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ABSTRACT 

In this paper, we review recent developments in modeling term structures of market yields on default-free bonds. Our 
discussion is restricted to continuous-time dynamic term structure models (DTSMs). We derive joint conditional mo- 
ment generating functions (CMGFs) of state variables for DTSMs in which state variables follow multivariate affine 
diffusions and jump-diffusion processes with random intensity. As an illustration of the pricing methods, we provide 
special cases of the general formulations as examples. The examples span a wide cross-section of models from early 
one-factor models of Vasicek to more recent interest rate models with stochastic volatility, random intensity jump-dif- 
fusions and quadratic-Gaussian DTSMs. We also derive the European call option price on a zero-coupon bond for linear 
quadratic term structure models. 
 
Keywords: Affine Process; Dynamic Term Structure Models; Jump-Diffusions; Quadratic-Gaussian DTSMs 

1. Introduction 

In this review, we summarize available continuous time 
technology for pricing default-free term structures. Our 
main goal is to provide a unified approach to the pricing 
exercise based on well-developed application of stochas-
tic calculus to finance problems. In our discussions, we 
always start from state variable processes given under a 
risk-neutral measure. We make no attempt to systemati-
cally present the transition between the actual measure 
and the risk-neutral measure. Thus, we leave out the 
question of reconciling time series properties of the un-
derlying state variables (such as short rate), which are 
defined under the actual measure, and the properties of 
the market yields (or, equivalently, bond prices), which 
are derived under the risk-neutral measure.  

We begin with affine diffusion models of interest rates. 
The menu of available models in this class is truly vast.1 
The most redeeming features of this class of models are 
the availability of closed form solutions for derivatives 
on the short rate and the ability of models to reproduce a 
variety of term structure patterns. Models in this class 
have closed form solutions for bond and bond option 
prices, which makes them particularly attractive for em-
pirical work. Some models in this class, especially two- 
or three-factor models, are flexible enough to have a sat-

isfactory fit to observed term structures. The last property 
is essential for pricing options on bonds. Extended ver-
sions of Vasicek and CIR (e.g., [2,5,14]) allow for time- 
varying coefficients in state variable dynamics. This ex-
tra feature allows the model to fit the initial term struc-
ture.  

Discontinuous movements in interest rates are caused 
by central banks and unexpected news announcements. 
In order to implement a specific policy, monetary au-
thorities often use specific rate-setting rules which result 
in entire yield curve shifts in line with movements in the 
benchmark rate. Empirical evidence suggests that interest 
rates exhibit substantial skewness and kurtosis, and hence 
jump-diffusion interest rate models are more appropriate2. 
In deriving the term structure of spot rates for the case of 
discontinuous interest rates, we stay within the affine 
jump-diffusion class of models. The bond prices are still 
available in near-closed form up to the solutions of Ric-
cati ordinary differential equations for the coefficients of 
the conditional moment generating function of the state 
variables.  

Market spot rates are mostly positive, and a class of 
quadratic interest rate models is designed to restrict spot 
rates to be positive without ruining the bond price tracta-
bility. Square-Gaussian models, in which the short rate is 

2The number of models in this class is vast. Examples include [15-23], 
[19-21,24-26] provide evidence that jumps are essential in modeling 
interest rate distribution. [27] provide a general approach to interest 
rate derivative pricing for exponential affine jump-diffusion models of 
interest rates. 

1Examples include the original one-factor model [1], extended Vasicek 
([2,3]), one-factor Cox-Ingersoll-Ross models ([2,4-7]), two-factor Cox-
Ingersoll-Ross models ([2,8,9]), three-factor models ([10-12]). For a 
more detailed list of models we refer the reader to [13]. 
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a sum of squares of Gaussian state variables, have been 
investigated by [28-30]. The models of Quadratic-Gaus- 
sian class were studied by [31-35]. The mathematics of 
these models is similar to that of affine jump diffusions 
and also allows closed form solutions for bond prices in 
the exponential quadratic form.  

Previous jump-diffusion TSMs treat short rate inten-
sity in one of the following restrictive ways:  

1) A deterministic function of the short rate ([26]);  
2) Constant except for FOMC meeting days and mac-

roeconomic news announcements, in which case it is a 
linear function of short rate, interest rate volatility, and 
Fed rate target; or  

3) A function of the spread between the Fed funds rate 
and the target.  

Thus, we also consider a recent extension of a class of 
Linear-Quadratic term structure models (LQTSMs) to a 
class of jump-diffusion TSMs in which short rate jump 
intensity follows its own stochastic process (see [36-38] 
for details). We show how this model class is designed to 
have a closed form conditional moment generating func-
tion and bond prices. Despite strong restrictions on state 
variable processes that are necessary to obtain closed 
form bond prices, [36] shows that the inclusion of ran-
dom intensity improves the model fit to both the dynam-
ics of the term structure and that of the volatility term 
structure. The main mechanism of improved fit is the 
short term kurtosis of the short rate.  

The rest of this paper is organized as follows. In Sec-
tion 2, we present a general technique of solving for joint 
CMGF of an affine state vector and its integral. Special 
cases include CMGF of an affine vector and bond prices 
within affine model class. Section 3 covers affine jump- 
diffusion DTSMs. Finally, we close with a review of 
quadratic Gaussian models and a more general class of 
linear quadratic class of DTSMs with jumps of random 
intensity. We also derive the price of a European call 
option using a generalized transform.  

2. Affine Term Structure Models 

In this section we provide general results for affine mod-
els. As an illustration, we also give detailed account of 
some popular special cases.  

