
is also discussed in some detail. The moments derived
for the RCA GARCH volatility models provide more ac-
curate estimates of market data behaviour and help in-
vestors, decision makers, and other market participants
develop improved trading strategies. The rest of the pa-
per is organized as follows. In rest of Section 1, we pre-
sent results on standard GARCH models. These results
are interesting for their own sake. In Section 2, we derive
the higher order moments of some RCA models with
GARCH errors, and in Section 3 we discuss some option
pricing applications with RCA models with GARCH
errors.

GARCH Models
Consider the general class of GARCH (P,Q) model for
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the time series y,, where

& =~\hZ, (1.1)
P, 2

h, :a)+Zai€t7i+Zﬁth}. 1.2)
i=1 j=1

where Z; is a sequence of independent, normally distrib-
uted random variables with zero mean, unit variance. Let
u, =& —h, be the martingale difference and let o be
the variance of u,, (2.12) and (1.2) could be written as:

i=1

P Y
gtz_ut :a)+zaigt2—i+zﬂjht—j (1.3)
=1

P . . Q .
1—20{1.3’—2/3/3’ gtzza)—Zﬂ/B’ut, (1.4)
i=1 j=1 Jj=1

®(B)e! =w+ B(B)u,. (1.5)
where
CI)(B)zl—icI)iBi, O, =(a,+p), /3(3):1—%/2/.3!’

and R = max(P,0Q).We shall make the following station-
arity assumptions for 5,2 which has an ARMA(R,Q)
representation.All the zeroes of the polynomial ®(B) lie

outside of the unit circle. Y N W¥? < oo where the W)s
i=0

are obtained from the relationy (B)®(B) with
Y (B)=1+)] "W B’ The assumption sensure that the
i=1

u/s are uncorrelated with zero mean and finite variance
and that the & process is weakly stationary. In this
case, the autocorrelation function of & will be exactly
the same as that for astationary ARMA(R,Q) model. For
any random variable ¢ with finite fourth moments, the

4
E (5 - /1)
[Var(s)]z
is normal then the process {¢;} defined by Equations (1.3)
and (1.4) is called a normal GARCH (p, g) process. The

kurtosis ofthe GARCHprocess is denoted by K ) when
it exists.

kurtosis defined by and if the process {Z;}

2. Random Coefficient Volatility Models

Consider the class of random coefficient autoregressive
(RCA) models defined by allowing random additive per-
turbations of the autoregressive (AR) coefficients of or-
dinary AR models. That is, we assume that the process y,
is given by,

¥, —f(vz +b, (1) =e¢, 2.1)

i=1

Copyright © 2012 SciRes.

where the parameters 6, i =2, -*+, p, are assumed to be
known, e, and b, (7) are zero mean square integrable
independent processes and the variances are denoted by

o) and o;. b(1) (1:1,2,-~)'s are independent of

e, and y,_, and may be thought of as incorporating
structural changes. In order to motivate nonlinear fore-

casts for nonlinear models, we consider a class of esti-

mating functions of the form g, =Y b,_h [6], where

i=2
)4

h=y-E [yt |F£1] =y, -2 ¢y and b_; is a func-
i=1

tion of y,,»,,---,¥,, and possibly the known parame-
ters ¢, -, 4, (i.e. We assume that the fitted model is
available). If we restrict ourselves to a class of estimating
functions of the above form then we can forecast the fu-
ture value of y,,, based on the observed values

VisVystsy, as )A/n(l):E[yn+1 yn,yn_l,---] That is,

whether we have an AR(p) model or RCA(p) model we
will get the same linear predictor of y,,, . However, for
the RCA model under consideration, we have

E|:J/z |F;i1:| = i}¢yt—i and Var|:)’;|E{|:| =0, +§1:yr2—io-§ :

Thus, the conditional variance is a nonlinear function and
hence the RCA model may be viewed as a non-linear
time series model. Nicholls and Quinn [7] studied linear
as well as some nonlinear (proposed) forecast by fitting a
nonlinear (RCA) model for the classical lynx cycle data.

