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ABSTRACT 

Recently there has been a surge of interest in higher order moment properties of time varying volatility models. Various 
GARCH-type models have been developed and successfully applied in empirical finance. Moment properties are im-
portant because the existence of moments permit verification of how well theoretical models match stylized facts such 
as fat tails in most financial data. In this paper, we consider various types of random coefficient autoregressive (RCA) 
models with quadratic generalized autoregressive conditional heteroscedasticity (GARCH) errors and study the mo-
ments, mean, variance and kurtosis. We also consider the Black-Scholes model with RCA GARCH volatility and show 
that these moments can be used to evaluate the call price for European options. 
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1. Introduction 

It is well-known that many financial time series such as 
stock returns exhibit leptokurtosis and time-varying vola-
tility [1]. The generalized autoregressive conditional het-
eroscedasticity (GARCH) and the random coefficient 
autoregressive (RCA) models have been extensively used 
to capture the time-varying behaviour of the volatility. 
Studies using GARCH models commonly assume that 
the time series is conditionally normally distributed; how- 
ever, the kurtosis implied by the normal GARCH tends 
to be lower than the sample kurtosis observed in many 
time series Bollerslev [1]. Thavaneswaran et al. [2] use 
an ARMA representation to derive the kurtosis of various 
classes of GARCH models such as power GARCH, non- 
Gaussian GARCH, non-stationary and random coeffi-
cient GARCH. Recently, Thavaneswaran et al. [3], Ap-
padoo et al. [4] have extended the results to stationary 
RCA processes with GARCH errors and Paseka et al. [5] 
further extended the results to RCA processes with sto-
chastic volatility (SV) errors. 

Leptokurtosis is commonly observed in financial time 
series, as well as in currency and commodity markets. 
The opening and closure of the markets, time-of-the-day 
and day-of-the-week effects, weekends and vacation pe-
riods cause changes in the trading volume that translates 
into regular changes in price variability. Financial, cur-
rency, and commodity data also respond to new informa-
tion entering into the market, which usually have large 
kurtosis. Recently, there has been growing interest in 

using volatility models [3,4]. Most of the studies use 
GARCH models with dummy variables in the volatility 
equation, and a few of them have been extended to a 
more flexible form such as the RCA GARCH. However, 
even though much research has been performed on vola-
tility models applied to market data such as stock returns, 
more general specifications accounting for RCA with 
GARCH errors have been little explored. First we derive 
the kurtosis of a simple time series model with behaviour 
in the mean. Then we introduce various classes of RCA 
GARCH models and study the moments and discuss ap-
plications in option pricing. We extend the results for 
RCA GARCH volatility models to RCA quadratic GARCH 
models. The RCA GARCH model is appropriate for time 
series where significant autocorrelation exists. Option 
pricing with RCA model with quadratic GARCH errors 
is also discussed in some detail. The moments derived 
for the RCA GARCH volatility models provide more ac- 
curate estimates of market data behaviour and help in-
vestors, decision makers, and other market participants 
develop improved trading strategies. The rest of the pa-
per is organized as follows. In rest of Section 1, we pre-
sent results on standard GARCH models. These results 
are interesting for their own sake. In Section 2, we derive 
the higher order moments of some RCA models with 
GARCH errors, and in Section 3 we discuss some option 
pricing applications with RCA models with GARCH 
errors. 

GARCH Models 

Consider the general class of GARCH (P,Q) model for *Corresponding author. 
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the time series yt, where 
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 and if the process {Zt}  

is normal then the process {εt} defined by Equations (1.3) 
and (1.4) is called a normal GARCH (p, q) process. The 
kurtosis ofthe GARCHprocess is denoted by  K   when 
it exists. 

2. Random Coefficient Volatility Models 

Consider the class of random coefficient autoregressive 
(RCA) models defined by allowing random additive per-
turbations of the autoregressive (AR) coefficients of or-
dinary AR models. That is, we assume that the process yt 
is given by, 
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known, t  and e  ib t  are zero mean square integrable 
independent processes and the variances are denoted by 
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Thus, the conditional variance is a nonlinear function and 
hence the RCA model may be viewed as a non-linear 
time series model. Nicholls and Quinn [7] studied linear 
as well as some nonlinear (proposed) forecast by fitting a 
nonlinear (RCA) model for the classical lynx cycle data. 
Using heuristic reasoning they proposed a nonlinear  

forecast and  
1

2 2 2 2
1 1 1ˆ ˆ ˆsgnn n ny y y         theyshowed  

empirically that the forecast 1n  is a better predictor 
(having smalller forecast errors when compared with the 
actual observations) than the linear forecast for the lynx 
data. It is of interest to note that by defining  
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That is, the estimating function method can be used to 
obtain a nonlinear forecast for a nonlinear models by 
considering a class of elementary martingale estimating 
functions generated by nonlinear functions of the obser-
vations. Using a similar argument we could also obtain 
forecasts for various class of GARCH models, see Tha-
vaneswaran and Heyde [6] for details. The main message 
is RCA models could be used to improve the forecasting 
performance of stocha ic volatility models.  