Definition. Let  be a vector of  state variables, 
and let  be the short rate. A model is affine if the state 
vector solves the following diffusion SDE:  

Y n
r

 d d Σ d ,Y Y t V    W

Y

          (2.1) 

0 1 ,r                     (2.2) 

where  Σ constant matrix),

0

n n  , 1n  , n n  (  
  1

1
n n n -matrix such 
 diag i iV Y

,   , V  is a diagonal 
that V     , a ctor of 

Wiener processes. We assume that an equiva-

lent martingale measure (EMM) exists, and all processes 
and expectations (unless stated otherwise) are understood 
as those under the EMM, e.g., the process in (2.1) is 
written under the EMM. The SDE (2.1) implies that the 
joint conditional moment generating function (CMGF) of 
the state vector is exponential affine:  

nd W  1n  is a ve

     (2.3) 

where 

standard 
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ju
 2.1. Assume that a state vector Y satisfies 

(2

The  lemma is a sp
mps.  
Lemma
.1). Consider the following boundary value problem:  

 

   1
, 0

2

Y
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t

tr V f V r t Y f

f
Y f      
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

 , u Yf T Y e                    (2.5) 

This problem has a stochas

T

tic solution of the form3 

   
T

   0 1

, exp , d

           t

t s
t

Y

f t Y E r s Y s u Y

e   




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with the following initial conditions:  and   0 0 0 
 1 0 u  .  

pplProof. A ying Ito’s lemma to function  

   , exp , d
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w w s
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After taking the conditional expectation of both sides 
an

T

d noting that the first of the two integrals on the right 
hand side is zero due to (4), we have  

   
T

 

 

, exp , d ,

           exp , d

t t s T
t

T

t s
t

f t Y E r s Y s f T Y

E r s Y s u Y





 
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
  
   
  

    
   


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3[27,39-42] used the extended transform to price derivatives in closed-
form using inverse Fourier transform. 
4This expression holds even if the terminal time, T, is random. In this 
case, the formula is known as Dynkin’s formula. 
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In order to prove the exponential affine form of the 
solution (2.6) to (2.4), it suffices to use it as a guess and 
find the equations determining  coefficients1n    0   
and  1  . Substitution of  ,f t Y    0 1e    tY

n that mu
 into 

st hold for (2.4 uces the following 
any value of the state vector:  

) prod equatio

       

   

   1 1

0 1 1

1 1
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  0 1 0r Y      

The left hand side of the above equation is an affine 
function in . Since the equation must hold for arbitrary 
vector , both coefficients of the affine function must 

requirement gives two Riccati ODEs for 
coefficients 

Y

0

Y
be zero. This 

    and  1  :  

       0 1 1 0 1 0

1
0

2t H              (2.7) 

       1 1 1 1 1 1

1
0,
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where 0H  and 1H  can be inferred from the following 
expressi   

It follows from (2.5) that the initial values are  

io r an affine diffusion is just 
a special case of the above result for 

on:
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1
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       (2.9) 

Es:  
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1
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1
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Zero coupon bond prices are a special case f the 
Lemma. Assuming again that the short rate process is 
affine in the state variables as given in (2.2), the price of 
a zero-coupon default-free bond with maturity  and 
face value of $1 is given by  

 o

 T

   , exp , dt t t s
t

D t Y E r s Y s   
   

       (2.10) 

where the expectation is under a EMM. The expectation 
in (2.10) is a special case of (2.6) with 1

T  

   and 0u  . 
Given these restrictions, the bond price has exponential 
affine form  
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Bond price coefficients 0     and  1 
(a sp

 solve the 
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(2.7)-(2.8)):  
following system of Riccati equati
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The spot rate is given by  

   
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1
ln ,

       

t t tr D t Y

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Taking limits as 0  , we obtain the short rate 
hich is also given in (2.2)

tr  
(w )  

   0 1 0 1 t0 0t tr Y Y  
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2.1. One-Factor Interest-Rate Models 

In e
details. Under the EMM, 

the evolution of this process is described by a di usion 
Gauss-Markov process of the form:  

 this section we provide closed form expressions of th  
default-free bond prices with 

ff

       d d d ,r t t t t W t          (2.16) 

where   , 0W t t   is a standard Brownian motion and 
 t ,  t  are suitable processes adapted to  

  ,0t W u u t   . The usual assumption is that 
 t  and  t  are simply functions of the short rate 
 r t  and time t , i.e.,   t r t   , t  and  
    ,t r t t  .  

rem 2.2. Con


Theo sider the Hull and White model of 
the f rm o   

            d d ,r t t t W t    (2.17) 

e 

dr t t t  
5In (2.9), the expectation is usually computed under the actual measure. 
In practice, the actual moments of the state variables are used instead 
of the risk neutral ones. 

 t ,  t  and -random t  wher are non  func-
tions of t  such that  
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Hence the default-free time bond price is given by  
      2 d .
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Note: The Merton [43] model, Vasicek [1] model, and 
the Ho-Lee model [44] are special cases of (2.17).  

Proof. Under these assumptions (2.18) the Equation 
(2.17) has a unique (strong) solution  
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 

 
          

 

 

 
.21) 

2 2 2 2

2

,

2

d
2

, 2 ,
.

4

v

t t

A t T

T v

C t T T t C t   



  

  
  


 (2

Note 2. For the extended Vasicek model,  

T

   t t  ,  t  , it follows from Theorem 2.2 
that  

   1
, d 1

T
T tt y

t

C t T e e y e  


          (2.22) 

 

 

     

   

2

2 2

2 2

22

,

1
d d d

1
, d , d

2

, ,
  .

2 2

T T T
v y v y

t t

A t T

v

v T v v C v T v

C t T T t C t T

    

 


 

 
      


 



  
   

 



Theorem 2.3. Consider the Cox, Ingersoll and Ross 
(CIR) model, the interest rate process 

2t v v

T T

e v e y e e y

C

       



  


(2.23) 

 r t  is given by  

        d dr t r t t r t W t      d ,

where  r t  
n bon

is given. The price at time  of a 
coupo d paying $1 at time T is  

where  

t zero- 

       , ,, ,r t C t T A t TB t T e   

 
  

    

sinh
, ,

1
c sh sinh( )

T t
C t T

T t T t



  




  
 

o
2



 

 1

,

T t

A t

 

     

2

2

2
log ,

1
cosh sinh

2

T

e

T t T t

 

   


 

   
    
 

 


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2 21
2

2
   and .  

Proof. See the Appendix.  