Using heuristic reasoning they proposed a nonlinear
1

forecast and J,,, =sgn (¢, )[ e JE theyshowed

empirically that the forecast y,,, is a better predictor
(having smalller forecast errors when compared with the
actual observations) than the linear forecast for the lynx
data. It is of interest to note that by defining

h=y'-E [ i |E—‘_’ IJ , the optimal forecast for y,,, can

be obtained as

v ()= E[y|F ] =sen (¢yﬁ)[l//12+03+03}% :

That is, the estimating function method can be used to
obtain a nonlinear forecast for a nonlinear models by
considering a class of elementary martingale estimating
functions generated by nonlinear functions of the obser-
vations. Using a similar argument we could also obtain
forecasts for various class of GARCH models, see Tha-
vaneswaran and Heyde [6] for details. The main message
is RCA models could be used to improve the forecasting
performance of stochastic volatility models.

Lemma 2.1. When Z; is a standard normal random
variable such that Zt ~ N(0,1) then,
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5%

E|Zt|§ :ﬁr(é‘;l
S\
. (20;,)?
E|Z,|(3 :( j%) F[%} As a general case for even

powers we have E(Zw) =0

j. Now if Zt~N(0,0'§) then

§

, 29 1
25 2 p 5+_j.
Jr ( 2
2.1. RCA Models

Random coefficient autoregressive time series were in-
troduced by Nicholls and Quinn [10] and some of their
properties have been studied recently by Thavaneswaran
[3]. RCA models exhibiting long memory properties
have been considered in Leipus and Sugailis [8]. A se-
quence of random variables {y,} is called an RCA (1)
time series if it satisfies the equations

2
o

) E(y,)=0, E(y})= :

1—[¢2+2¢0'b\/5+0',fJ
T

161

yt:(¢+bt)yt—l+gt teZz,

where Z denotes the set of integers and

o HEHE 2))
£, 0){0 o
2) ¢ +o; <.

The sequences {b,} and {¢,} respectively, are the errors
in the model.

Theorem 2.1. Let {y,} be a modified RCA (1) time se-
ries with an absolute value random coefficient satisfying
conditions (1) and (2). The modified RCA (1) model is
given by

v =(¢+p)y+e (22)

g ~N(0,07).b,
lowing

~ N(O, O'Z). Then we have the fol-

30! £1+¢2 +2¢Gb\/z+G§J

2) E(y)= ; |
(l_mab P /2‘6¢2°’5J(1‘(¢2 +2¢GI,,/2+G;D
Jx " "
T

Jr

T

The autocovariance and the autocorrelation functions are given by

5
(20‘,3)2

N

Ve =| 9+

Pr oof:

o+1
F(Tj Vi and p, =| ¢+

5 k

e o

E(y,)=0, E(y})= ¢2E(yf71)+2¢E(yt271)E(|bt|)+E(yt271)E(|bt|2)+E(gf)

Thus, we have

2.3)
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and we have

4

E(y')= 2

8\/562 4 a4 43 2_ 2 2
[1— N ¢p—¢" 30, 4¢0',,\/; 6¢0'bj

603 {¢2 +2¢ %Gb + of}

+
(1—m¢—¢4 —36;‘—|4¢30b\/5—6¢20'ZJ[1—[¢2 +2¢ab\F+a;B
Jn n n

30'?[1+¢2 +2¢0'b\/g+0'b2J

(1— 8*/553 p—¢* 30, —4¢30'b\/5—6¢2of](1—(¢2 + 2¢o—b\F+o—§ B
Jn n T

3[1—(¢2+2¢a,,\F+a§N
(L

When o =0, the kurtosis of the process y, converge
to K = 3. Thus, the autocorrelation function is given by

P =(¢'|'E|bt7‘,€|)pk71 — ¢+(20-b )2 F(EJ

where we use the fact that p, = 1.
Theorem 2.2. Suppose y, is an Random Coefficient
Moving average process model of the form

yt = (¢+|bt|)yt—1 +gt2—18t

where b, is an uncorrelated Gaussian process with zero
mean and with variance o, . ¢, is an uncorrelated Gaus-
sian process with zero mean and with variance o
Then, we have the following

Proof:

E()’?—l ) =

= (2.4)
272 3
Ey] | 820 $-¢* 357 —4¢3ab\F — 64’07
Jr T
E(y)=E((¢+p])y.+e6 =0 (26
s k and
2
= F(7)=gE(52, )+ 657 o
+E(y,2_1)alf +30°¢
We have
(2.5)
3¢
E(y!)= oG @7)
1—[¢2 +2¢Gb\/7+GZJ
& T
and
(12¢a,, 235407 +60230% 7 + 6¢23G§G§JE( ¥1)+1050830;
T
4 2 3 2 2 3 2 4
1-¢" -4¢2,|—0, —6¢ 0, —4¢°0,.|— =30,
T T
(36¢ab\Faj +18070° +18¢2cr§]E(yfl )+3150)
(L
4 2 3 2 2 3 2 4
[1—¢ -8¢,|—0, —6¢° 0, —4¢ 0',,\/7—30',,]
T T
JMF
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Thus we have

3640, \Faf +180;0° +18¢4°c?°
() - : -
o 4 2 3 2 2 3 2 4 2 2 2
1-¢" 8¢ ;o-b—6¢ o, —4¢’o, ;—30'17 1-| ¢ +2¢0, ;+o-b
31507

+

(1—¢4 ~8¢ 20'2 —64°c; —4¢3ab\F —30;‘}
T T

The kurtosis of the process is given by

(36¢o-b /20'8(‘+18crb20'f+18¢20':J(1—[¢2+2¢0'b /2+J;D
T T
)

KV =
4 2 3 2 2 3 2 4 6
1-¢"-8¢,|—0, —6¢°0c, —4¢°c,,|— —30, |30,
T T

5 (2.8)
35(1—(# +2¢ab\F+o-§B
T
+
4 2 5 2 2 3 2 4
1-¢" 8¢, |—0, —6¢°c, —4¢°0,.|— —30,
T T
When Oj = (2)9, t?e kurtosis of the process y, converge y =¢ +( P Jr|bt|) e, 2.9)
to g _35-29" nd when o;=0,and ¢=0 the

(1 + ¢2) where b, is an uncorrelated noise process with zero mean

kurtosis of the process y, turns out to be 35.
Theorem 2.3. Suppose y; is an Random Coefficient
Moving average process model of the form

E(ytz):agz[l+¢2 +2¢O-b\/%+o-§}

. . 2 . .

and with variance o, . g is an uncorrelated noise proc-
. . . 2

ess with zero mean and with variance o. Then, we

have the following relationships

E(yf)zof{?:(gé“+30':+1)+12\/%(1+20'5+¢2)¢0'b+6(0'§+¢2+3¢20',f) ,

K =

) 3(4* +30; +1)+12\E(1+2<;b2 +¢*)go, +6(o; + ¢ +34°0; )

[1+¢2+2¢ab\/5+a,fJ
T

and the autocorrelation functions are given by

1

¢+\/§Gb
T

0

Copyright © 2012 SciRes.
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1+¢2+2¢o-,,\/7+o-§
T

k=0
k=1 (2.10)
k=2,3,
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Proof:
E(yl2 ) = E[gf +2¢,6, p+2¢e6,|b |+l 4 +268 plb |+ e, |b,|2],
2 2 2 2 2 2 2 2 2 2 2
=0, +¢°0o. +2¢o0.0,.|—+0.0, =0, |1+¢" +2¢0,,|—+0, |
Y T
4 4 4 4 2 2 2 3 2 2 _2 2 3
E(y})=0}|34" +90, +3+12 40, +60; +64* 124\ | =0, +1840] + 24| =40
4 4 4 2 2 2 2 2 2 2
=g {3(¢ +30] +l)+12\/:(1+20'b +¢*)go, +6(0; + 4" +34°0; )}
T
Thus,

o E(n-n) 3(¢4+30':+1)+12\/z(1+20',f+¢2)¢o-b+6(O-Z+¢2+3¢zo_[3)