te        (2.1) 
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The sequences {bt} and {εt} respectively, are the errors 

in the model. 
Theorem 2.1. Let {yt} be a modified RCA (1) time se-

ries with an absolute value random coefficient satisfying 
conditions (1) and (2). The modified RCA (1) model is 
given by  

2.1. RCA Models 

Random coefficient autoregressive time series were in-
troduced by Nicholls and Quinn [10] and some of their 
properties have been studied recently by Thavaneswaran 
[3]. RCA models exhibiting long memory properties 
have been considered in Leipus and Sugailis [8]. A se-
quence of random variables {yt} is called an RCA (1) 
time series if it satisfies the equations 
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where we use the fact that ρ0 = 1. 
Theorem 2.2. Suppose yt is an Random Coefficient 

Moving average process model of the form 
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Thus we have 
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Theorem 2.3. Suppose yt is an Random Coefficient 

Moving average process model of the form 
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Theorem 2.4. Let {yt} be a Sign RCA-GARCH (1,1) 

time series satisfying conditions (i) and (ii) given by 
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Special cases, for a Normal GARCH (1,1). 
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Using the fact that    
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The Kurtosis of the process is given by 
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2.2. Quadratic GARCH Model This model reduces to the GARCH (1,1) model when 

the shift parameters δ3 = 0. The QGARC Hmodel can 
improve upon the standard GARCH since they can cope 
with positive (or negative) skewness. 

Besides having excess kurtosis market returns may dis-
play seriously skewed distributions. Linear GARCH 
models cannot cope with such skewness, and therefore 
we can expect forecast of linear GARCH model to be 
biased for skewed time series. To deal with this problem 
non-linear GARCH models are introduced, which take 
into account skewed distributions. The QGARCH model 
differs from model the classical GARCH model by 

Theorem 2.6. Consider the general class of RCA 
QGARCH (1,1) Volatility Models for the time series yt, 
where 
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Proof: is easy and is omitted. 
Theorem 2.7. Consider the special class of RCA 

QGARCH (1,1) Sign Volatility Models for the time series 
yt, where 
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Proof: is easy and is omitted. 
 
3. Option Pricing with Volatility 

Option pricing based on the Black-Scholes model is 
widely used in the financial community. The Black- 
Scholes formula is used for the pricing of European-style 
options. The model has traditionally assumed that the 
volatility of returns is constant. However, several studies 
have shown that assetre turns exhibit variances that 
change time [9,10,] and others derived closed form op-
tion pricing formulas for different models which are as-
sumed to follow a GARCH volatility process. Most re-
cently, Gong et al. [11] derive an expression for the call 
price as an expectation with respect to random GARCH 
volatility. The model is then evaluated in terms of the 
moments of the volatility process. Their results indicate 
that the suggested model outperforms the classic Black- 
Scholes formula. Here we apply [11] and propose an 
option pricing model with RCA GARCH volatility as 
follows: 

d d dt t t tS rS t S Wt              (3.1) 

1 1

log logt t
t t

t t

S S
ty E Z

S S


 

    
      

     
      (3.2) 

  2
tB       2

tB y             (3.3) 

where St is the price of the stock, r is the risk-free interest 
rate, {Wt} is a standard Brownianmotion, σt is the 
time-varying RCA GARCH volatility process, {Zt} is a 
sequence of i.i.d. randomvariables with zero mean and 
unit variance and Φ(B), and β(B) have been defined in 
(1.5). Theprice of a call option can be calculated using 
the option pricing formula given in [11]. The call priceis 
derived as a first conditional moment of a truncated log-
normal distribution under the martingalemeasure, and it 
is based on estimates of the moments of the GARCH 
process. The call price basedon the Black-Scholes model 
with seasonal GARCH volatility is given by: 
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where f and g are twice differentiable functions, S is the 
initial value of St, K is the strike price, T is the expiry 
date, σt is a stationary process with finite fourth moment,  
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where N denotes the standard normal CDF, and under the 
option pricing model with RCA GARCH volatility, 
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4. Concluding Remarks 

Financial time series exhibit excess kurtosis and in this 
paper, we propose various classes of RCAGARCH vola-
tility models and derive the kurtosis in terms of model 
parameters. We consider time series models such as RCA 

with GARCH errors and quadratic GARCH errors. The 
models introduced here extend and complement the ex-
isting volatility models in the literature to RCA models 
with quadratic GARCH models by introducing more 
general structures. The results are primarily oriented to 
financial time series applications. Financial time series 
often meet the large data set demands of the volatility 
models studied here. Also, financial data dynamics and 
higher order moments are of interest to many market 
participants. Specifically, we consider the Black-Scholes 
model with RCA GARCH volatility and show that these 
moments can be used to evaluate the call price for Euro-
pean options. 
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