2.2. Multi-Factor TSMs 

There is substantial evidence that bond yields have tim - 
varying conditional volatilities (see, e.g., [45,46]). Even 
though general single-factor DTSMs do have built-in 
time varying bond yield volatilities (except for basic 

sian affine and l rmal models), however, they 
can not match the variation observed in practice. For ex- 
am nd to understate the vola- 
tility of long-term yields, overstate the correlation be- 

aturities, require mean re- 

e

Gaus ogno

ple, single-factor models te

tween yields of different m
version properties that cannot simultaneously match cross 
section and time series of bond yields. There is also evi- 
dence that linear drift term in single factor models is 
misspecified. Multifactor models are designed to address 
some of these issues.  

Here, we give an example of a three-factor affine fam- 
ily model presented in [11]. The short rate is a CIR proc- 
ess with long run mean (central tendency) following 
Ornstein-Uhlenbeck process and stochastic volatility fol- 
lowing a CIR process all under an EMM. The state vec-
tor  , ,

T
Y r V  is defined as follows:  

 d d rr r t V W     

 d dt dW         

 d d dV VV a b V t V W    

where  d d dr VE W W t , and all other correlations are 
zero.  

According to (2.11), the price of a zero coupon bond 
in th sfies the following PDE: is model sati  

     

 2 21
2

2

t r V

rr V VV V rV

D r D D a b V D

V D D V D V D rD



 

    

  

       

 0



        
 

Since the model is in the affine category  
 in the following f





, we look for a
solution orm: 

     0 1, , , tY   
  tD t r V e

where vector  1   has three components  11 ,   
 12 ,   and  13 

th the bo
. The Riccati Equations (2

g wi undary conditions (2.14)
.12) and 
 imply  (2.13) alon

2 2
0 12 13 12

1
0

2
ab               (2.24) 

11 11 1 0                 (2.25) 

12 11 12 0       

 2 2 2
13 11 13 11 13

1 1
0

2 2 V Va              (2.27) 

   0 0 1 0 0               (2.28) 

Solutions to Equations (2.25) and (2.26) are available 
in closed form:  

 11

1 e 

 



 

 

 
 

         (2.26) 

12

1 1
.

e e 
 
 

  
 


 

Explicit solutions for 

e 

 13   and  0   are not 
available. However, num
tain.  

p-Diffusion DTSMs 

There is a growing body of empirical research showing 
that discontinuous behavior of interest rates is essential 
in correctly describing their distribution and fitting terms 
structures to the data. e.g., [24-26] all find that introduc-
ing jumps substantially improves the fit of e condi-
tional distribution of short-term interest rates compared 
to odels.6

le mathematics involved in these models. In-
 the mean re-
interest rates 

nclude jumps. The 
C

erical solutions are easy to ob- 

3. Affine Jum

th

 that of nested diffusion m   
The relative scarcity of empirical work on models of 

discontinuous interest rates is most likely related to far 
less tactab
terest rates are mean reverting. In general,
version feature combined with jumps in the 
makes the moments of jump-diffusion distribution de-
pendant on the timing of the jumps. However, in jump- 
diffusion models it turns out that the density of equity 
returns does not depend on the jump times. In order to 
derive the expression for the CMGF of the state variables 
and bond prices for the case of affine jump diffusion we 
generalize the Lemma 2.1 in order to i

MGF for a jump-diffusion process turns out to be the 
product of CMGFs of continuous and jump parts of the 
processes.  

Definition. Let Y be a vector of n state variables and r 
is the short rate. A model is affine if the state vector 
solves the following diffusion SDE:  

 d d Σ d dY Y t V W J N               (3.1) 

where n n  , 1n  , Σ n n  constant matrix, 

0  , 1
1

n  , V  is a diagonal n n -matrix such 
that  diag i iVV Y    , 1nW   is a vector of stand- 

6Jump-diffusion models of interest rates are numerous. e.g., [15] gen-
eralise the equilibrium model of CIR by including jumps in the dy-
namics of underlying state variables. [21,22], and [18] augment the 
V
cl

asicek model with jumps in the short rate. [39] consider a general 
ass of affine jump-diffusion models. 
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ard Wiener processes, q  is a Poisson counter with 
state-dependent intensity, a positive affine function of Y , 
  0 1Y Y   , and J  

u E
es 

r

 p
un

is a 
u Je 

are

ent stat
xp

derst

jump size with ti
 We assu
ncorrelat

mp 
e varia

me-homo- 
me that jump size geneous MGF 

p arriv
pa f th
lated ac

xists, 

 J .
al im
e pr

ross diffe

 o

and jum  t  u ed with the diffu- 
sion rt o ocess. In general, ju sizes can be 
corre bles.  

As before, (2.2) is the e ression for the short rate. We 
again assume that an equivalent martingale measure 
(EMM) e and all rocesses and expectations (unless 
stated otherwise) are od as those under the EMM. 
The SDE (3.1) implies that the joint conditional moment 
generating function (CMGF) of the state vector is expo-
nential affine. To see why this is the case, we extend the 
lemma of section 2 to include jumps.  

Lemma 3.1. Assume that a state vector Y satisfies 
(3.1). Then, the joint CMGF of process Y  and its inte-
gral is given by the following expression  

   

   0 1

, exp , d

          t

T

t s T
t

Y

f t Y E r s Y s u Y

e    

  
    

   



       (3.2) 

where T t   . This CMGF solves the llowing boun- 
dary value problem:  

fo

          ( , 0Y f   t t f Af r

 ,

3.3) 

u Yf T Y e                 (3.4) 

where  

   

 
2

 ,  

ΣY YY

,

1

         t

Af Y       f tr V f V

J f t

   

 
    (

of st
ficients 

Y 

r 
nctio ef

E

gene
n

f t Y

rato
 f. Co

Y 

is the infinitesimal 
 the fu

3.5) 

ate variable vector Y  
applied to  0   and  1   
satisfy the followin

 

g   ODEs

 

:

     

  
0 1 1 0 1

0

1

2

1 0

H

0 1

t

J

   



  





 



  

   





  
   (3.6) 

      1 1 1

1

2t 1 1

11 0

H

  1 1J

          

 
    (

      
3.7) 

   0 1,0 0  0 u           

Proof. The proof is somewhat similar to the proof of 
Lemma 2.1 To find equations for the coefficients 

   (3.8) 

 0   

       

   

     1

0 1 1

1 1

1
Σ

2

1 ,

and  1 
 (3.2) in

, we insert exponential affine solution
sion to (3.3). The resulting expression  

 expres-

0f

t t

J
t

Y Y

tr V V

Y E e r t Y 

       

   




      

     
     

 

 

Model 

The valuation of fixed income securities requires transi-
tion from actual to EMM measure. In general, this task 
can be accomplished by specifying a stochastic discount 
factor (SDF) for the economy. In continuous time, the 
SDF, 



must hold for all values of the state variables, which re-
sults in ODEs (3.6)-(3.8). 