(1+¢2+2¢c;—h\/5+0,f}
T
¢+\/50b
T

po=Lp = 2
1+¢° +2¢o—b\/7+a,f
T

(Var(yt))2

The autocorrelation function is given by

=0 k=234,

Theorem 2.4. Let {y,} be a Sign RCA-GARCH (1,1)
time series satisfying conditions (i) and (ii) given by

v, =(p+[b]+®s, )y +e, (2.11)
where
& =hZ, (2.12)
h’ = a)+Zp:ar‘gtz—i + Zq:ﬂjh,_j (213)
=l =l

where Z, and b, are sequences of independent, identically

E(y!

distributed random variables with zeromean, variance
givenby o, and o, respectively,
+1 if »,>0
s, =10 if y =0
-1 if y <0
w, ay, f1 and © are real parameters, satisfying the fol-
lowing conditions, w > 0, a; >0, ;> 0. |®@x| < w. Note:
E (sﬁ:l, and in order to calculate the kurtosis, we

observe that E(sf)zl. Then, we have the following
moment properties

E(yt{l =

| T

E(z)

+

)-
(1—@4 —¢* —60° (¢’ +0; ) - /3¢(12q>2ab +44’c, +80, )30, (24 + 0, )J
T

60, (2¢o-b\/5+d)2 +¢ +U§J[l—{¢2 +2\/5¢o-b +o; +(I>2D
n n

E(k)

E(h)

[1—@4 ~¢' - 60° (¢ +o-b2)—\/i¢(12d)20'b +4¢’c, +80, )30, (2¢ + 0, )]

Copyright © 2012 SciRes.
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[1—[¢2 +2\/5¢0';, +0, +cD2D E(Z))
. -
(E(Z;*)_(E(Z;‘)—I)Z;l//f]
o (1-@4 —¢* - 607 (# +a;)—\F¢(12qnzab +80; )-30; (2¢° +0; )J
T

6[2¢Ub\/5+®2 +¢ +ajj{l—[¢2 +2\/§¢O-b +o, +<D2B
T T

[1-@4 —¢' 60’ (¢ +O'Z)—\/i¢(l2cb20'h +4¢’c, +80, )30, (2¢° + 0} )J

K(y) -

(2.14)

+

Pr oof:
yt:(¢+|bt|+cbst)yt—l+gtﬂ
E(yt):E((¢+|bt|+CDst)yt_l+5t):O
E(ytz):E((¢+bt+d)st)yH+£,)2
_ E[ht]oé _ a)o‘é
l—(¢2 +2\/E¢o-h +o; +®2} [1—[;152 +2\/§¢O'b +o; +®2J](1—(aa§ +ﬁ))
T T
4 E(Z)) :
E(yt—l): 2 E(h’)
(1—@4 -¢* —60° (¢ +0'§)—\/;¢<12®20'b +4¢’c, +80; )30, (2¢° + 0, )]
4( \/E 2 2 ZJ[ ( 2 \/E 2 ZJJ_]
60| 2¢o, | —+D " +¢ +o, ||1-| ¢ +2,|—¢0, +0, +OD
s . . E(hY
[1—@4 ~¢* 60’ (¢ +o-b2)—\/i¢(l2d)20'b +4¢’c, +80, )-30; (2¢° + 0, )J
E(y!,)=A4E(h})+BE(h,)
where

E(z})

(1—6(1)2 (¢ +a,f)—12¢cpzab\F—4¢3ab\F—6¢za§ —8¢ 20'2 ~30) —@* —¢4J
T T T

60, (2¢ab\/5+d)2 +¢ +a§}(1—[¢2 +2\/E¢ab +o; +®2JJ
(L T

(1—@4 ~¢* —60° (¢ +0'b2)—\/3¢(12(b20'b +44’c, +80, )30, (24 + 0, )]

A:

B:

Copyright © 2012 SciRes. JMF



166 S.S. APPADOO ET AL.

{1—(;&2 + 2\/5¢0'b +o; +CD2D
T

E[ht ]2 0';

(1 —[;152 + 2\/54150,, +o, +@’ D
T
o,

<0 :M:(AE(h,2)+BE(h,)2)

(Var(yt))2

2 2 2 2 ’
[1—[¢ +2\/;¢ah+ab +o D E(hf)
2 +B
Oy

=4
E[n)

Using the facts that

2 ’ 2 ’
1-| ¢ +2\/7¢a,, +o, +(D2B s {1—(;&2 +2\/7¢a,, +o, +(D2B
K(y):A ( ( T E(ht)_'_B T
o E[n] o
(l—[# +2\/E¢o-b +o; +®2B
-4 " !
7 £(2)-(£(2)-1) 2y

+

[1—(;/52 +2 /z¢0'b +o; +<D2D
T
B 4
Oz

Thus, we have the following expression for the Kurtosis of the process.