3.1. One-Factor Jump-Diffusion Vasicek 

tM , places a restriction on a price  of a zero- 
coupon bond according to the following Euler condition 

 tD

(see [47]):  

d d d dD M M D
t t tE E E

D M M D
    

In a model adapted from [22], the SDF satisfies a 
jump-diffusion SDE:  

 d
d d d dW J

M
r t W N t

M
             (3.9) 

where W  is the price of diffusion risk, J  is the price 
of jump risk, d dN t  

cess with inten
is a demeaned (compensated) 

Poisso sity n pro   jump r year. They 
also assume that the sort rate follows O-U rocess with 
jumps:  

s pe
 p

 d d dr t W J N   .

The zero-coupon bond price, being a fun
, and the short rate, satisfies the follow

r k  

ction of time, 
ing Ito SDE:  t r , 

 

   

21
d d

2

     d , , d

r rr

r

D D k r D D t

D W D r J t D r t N

 



     
 
     

 

Define




    , ,tq E D r J t D r t      and substitute  

the above differential into the Euler condi on to obtain 
the 

ti
following PDE for the zero-coupon bond price:  

    
 

dtE D

21
    

2r rr

W r J

D k r D D q

rD D q

   

   

    

  
(3.10) 

d , , dt W r JrD t E D D r J t D r t t         
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 

21

2

1 0

Q

Q

The resulting PDE describes the evolution of the b

W
r rr

J

D k r D D
k

q rD





 
 

 

 
 

     
  
 

   





   (3.11) 

ond 
price under EMM. Under this risk-neutral measure the 
short rate process satisfies  

d Q d d dQ Qr k r t W J N      

Q W

k

 
    

d dQ
WW W    dt

The transformed counting process has new risk-ad- 
justed intensity  1Q

J   
at generates ex

. The PDE (3.11) be-
longs to a class th ponential-af
prices. Thus, we look for a solution to the bon
the following form:  

fine bond 
d price in 

     , .A B rD r e     

Inserting this expression into the PDE, we have 

 
  

2 21

2

1 0.

Q

Q
J

A B r k r B B

B r

 

 

  

   

where 

  
 

  BJ
J B Ee   

xpression is an i
is the MGF of the jump size. The 

above e dentity that ust hold for any 
values of time and short rate. This requirement leads to 
se

m

parate ODEs for coefficients A and B:  

  2 21
1 ,

2
Q Q

JA k B B B             (3.12) 

1,B kB                  (3.13) 

   0 0A B      0.        (3.14) 

e fact 
that the bond has face value of $1 at maturity. Subject to 
(3.14), solutions to (3.12)-(3.13) are given by  

The terminal condition (3.14) follows from th

  1
,

ke
B

k




 

  

 

 2 2

0

1
( ) ( ) ( ( )) 1 d .

2
Q Q

J

A

k k B s B s B s s




        
 



3.2. One-Factor Cox-Ingesoll-Ross Mo
Jumps 

[4] develops a general equilibrium

economy with a representative agent 
pre

he square 
root SDE7 (in this case, we also augment it with a 
jump-diffusion component; see also 5]):  

del with  

 model for a standard 

with log-utility 
ferences, and shows that the short rate is a linear 

function of the single state variable that drives the eco- 
nomy. The short rate therefore inherits the same dynamic 
properties as the state variable and follows t

[1

 d d dQ Q Q Qr k r t r W J N      d     (3.15) 

According to the first fundamental theorem of fina e, 
discounted prices are martingales. Thus, a zero-coupon 
bond price satisfies the following PDE:  

nc

0,QD A D rD     

e Qwher A  is the infinitesimal generator of the short rate 
(3.15):  

 
   

2

2

          , , .

Q Q Q
r rr

Q Q
t

r
A D k r D D

E D r J t D r t





  

    

 

The relation between risk neutral and actual measure 
parameters is based on the CIR pricing kernel:  

 d ,t
dM

d d dW Jr t r W N        
M

d d d ,Q
WW W r t   

where  1Q
J    , Q

Wk k     and  

Q

W

k

k


 




. Substituting a solution of the form  

  A Be r   

functions 

 into the above PDE, just like in the one-factor 
Vasicek model, we obtain two separate ODEs for the 

 A   and  A  :  

   1 0,Q Q Q
JA k B B   

2
2 1

2
Qr k B B B

 
   

 

     

 

   0 0A B  0.     

Integrating the two ODEs, we have the solutio  for the 
CIR zero-coupon bond price with jumps in the short rate:  

where 

n

     , ,A B rD r e     

A       
0

d ( ) 1 ,Q Q Q
Js k B s B s        


 



   
2 1

,
1 2Q

e
B

e k  



  
 

7We assume here that the process is already under EMM. 