(1—(;»2 +2\E¢Gb +o? +c1>2D2 (E(Zf)(E(Zf)

E(Zf)—l)iw,z-]

o (1—@4 —¢* —60° (¢ +a§)—\F¢(12<bzo—b +44’c, +80, )30, (2¢ + 0, )J
T

6[2¢o-b\/5+d)2 + ¢ +O'ZJ(1—(¢2 +2\/E¢o-b +o; +<I)2D
T T

ol (1—@4 —¢* — 607 (§ +a;)—\E¢(12q>20b +4¢’c, +80; )30, (2¢° +0; )]

K(J’) -

+

Special cases, for a Normal GARCH (1,1).

Copyright © 2012 SciRes. JMF
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e oo [

K()’) —
(1—6(132 (# +a§)—ab\F(12¢<D2 +44° +6¢’, +8go; +30, |- D —¢4j
T (2.15)
6(2¢5o-,,\/§+d>2 +¢ +ajj(l—(¢2 +2\/E¢o-b +o;, +<I>2D
T T
+
_ 2 2 2\ _ 2 E _ 3 % _ 2 2 E 3 _ 4 Ht_ 44
1-60° (4" +0; ) -1240°0, 4f’c, 64’0 —8¢,| =07 —30; —D* —¢
T T T
Note, that when o} =0, =0, and Z, ~ N(O,l) in Theorem 2.5. Suppose y, is a modified RCA model
(2.15), the kurtosis of the process converges to with GARCH (p, q) innovations of the form
=(g+|b +é&
2 1—(6‘6 +ﬂ)2 Wi (¢ | t|)yz—1 t
k0 =| % 3[1 ¢J o7 & =\h7,
(1+¢2) 1+¢ ( (a1+ﬂ,)2)—2a,2
(216) h w+zal t l+zﬂ ht J
When ¢ =0 in (2.16),the kurtosis of the process con- where b, is an uncorrelated noise process with zero mean
A 3(1 —(a+p )2) and with variance o, and Z, is an uncorrelatednoise
verge to K 0) = 3 5 process with zero mean and with variance o, . Then, we
- (a +p ) —2a have the following relationship
O_2

E(y)= Z E(h) 2.17)

(1—¢2 _2\/§¢Ub —UfJ
T

£(0)- I ()
(1—4¢3ab\f -6¢4°c; -84, -0, —¢* _3U;J
T T
(2.18)
(12¢0b0'§\/§ +60,0, +64°c, Joé
+ E(h,)2
[1—4¢3O'b\/5—6¢20'b2 -8¢ Eas —¢* —30'3}(1—# —2\/§¢0b —of]
T T T
[1 ¢ _2\/7¢O-b O'bJ
K(y):
(1—4¢3a,,\f 64’07 8¢\/7 (z;‘ 1)5;1///?}
! (2.19)
(1 @ —2\/7¢0'b ij£2¢0'b +0'b+¢
+6
[1—4¢3a,,\f 6¢°c, 8¢

Copyright © 2012 SciRes. JMF
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Proof: Let, u, =& —h,

p q P o4 ) q .
g -u=o+y ael +Y Bh_ {1—[2%31 +Z,BjBf]:|8,2 = w+(1_Zﬁ/B’J”z
= = = =

4(B)e; =0+ B(B)u, 9(B)=1-3 4B ¢ =(a+f)
,B(B):(l—iﬂjb’j} r =max(p,q)

E() _ ! KO-

T ()-(5) NS () S

Now we have

Thus,

E(ytz)_¢2E(yt21)_2\/%¢E(yt21)o-b _E(ytz—l)o-}f :E(ht)o-éa

and

2 2 2 2\ _ 2
(1—¢ —2\/;¢0'b—0'bJE(yt)—E(h,)aZ

(2.20)