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and 

 2 22 .Qk    

3.3. A Two-Factor Vasicek Model with Jumps in  
the Long-Run Mean 

In

of the short e, 

 this two-factor model, the two state variables are the 
short rate, r , and the central tendency (long-run mean) 

 rat  . We assume as before that both risks 
are priced as follows:  

 d
d d d dW J

M
r t W N t

M
        

where parameters have the same definitions as in (3.19). 
Under the EMM, the short rate follows a standard Va-
sicek model, and the long run-mean of the short rate is 
given by a pure jump process:  

d d QWr k r t W
k

 
      
 

 d

and 

d d .QJ N   

The corresponding PDE for a zero-coupon bond price:  

0,QD A D rD             (3.16) 

   

2

2

           

Q W
r rr

Q Q

A D k r D D
k

E

  



    
 



 

, , ,t D r J t D r t



   

 1 .Q
J     

Since we are dealing with an exponential affine model 
once again, we can write the solution as  

       , , .A B r CD r e         

Substituting this solution into (3.16), the PDE breaks 
down into three separate ODEs for functions  A  , 
 B  , and  C  :  

   

 2      1
2

Q
W JA B B C             

 

2

0 1r k C kB 



  

   

The functions 

B B 

     0 0 0A B C   0  

 B   and  C   are given by:  

  1 ke
B

k






  and    C B    . Moreover, the  

function  A   can be obtained num cally by using  eri

 

    
2

2 Q

A

B s B s C




   


   

Note: When the jump size is normally distributed with 
mean J , variance 2

J , and MGF  

     221
exp ,

2
JC

J JEe C C         
 

 

by using the following first-order Taylor series appr xi-
mation as in [18]8,  

o

     221
1

2J J
JCEe C C         

the function (3.1 s out to be: 7) turn

 

 

 

2 2

34
J J WA

k
2 2

2

2 2 3

2 2
2

3

2
           

1
           

2 6

           .
4

Q

Q Q
J W J

Q
J J Q

J

Q
k J

k

k

k

k

e
k



  

     


  
   

2 2

3           
Q Q

k J W Jk k k
e

k


4 4 3Qk k  

        


  

 


  



 




ate solution for bond prices be-
comes very useful for calibration, estimation and testing.  

4. The Quadratic Model 

nterest rate models is 
that interest rates can become negative (except in CIR- 
type models). Even though negative interest rates are not 
impossible, they are rare. This fact has led to the need to 
develop models of interest rates that guarantee positive 
rates. The models in this category are numerous.9 How-
ever, most of these early models suffer from various 
problems. e.g., a rational log-normal model of [4 ] suf-
fers from calibration problems in that bond prices and 
short rates are bounded both from below and above. As a 
result this model is arbitrage free only for a finite period 
of time. This restriction proves too binding in empirical 
work. Other ways of guaranteeing positive rates is to 
trans

ion tools, the two most 
s are [51,52]. However, 




 

Under the normality assumption of the jump sizes, the 
closed-form approxim

The common problem with most i

8

form the state variable. Popular class of models that 
achieve that is log-r models. The short rate is the expo-
nent of a state variable tY , tY

tr e , which follows an 
extended Vasicek process. Historically, due to availabil-
ity of easy lattice implementat
widely used models in this clas
this transformation presents theoretical problems. The  


0

1 d .
2W J s s


  

 

   

(3.17) 

8[18] argue that approximation is reasonable because jump sizes are 
typically small so that JC is expected to be small. 
9[48] describes interest rate models based on a price kernel that guaran-
tees positive rates. [49,50] provide a more detailed and general descrip-
tion of the model. For more detailed discussion of these and other mod-
els see [13]. 
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problem with these models is that the expected future 
value of the risk-free bank account  

0

exp d
t

t sV E r s
 

   
 
  even for arbitrarily small 0t    

(see [53]).  

4.1. Quadratic-Gaussian Interest Rate Models 

Recently, more attention has been paid to a different 
specification, quadratic-Gaussian, that guarantees posi-
tive rates, does not suffer from these problems, and still 
tractable enough to generate near closed form bond and 
in some cases even bond option prices. The simplest 
form of this model is t e so d square Gaussian 
model in which the short rate is simply the sum of 
squares of the state variable.10 A more general model is 
in the Quadratic-Gaussian (QG) class with the short rate 
a general quadratic form of the state variables, which 

h -calle

del the short rate is  
follow a process with affine drift and constant volatility. 
In an n-factor Quadratic-Gaussian mo

1
,b Y Y cY              ( ) 

2t t t tr a 4.1

where , and . The state vari-  
n-

a , 1nb  n nc 
ables Y  follow an n-dimensional Gaussian process u
der a risk neutral measure:  

 d d Σd ,t t tY Y t W              (4.2) 

where n n  , 1n  , Σ n n  constant matrix, 
and 1n

tW   is a vector of standard Wiener processes. 
We can always rewrite the short rate in (4.1) in the fol-
lowing form after shifting the state variable tY  by a 
constant vector:  

1
,

2t t tr a Y cY   

The state SDE (4.2) does not change from this trans-
formation except for obvious redefinition of parameters. 
Quadratic-Gaussian models have bee
31-35,38,54,55]11 Similarly to affine m

 coupon bond pr tion to 
rm: 

n studied by [28, 
odels, we look for 

the zero ice solu (2.10) in the fol-
lowing fo  

       0 1

1
, expt tD t Y     Ω

2t t tY Y Y    
 

  (4.3) 

where  is  matrix. The bond price satisfies 
wit

Ω
.4) 

n n
h PDE (2 1   and 0u  . Us

btain the fo
ing (4.3) in (2.4), 

we o llowing PDE:  

   

   

   

     

0 1

1
ΩY Y Y    

1

2
1

( ) Ω Ω
2

0.

t t t

t tY Y

Y



   

1 1 1

1

1 1 1
Σ Ω Ω Ω Ω

2 2 2

1 1
Ω Ω Ω Ω Ω Ω Σ

2 4

1

2

tr Y

Y YY

a Y c

  



 

     

         


         
           

 

 



Since this equation has to hold for any value
state variables, it separates into three independent Riccati 

or 

s of the 

ODEs f 0 , , a1 nd Ω : 

   0 1 1 1Σ Ω Ω Σ ΣΣ 0,
4

tr a        1 1

2
        

     1 1 1

1 1
Ω Ω Ω Ω ΣΣ 0,

2 2                

     1
Ω Ω Ω Ω Ω ΣΣ Ω Ω 0.

4
c               

Moreover, if the matrix is symmetric, the system 
reduces to 

 Ω  

   0 1

1 1

1
Σ ΩΣ

2
1

ΣΣ 0,
2

tr

a

  

 

   

   
 

       1 1 1Ω ΩΣΣ 0,b       

Ω 2 Ω ΩΣΣ Ω 0.c         

Exampl . r a one 1 Fo e-factor square-Gaussian model 
of interest rates considered in [6] and [5]:  

2 ,t tr Y  

  d dt tY t aY t W     d .t        (4.  

For this model, the bond prices, as well as bond option 
prices, have closed form expressions given by the fol-
lo

ro coupon bond price is  

4)

wing:  
1) The ze

 
      2

0 1

, ,

exp , , Ω , ,

t t

t t

D t T Y

t T t T X t T X   
 

where  
,t t tX Y    

 0
0

d ;
t

at as
t e r e s s   
  

 
  

10The models in this class have been studied by [28-30], among others.
11See [56] for a general specification and a discussion of canonical 
form of a QG model. 

     
2

2 2 2
0 1, , Ω ,

2

T

t

t T s T s T
   
 

  
 
 d ,s s  
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   

 

2
2

1
2

2

, d ,s s  

s
T

T

t
Tt

e a a
t T





 
 

  
 

  
 

  
 

e a a   

 
 

   

2 1
,

T te
t T

  
   

2 T t a  

and  

e a   

2 2 22 .a    

1T  2) The European call option price with maturity 
e and strik K  

s gi
written on a zero-coupon bond with

turity  i ven by 
 ma-

2T

        
     

1 2 2 1 2

1 3

, , ,

               , ,

t t

t t

c T T D t T Y N d N d

4KD t T Y N d N d

 


 



with parameters given by the following expressions:  

 1

1

,
,

h v
d

C t T


 


  

 2

1

,
,

l v
d

C t T


 


  

 
 

1
3

1

,
,

,

h M t T
d

C t T 


  

 
 

1
4

1,C t T 

 1,v M t T

,
,

l M t T
d


  

,   2
1 1 2 1, ,T T C t T   

   2
1 1 21 2 , , ,C t T C T T    

 
 

1 1 2,
,

d T T
h

C T T


  

1 22 ,

 
 

1 1 2

1 2

,
,

2 ,

d T T
l

C T T

 
  

 
    

2
1 1 2

1 2 0 1 2

,

      4 , , ln ,

d T T

C T T T T K







 
 

        

 

   

2
1

2

, , , , d ,

2
            .

T

t

T t

T t

,M t T N t T X N s T s T s N t T

e

e a a





 


 





 


  


 

4.2. Linear-Quadratic Interest Rate Model 

The difficulty of fitting term structures of interest rates 
with diffusion models has led to the study he impact  

of jumps in the interest rates on spot rate properties. [25, 
26,37,57,58] point out that including mps in a model 
helps better explain properties of various interest rates. 
When extending a model in any way, we are also con-
cerned about whether the model will still have a closed 
form solution for bond prices, bond option (cap, floor, 
swaption) prices, and whether the extension helps im-
prove the fit of volatility term structures to tho e implied 
by swaptions and caps when the simpler model has failed 
to do so. In the case of including jumps into diffusion 
models, [59] use three years of interest rate cap price data 
and show that within a three factor SVJ DTSM signifi-
cant negative jumps in interest rates are required to fit 
implied volatility smile.  

[36] argue that most of the previous research is too re-
al as-
er re-

 

MM (IS-GMM) procedure 
of

 of t

ju

s

strictive in the way it treats jump intensity. Usu
sumptions range from constant intensity to a rath
strictive functional form of underlying state variables that 
may include economic variables as in [37]. [36] intro-
duce a new class of interest rate models, linear-quadratic 
term structure model (LQTSM). The new feature is that 
jump intensity is now a separate state variable that fol-
lows it own SDE. In their empirical implementation, they 
use essentially a 3-factor model with the state vector that 
includes the short rate, the random volatility, and the 
stochastic intensity. The rate on 3-month T-bills serves as 
a proxy for the short rate. To estimate parameter values 
[36] relies on generalized method of moments (GMM) 
approach of [60]. At each iteration of the GMM optimi-
zation routine, however, they have to compute the re-
maining two latent state variables, volatility and intensity,
for every date of their dataset. They do it by resorting to 
the so-called implied-state G

 [61]. For given parameter values at each iteration they 
use high frequency futures market data on the changes in 
T-Bill yields to compute conditional variance and kurto-
sis. Stochastic volatility and intensity are then identified 
from these two higher moments. They find that intro-
ducing random intensity substantially improves both the 
model fit (through better fit of short term kurtosis) as 
well as the dynamics of the interest rate volatility term 
structure. In a VAR model run on daily data they also 
establish that jumps are not only associated with macro-
economic announcements or FOMC meeting dates but 
also with unanticipated news.  

Below, we show how LQTSM class is designed to 
have a closed-form solution, and we give a simple exam-
ple of a special case closely related to the SVJT model 
that [36] studies. We start with the extended transform 
(2.6). LQTSM class is designed (or defined) to have the 
following exponential LQ form for extended transform12:  
12[36] assume that the jump size distribution is Bernoulli taking a posi-
tive value μ+ > 0 with probability p and a negative value μ− < 0 with 
probability 1 − p. We do not make any specific assumption on the jump 
size distribution and keep the discussion general. 
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   

     

, exp ,

          t t t

T

t s T
t

A B Y Y C Y

f t Y E r s Y ds u Y

e   



  

  
    

   



     (4.5) 

 d d Σd dt JY t W J N             (4.6) 

 , r r rr t Y a b Y Y c Y              (4.7) 

where 1nY   is a vector of state variables, 1n  , 
   is jump intensity, jump size vector 1nJ   
with time-homogeneous MGF   u J

J u Ee  , the mean 
of the jump size vector   1n

J E J   , Σ n n , 
1nW   is a vector of standard Wiener processes, 

Poisson process N  is independent of jump size and of 
the diffusion vector W, ,ra A , 1, n

rb B  , and  
, .n n [36]

ters based
rc C

parame
 deri
 on

ves r
o

isk-neut
wer-utili

ral correcti
ty pricing kern

ons to model 
 p

lowing the approach of [4,38]. We skip this st
derivation and assume that all processes are already ex-
pressed under an EMM. Extended transform (4.5) must 
satisfy the following PDE:  

el by fol-
age in the 

 ,f Af r t Y f     0          (4.8) 

 , u Yf T Y e           ) 