E(y)=

o E()
[1—¢2—2\F¢a,,—o;j
T

E( 4) E(ht22,4)+12¢E(yt2_]|b,|h,X,2)+6E(yt2_l|b,|2h,Z,2)+6¢2E(y,2_]h,Z,2)
Yo | =

(1-40Ep| - 65°E|b,[ 40 |b,f -4~ Ep')
2
30§E(h12)+12¢0b0'§\/;E(yf_l)E(ht)+6ofo-§E(y,2_l)E(h,)+6¢2E(yf_l)E(h,)0§

[1 —4¢30'b\/§— 6¢ZG§ -8¢ 20'; —¢4 —30‘2]
n L

4

= 30—2 E(hz)
[1 —4¢30'b\/5—6¢20'§ -8¢ gaj —¢* —30'2]
T T

12¢GZ,O'§\/E +60,0, +64°c,
b

(1—4¢30b\/5—6¢20§ —8¢ 20'2 -¢* —303}
T T

Copyright © 2012 SciRes. JMF
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Using the fact that E ( v (h,), we have

(E==f

4
30,

1—4¢30'b\/5—6¢20'b2 - 8¢ 20'2 -¢* —30'3}
n n

[12¢0'b0'§ . fg +60,0, + 6¢ZG§]G§
T
3 2 2 2 2 5 4 4 2 2 N
(1—4¢ O\~ —64°c; —8¢,| ", — ¢ —3ij£1—¢ -2 /¢0'b—0bj
T T T

For convenience let E ( ! ) = AFE (h,2 ) +BE (h, )2 where,

£(#)

E(y')=
|

+

E(h)

4o 3o
3 2 2 2 g 3 4 4
1-4¢°c,.|— —6¢°0c, —8¢,|—0, —¢" 30,
n n
[12¢O’b6§\/5+ 60,0, +6¢20'§]G§
n
B:

[1—4¢30'b\/5—6¢205 -8¢ %of —¢* —36:](1—¢2 —2\/5¢O'b —O'ZJ
i T T T

The Kurtosis of the process is given by

) E[y!] B AE(R?)+BE(h,)

K(y = 2 2
E[5}] E[ 5]
(1 ¢ —2\/74150',, 0',,]
=[ 4B (i )+ BE(h,)']
o, E(h )
2 2
2 2 2 2 2 2
(1_¢ _2\/;¢o-b_o-bJ E(hz) (1_¢ _2\/;¢O'b_o'b]
=4 4 [2 +B 4
o, E(ht) o,
E(h}
Using the fact that ( ' ) = ! we have
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3(1—¢2 —2\/E¢O'b —O';j
T

+6

1_4¢3Gb\/g_6¢20-§ -89 %O—: ~¢ _352J[E(Zt4)—(E(Zf)—l)iy/f.j

[1—¢2 —2\/E¢O'b —05][2¢0'b\/5+0'b2 +¢2j
T T

@2.21)

2.2. Quadratic GARCH Moded

Besides having excess kurtosis market returns may dis-
play seriously skewed distributions. Linear GARCH
models cannot cope with such skewness, and therefore
we can expect forecast of linear GARCH model to be
biased for skewed time series. To deal with this problem
non-linear GARCH models are introduced, which take
into account skewed distributions. The QGARCH model
differs from model the classical GARCH model by

v =hz, (2.22)

h =6y +6h_+6,(y,_, +0; )’

) 5 (2.23)
= (50 +0,0; )+ Oh_ +26,6,y, ., + 6,5,

(6, +6,57)

(1 - [51 +08,0, +0,0, \/EJJ
T

E(h)=

[1 —4¢3o,,\F ~64°0; 8¢, ~¢' —302]
T

This model reduces to the GARCH (1,1) model when
the shift parameters J; = 0. The QGARC Hmodel can
improve upon the standard GARCH since they can cope
with positive (or negative) skewness.

Theorem 2.6. Consider the general class of RCA
OGARCH (1,1) Volatility Models for the time series y,,

where
Ve = \/EZL‘
h, = (50 +6,8; ) +0h_ +26,0y,, +(52 + |at—1|)yt2—1
(2.25)

(2.24)

where Z, ~ N(O, o,) and a, ~ N(O, O'az) . Then, we

have the following moment properties

25,0,67 + 87 +525°

+

x—1) =
{1 - (60352%\/5 +67 +30,8, +30,0. +28,0,0, +25,0,0, \/EB
n n

2(35;6}%; +8,0.0, \/5 +8,0,0, + 0,0, + 8,0, 6, + 8,0, 0,0, \/EJ
T T

K(y) —

2 ) )
(1 - [66;526a \/7 +07 +30,06, +30,0. +28,0,0, +28,0,0, (J]
T T

2
3(25,0,85 + 8 +855, )(1 —[51 +8,02 +0l0, \E D

{1 - (60352% \F + 82430482 430002 + 25,028, + 26,020, \F D(ao +5,52)
T T

+

6((3522532 +8,8, )05 +05 (5, +52532)0'a\/i+(50 +525§)51)(1—[51 +o? (52 +J\EDJ
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{1—(60252@ \F +02 430482 +30 0 + 26,028, + 25,020, \FD(@, +35,07)
T T
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Proof: is easy and is omitted.

Theorem 2.7. Consider the special class of RCA
OGARCH (1,1) Sign Volatility Models for the time series
Vi, Where

v =(¢+p))y.+e, (2.26)
& =+|hZ (2.27)
h = (8, + 6,57 )+ 5h, +28,8,y, .

+ (52 + |at—1| +®s, )yt2—1

(1—[# +2¢ab\F+a§D(5o +5,87 )
T

where Z, ~ N(O, o, ), a, ~ N(O, O'j) , at ~N(0,02a) and
b ~N (0, o, ) are sequences of independent, identical-
lydistributed random variables with zero mean, variance
givenby o, and o, and o©. respectively, and
+1 if »,>0
s, =40 if y =0
-1 if y <0
Note: E (sf): 1, and in order to calculate the kurto-

sis, we observe that E (s,4 ) =1 . Then, we have the fol-
lowing moment properties

E(h)= (2.29)
(1—51)(1—[¢2 +2¢o-b\/5+0'b2D—0'§ [52 +0'a\/zj
T T
o’ [1—(# +2¢0'b\/i+0'b2D(50 +5,87)
E(ytz)z (2.30)
[(1—51){1_(¢2 +2¢ab\/5+o-b2D—a§ (62 +0a\/§jj[1_(¢2 +2¢O_b\/5+O-;J]
T b T
4 30'; 2
E(yt ): E(ht )
[1—((1‘}4 +30; +4¢30'b\/5+6¢20',f +8¢ 20',? ]J
T T
f e o]
o,| 60, +6¢4" +12do,.|— || 1-| ¢ +2¢0,,|— + 0O,
T T
, 2 = (el
{1—(%‘ +30, +4¢30'b\/7+6¢20'§ +8¢, -0, D
n n
: 2.
{1—@5 +2¢o-b\/;+o-bﬂ E(hz)
KW = y {A —~ +BJ (2.32)
oz E[ht]
where
A= 30, (2.33)
(1 —(¢4 +30;) +4¢’°c, \F +6¢°c; +8¢ 20',3 D
T T
o,| 60, +6¢° +12¢0,.|— || 1-| ¢" +2¢0,,|— + 0,
b T
= (2.34)
[1 —(¢4 +30;, +4¢3ab\F+ 64’°c; +8¢ ZGSJJ
T b
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2