 
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 
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 
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   

 ) 

where Y   is the value ate mediate
. Similar to affine JD models, the expectation 

in the integro-differential Equation (4.8) should break up 
into the product of the MGFs for continuous and discon-
tinuous parts of the state vector process as these parts are 
assumed independent in this specification. The only 
complication is the quadrati

tr f
   (4.10

of the st  vector im ly 
after a ju

c form in the definition of 
extend nsform for LQTSM class in (
around t  complication by assuming t
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ed tra
his

 on
ntin

n N

4.5). [36] works 
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

 
   
 

 

1

2

1

1

1

2

n

n

Y
Y

Y





 
 
 
 

 

The extended transform (4.5) must be exponential 
quadratic only in 2Y :  

       2 2, tA B Y Y C Yf t Y e              (4.11) 

In order to obtain separate ODEs for three functions 
   ,A B  , and  C  , the next obvious requirement is 

that once we substitute (4.11) into (4.8) th re must be no 
terms other than affine in Y  (i.e.,  

e
A Y ) and quadratic 

in Y2  (i.e.,  2Y ). Then, the functional fo Q
, in

rms of the 
short rate, r tensity,  , an

Eq

die
o 

d dri diffusion coef-
uation re dictated by 
xam cond term in 
nt of sform and the 

ft and 
(4.6) a

ple, the se
 the tran

ficients of th
the above 
PDE (4.8) co
jump part is 

e tran
requirem

ntai
prop

sition
e

ns the 
ortional

 
nt. For e

gra
 t  :  

 
2 2 1 2

Y
Y n

1 1 1Y nf Const
f

f A Y

   
   

 
  

    


These functional forms of the gradien
term jointly imply that the first  com
to

t and the jump 
ponents of vec-1

r 
n

  in (4.6) and intensity   must be  1A Y  and 
 2Q Y  and the last 2  components of vector n   must 

be  2A Y :  

  1 1

2 2

1 1 1

1 2

,
n J Y

J Y
n Y

f
f

f

 







   
        

  
 

2 2 ,a b Y Y c Y  








      

   1 ,
k

a b Y c Y       2 k
Y 

   2 2 ,
k k

d e Y     

1 2

Just like 

1, , 1, .k n k n   

 , the short rate (last erm in the PDE) must 
be 

 t
 1A Y  and  2 Q Y :  

  2 2, ,r r rr t Y a b Y Y c Y    

with us d



 obvio efinitions for . Further, the trace 
part of the PDE has the fo :  

, ,r r ra b c
llowing form

   


 


 
1 1 1 2 2

2 2

11 12

21 22

11 12 22

* * *

Σ Σ ΣΣ Ω

Ω Ω
                  

Ω Ω

                  Ω 2Ω Ω

YYYY YY

YY

Y Y Y Y Y Y

const f A Y f Q Y f

tr f tr f tr f

tr f

tr f f f

 



 

       
  

   
  
 
     
 

 

2 

where Ω ΣΣ  is a symmetric ma ix. The above ex-
pression implies that  

tr

 11 1Ω A Y  

and 

   ,Ω ,Ω .Q Y A Y const   2 12 2 22

Substituting (4.11) into PDE (4.8) we have the fol-
lowing identity that must hold for all Y :  
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       
 

       2 2 2 2C C Y B C C Y C C
       


 

   

11 1 2 1 2
2 2

2 2
2

11 1 1 12 1 2 2 2

2 2 1

1
Ω 2Ω Ω

2

1

J J J

J r r

Ba a b Y Y c c Y
B C Cd e Y

tr B B B B C C Y B

a b Y Y c Y B a b Y

     
  

 

  

  

 

               
              

             2 2 0rY c Y
 
where  

Terms independent of , affine in , affine in 
and quadratic in must each be e o zero in
identity. This restriction lts in a system of four 
for functions 

b
A B Y Y C Y       

Y

2



2

2

2

11 12

21 22

d
1

Ω Σ* var d Σ
d

d

  

Ω Ω
    .

Ω Ω

r

v

rv v r

rv v v v v

r v v

W

W
t

W

v v v

v

v



 

 

    

   
     
     

  
     

    
 
 

  
 
 
 

  
 

 

 

2

1

2 1n

B



 

  
1 1n

B
B

 
 

 

Y

resu

1Y
qual t

 

2Y , 
 this 

ODEs 
2Y  

 A  ,  1B  ,  2B  , and  C  . For
itions

 
details, the read  
are  

1

er can consult [36]. The initial cond

   
11 10 0, 0 ,nA B u   

We look for a zero coupon bond price in the following 
form:     

2 22 1 20 , 0 0n nB u C    
2
.n

The zero coupon bond price has the same form as in 
(4.5) with 

 

        1 2 2 2

, ,

exp .t

D t Y

2A B r B Y Y C Y



       
 1 2, 0Nu u u  

e (LQTSM of [3
 (4.13) 

As in [36] we assume that 

.  
Exampl 6]). Assume that the state 

ve n mctor consists of short rate, volatility, a d random ju p 
intensity. These three state variables are assumed to solve 
the following transition equations:  

 1 1 1d d d
t

t

r
Y

Y v


     

 C   
lowing

 2 2 1

2 2 1 2

2 2

Ψ
      d

Ψ

d

t

r rr rJ

r

Y

r Y Y Y
t

Y

W





  






 
   

 
   

   
 
  

 

is symmetric. In the 
Appendix we derive the fol  ODEs for functions 
 A  ,  1B  ,  2B  , and  C    

 
1 2 1 12

22 2 2

Ω

1
Ω 2 0,

2

r 2A B B B

dN 
         Σ d 0 ,

d 0
vW J

W

  

 

 
 

   (4.12) 

,



 
  

with the following definitions and notation:  

0  
, ,v

rJ
J





 

 


    
   

 

1 2

00
Ψ ,Ψ ,

00 0
vvvv






  
    
   

 

0 0

Σ 0 0

0 0
v

v







   
 
 

 

d 1

d 1

r rv r

r v

W

W



  

 

 

   

   
   

 var d 1 d ,v rv vW t       

B

tr B B C

     

    
        (4.14) 

1 1 1 0,rrB B              (4.15) 



   

 

2 1 2 2

1 12 22 2
1

Ψ 2

0
2 Ω 2 Ω 0,

1

rJ

J

B B B C

B C C B
B

  



   

 
     

 


  (4.16) 

2
1

1 1 2 22

0
Ψ 2Ψ 2 Ω 0,2

0 0

B
C B C C C

 
         
 

  (4.17) 

subject to the following initial conditions:  

   10 0, 0 0A B ,              (4.18) 

   2 2 1 20 0 , 0 0B C 2.             (4.19) 

Here,   1
1

B J
J B Ee   is the moment generating func-

tion of the jump size.  
In order to conclude the discussion of LQTSMs, we 

derive the price of a European call option from a
alized transform using a technique similar to the one used 
by [39,62,63]. We are looking for the price of a European 
ca ond. Th

 gener-

ll option on a zero coupon b e call has  
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T t    years to maturity and a strike price, K . The 
ond maturi e, zero-coupon b  has ty dat DT

 provi
or LQTSM

, the face value
e de

 from

 
d the current price . We de th riva-

e option price for th  [36] 
given in the above example. We assum
dynamics in (4.12) are given under an EMM. The value 
of the European call option is given by the following risk 
neutral expectation with respect to (



where 

of $1 , an
tion of th

tD
e 3-fact

e that the state 

4.12):  

  exp d ln ln
T

t t s T T
t

c E r s D K D K
  

     
   

 ,  (4.20) 

  is the Heaviside function defined as  

In order to handle the truncation under the expectation 
tegral repre-

 
1, if

ln ln .
0, if

T
T

T

D K
D K

D K



   

 

in (4.20), we use a well known complex in
sentation of the Heaviside function  

   ln lnd
ln ln

2π
Ti D K

T

i
D K e

i


 


 



 
  

Using th  we write the call price as (4.21) 
where  

is representation

  ln ln, exp d ln ,
T

i K
k t s k T

t

e E r s g D  
  

    
   

  (4.22) 

and 1kg k i   , 0,1.k   To complete the deriva-
tion, we use a well-known result from the theory  gen-
eralized functions:  

 of

 1
,

P

i
πi  

  
 


          (4.23) 

where 
P


 is the principal value of the integral over 

1


:  

 
0



lim d .
P   


 

 
Each term in (4.23) is understood as a linear fu

acting on a finite infinitely differentiable function 

  
      

nctional 


 

   

:  

     

0
lim d

i

 

 

0
π 0 lim di






0
π 0 d ,i

 
 



  
 

 
    



 






 
     

 
 

where we use the fact that the principal va e of the inte-
gral over


 

 

lu
 vanishes as this function is odd. Sub-  1 

tracting 
 0


 from the integrand makes it regular, does  

not require principal value specification, and is suitable 
for numerical integration.  

The expression for the call price can now be written as 
follows:  

  0 1Π Π ,tc K     

where  

       0, , 0,d
Π ,

2 2π

0

k i

k ,1.

k k k      
 

 

on 





  

Functi  ,k    in (4.22) can be viewed as a gen-
eralized tr  the zero coupon bond yield. Since an

 the expectation in (4.22) in 
th

sform for
we already have the result for the bond price for the 
LQTSM class, we look for

e exponential quadratic form: (4.24) 
Here, DT T     

 at the tim
is the time remaining to the bond’s 

maturity e the option matures. Recall that 
T t  

option as
 is the tim
 of today’s 

e remaining to the maturity of the 
date . For a given , the four  

functions in (4.24), 

 t k

 ,Λm k   ( 0,3m  ), satisfy the same  

Riccati ODEs (11)-(16) as  A  ,  1B  ,  2B  , and 
 C  , respectively, and the tions:  following initial condi

   0,Λ ,k k0 g A       1, 1Λ 0 ,k kg B    

   2, 2Λ 0 ,k kg B       3,Λ 0 ,k kg C    

 

   

 

exp d ln ln exp ln ln

d

T T

t t s T T t

s T T
t t

c E r s D D KE D K

i





    
          


d

ln exp (ln ln )

s T
t

T

t s T

r s

K KE r ds i D K

 
 

d
exp ln ln

2π

t

T

t

i
E r ds D i D

i

  
 





     


2π

K


 


       
          

          




 







   0 1, , ,K       i 

  (4.21)

              

        

ln
1 2 2 2 2

0, 1, 2, 2 2 3, 2

, exp d

exp ln Λ Λ Λ Λ .

T
i K

k t s k T
t

k k t k k

e E r s g A B r B Y T Y T C Y T

i K r Y Y Y

      

    

                    

     


     (4.24)
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where ,1.1 , 0kg k i k     

umerical analysis of Since n option prices and Greeks 
for hedging purposes is beyond the scope of this paper, 
we refer the reader to the following work on this topic. In 
[64,65], authors compute European option prices and the 
Greeks. For a model of an underlying asset process they 
use a theoretically attractive Variance-Gamma process. 
They estimate gradients of a European call option by 
Monte Carlo simulation methods. In computing the gra-
dients, they compare the efficiency of indirect methods 
(finite difference techniques) and direct methods (infini-
tesimal perturbation analysis and likelihood ratio). 
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Appendix 

Derivation of Bond Price for Cox-Ingersoll-Ross 
Model 

Proof. The bond price process is  
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Setting the drift term to zero, we obtain the partial dif-

ferential equation  
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The terminal condition is . We 
look for a solution of the form , 
where 
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Integrating both sides of the above equation with re-
spect to s, we obtain 
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Derivation of ODEs (4.14)-(4.17). 

To arrive at the result (4.14)-(4.17), we need some in-
termediate expressions for partial derivatives of the zero 
coupon bond price given by (4.13) with respect to the 
state vector: 
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Insert zero price expression (4.13) in to PDE (4.8) with 
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The above equation must hold for arbitrary values of 

th

 

e state vector. This condition gives rise to a system of 
four Riccati ODEs for functions  A  ,  1B  ,  2B  , 
and  C  :  
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The system is subject to initial conditions (4.18)-(4.19).  
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