M, +M, (M, + M, + M+ M+ M, +M)o; M,B(E[h,])
E(r?)= [(1 - E[h]+ [(1_52)_M A] (2.35)
{ ¢ +2¢0, +6b]:|[(1—512)—M9A} 1 9
M, =(8; +25,0,8; + 5,5, )
2 2 2 2
(20,6, +28,5.5,)| 1-| " +240,,|~ +a; | |(8, +6,57)
T
[(1_51)[ _(¢ +2¢O-b\/7+o-b J\J_O—z {52 +Ua\/7J\J
T T
M, =26,5,, M,=65;5;
26,6, (1 —{¢2 + 2¢a,,\F +a,3D(50 +5,655)
T
M =
2 2 2 2 2
[(1—6‘1)(1—(¢ +2¢Gb\/7+0'b D—GZ [52 +0'a\/7j]
T T
Mg = 250o'a\/z
T
2 2 2 2 2
20"100\[[1—@5 +2¢o—b\f+o—b J](ﬁo +5,57 )
T b
M, =
2 2 2 2 2
(1-8,)|1-| ¢* +2¢0,,| = +0, ||-05| 6, +0,. |~
T T
= 2525320-0\/2
T
2 2 2
M. [CD +2aa\/:52 +0,+0 J
T
Proof: is easy and is omitted.
3. Option Pricing with Volatility dS =S di+oSdW 3.1)
Option pricing based on the Black-Scholes model is s s
widely used in the financial community. The Black- y, =log (_tj _ E{log (_tﬂ =07, (3.2)
Scholes formula is used for the pricing of European-style S S
options. The model has traditionally assumed that the o ( B)02 —w+f ( B)y2 (3.3)
t t .

volatility of returns is constant. However, several studies
have shown that assetre turns exhibit variances that
change time [9,10,] and others derived closed form op-
tion pricing formulas for different models which are as-
sumed to follow a GARCH volatility process. Most re-
cently, Gong et al. [11] derive an expression for the call
price as an expectation with respect to random GARCH
volatility. The model is then evaluated in terms of the
moments of the volatility process. Their results indicate
that the suggested model outperforms the classic Black-
Scholes formula. Here we apply [11] and propose an
option pricing model with RCA GARCH volatility as
follows:

Copyright © 2012 SciRes.

where S, is the price of the stock, r is the risk-free interest
rate, {W,} is a standard Brownianmotion, o; is the
time-varying RCA GARCH volatility process, {Z,} is a
sequence of i.i.d. randomvariables with zero mean and
unit variance and ®©(B), and f(B) have been defined in
(1.5). Theprice of a call option can be calculated using
the option pricing formula given in [11]. The call priceis
derived as a first conditional moment of a truncated log-
normal distribution under the martingalemeasure, and it
is based on estimates of the moments of the GARCH
process. The call price basedon the Black-Scholes model
with seasonal GARCH volatility is given by:

JMF
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C(8.7)= S[f[E(of )+ 1 [E(o )]GM —IJEZ (07 )j

_KerT[g[E(a; e Lo )}Gw _1jE2 (o2 )j,

where f and g are twice differentiable functions, S is the
initial value of S,, K is the strike price, T is the expiry
date, o, is a stationary process with finite fourth moment,

E(y!)

[E0)]

and x\) =

3.4

Also,

and

are given by:

10g(S/K)+rT+%E(O'tZ)

| Eled)-

(log S/K + rT

Ve

10g(S/K)+rT—%E(of)

>

Ec?

t

—4 log(S/K)+rT)

4E O't

(log(S/K)+rT

8[E(a;)]2

E(o; )+2(1og S/K +rT)

E(o?)]

2 2
(o)

log(S/K)+rT) }

4E 6,

6(log(S/K)+rT)+E(o;

(o) |z af)

where N denotes the standard normal CDF, and under the
option pricing model with RCA GARCH volatility,

@ o) _ 3

QY

4. Concluding Remarks

E(62

Financial time series exhibit excess kurtosis and in this
paper, we propose various classes of RCAGARCH vola-
tility models and derive the kurtosis in terms of model
parameters. We consider time series models such as RCA

Copyright © 2012 SciRes.

{ 2(log S/K +rT)+E( ))2

(o) |
(2(10g(8/K)+rT) - E( f))2

e |

with GARCH errors and quadratic GARCH errors. The
models introduced here extend and complement the ex-
isting volatility models in the literature to RCA models
with quadratic GARCH models by introducing more
general structures. The results are primarily oriented to
financial time series applications. Financial time series
often meet the large data set demands of the volatility
models studied here. Also, financial data dynamics and
higher order moments are of interest to many market
participants. Specifically, we consider the Black-Scholes
model with RCA GARCH volatility and show that these
moments can be used to evaluate the call price for Euro-
pean options.

exps —
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