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ABSTRACT 

Using the equation of motion expression in a 
curved space proper time is a useful method to 
explain the relation between the curvature of 
space-time and the potential of any field ob- 
tained. Taking into account the expression for 
the Hamiltonian density, the effect of fields, as 
well as the effect of motion, on the mass, and, 
their effect on energy is found. The new expres-
sion of energy reduced to the ordinary Newton’s 
energy expression. It also explains the gravita-
tional red shift. 
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1. INTRODUCTION 

Einstein’s theory of special relativity (SR) is one of the 
great achievements in physics. It makes radical modifica- 
tion in the concept of space, time, and energy. It explains 
a wide variety of physical phenomena, like pair produc- 
tion, photoelectric effect, and meson decay. Despite these 
successes (SR) suffers from noticeable setbacks. For in- 
stance, in the classical limit the energy expression for 
(SR) does not coincide with the Newtonian energy ex- 
pression, since it does not include a term representing the 
potential energy. Moreover, the gravitational red shift of 
light indicates that the photon mass is affected by the 
gravitational field, which is in direct conflict with the 
fact that the mass in (SR) is not a function of the field 
potential. The same holds for the expression of time and 
length, in (SR), which does not recognize the effect of 
gravitational field in the weak limit, which is not in con- 
formity with that of general relativity (GR), where time  

and length are affected by gravitational field [1]. 
Many attempts were made to modify Special Relativi- 

ty (SR) to include the effect of gravity and other fields 
[2-4]. These attempts concentrated on the motion of mass 
and energy without considering the influence of both 
fields and motion on time and length. 

Some attempts were also made to include the effect of 
curvature of space-time, on energy and momentum [5], 
but their expression of energy is incomplete, since they 
stem from the equation of motion instead of using the 
Hamiltonian. Generalized Special Relativity (GSR) is 
used by others [6] to find the effect of gravity on space 
and energy. 

In this work the equation of motion in curved space- 
time is used to relate the potential of any field to the 
space-time curvature. A useful expression for the mass 
and energy in the presence of any field beside the effect 
of motion is derived in Section 2. 

Section 4 is devoted for comparing the classical en- 
ergy expression with the expression of energy in the 
classical limit for the model.  

2. SPECIAL RRELATIVITY IN THE  
PRESENSCE OF THE GRAVITATION 

The Generalized Special Relativity theory is a new 
form of the special relativity theory that adopts the gra- 
vitational potential, and it gives the formula of relative 
mass to be as follows [7]: 
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  , and   denotes the gravitational  

potential, or the field in which the mass is measured. 
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The derivation of the mass Eq.1 using the generalized 
special relativity (GSR) can be find as follows: 

In the special relativity (SR), the time, length, and 
mass can be obtained in any moving frame by either 
multiplying or dividing their values in the rest frame by a 
factor  . 
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where v is the velocity of the particle, and c is the speed 
of light. 

It is convenient to re-express   in terms of the pro- 
per time, associated with the impact of gravity on the 
previous physical quantities, (time, length, and mass) [8]. 

2 2d dc g x dx 
            (3) 

where g  is the metric tensor, and,   and   denotes 
the contra variant (covariant) vectors. 

Which is a common language to both special relativity 
(SR), and general relativity (GR). We know that in spe-
cial relativity (SR) Eq.3 reduces to: [9]. 

2 2 2 2 0d d d d ,i ic c t x x x    c t        (4) 

where i denotes the particle position (covariant) vector 
according to Lorentz covariance. 
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Thus we can easily generalize   to include the effect 
of gravitation by using Eq.3 and by adopting the weak 
field approximation where [7]. 
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When the effect of motion only is considered, the ex-
pression of time in the special relativity (SR) is found to 
be [8]. 
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where the subscript 0 stands for the quantity measured in 
the rest frame. While if gravity only affect time, its ex- 
pression is given by [9]. 
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In view of Eqs.7-9 the expression 
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can be generalized to recognize the effect of motion as 
well as gravity on time, to get 
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The same result can be obtained for the volume where 
the effect of motion and gravity respectively gives [7]. 
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0 00V g V g V  0            (13) 

The generalization can be done by utilizing Eq.7 to 
find that 
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To generalize the concept of mass to include the effect 
of gravitation we use the expression for the Hamiltonian 
in general relativity, i.e. [8]. 
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where H is Hamiltonian,   is the density, and  is 
energy tensor. 

00T

Using Eqs.14 and 15, yields: 
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Therefore 
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Which is the expression of mass in the presence of 
gravitational potential and it named the generalized spe-
cial relativity (GSR) theory.  

Thus, the energy is given by 
2
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3. GENERALIZATION OF THE GENERAL  
RELATIVITY TO INCLUDE THE 
OTHER FIELDS 

The expression of time length and mass in General 
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Relativity (GR) can be generalized to include all other 
fields by proving that the space can be curved by all 
fields, the first approach is based on general relativity 
(GR) while the second is based on the standard model. 

In General Relativity (GR) the equation of motion in a 
curved space-time is given by 
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In the weak field this is reduced to 
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where 
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It is important to note that Eq.18 and Eq.19a indicate 
that the curvature of space-time 

  is affected by ac- 
celeration and speed only, and have nothing to do with 
the mass. 

On the other hand the lagrangian L of matter in the 
presence of a field of Ф is a function of x and Ф, i.e. 

 ,L L X                (21) 

The mass m is part of this lagrangian through the reined 
term. Therefore m is a function of x and Ф, too, i.e. 

 ,m m x                 (22) 

Usually m does not depend on x explicitly but depends 
on it implicitly via and through the potential Ф. Hence 
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That means the partial differentiation of m with re- 
spect to x vanishes, while the total does not vanish. 
Therefore 
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With the aid of (24) Eq.19b becomes: 
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The potential V of any field satisfies the Newtonian 
equations of motion the potential  
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Comparing Eq.24 with Eq.25 yields 
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Substituting Eq.27 in Eq.20 we get 
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The potential V can be expressed in terms of the po- 
tential per unit mass Ф in the form 

V m                 (29) 

As a result Eq.28 becomes  
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It is important to note that Ф here is the potential per 
unit mass for any field. 

The relation between fields and space deformation can 
also be determined from the standard model of electro 
weak interaction (SM). 

According to SM the gauge fields wµ and Bµ deform 
the space by changing the ordinary derivative   to the 
covariant one Dµ 
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where the parameters g, g', I and Y are parameters de- 
termining the interaction type. on the other hand the co- 
variant derivative in (GR) IS given by 

2D                   (32) 

Comparing Eq.31 with Eq.32 yields  
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Again Eq.33 indicates that gauge fields deform the 
space as well as the gravitational field. Thus the expres- 
sions for time, mass and energy are given by 
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Indicates that time, mass and energy are affected by all 
fields. 

4. CLASSICAL LIMIT OF THE  
GENERALIZED SPECIAL RELATIVITY 

When the field is weak g00 is given by Eq.5. In this 
case the energy in Eq.17 is given by 
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where one was the identity (1 ) 1nx nx    for  
here all terms quadratic in 

1x 
  and   are neglected. 

Unlike SR which does not include potential energy, 
Eq.35 shows that the energy is reduced to the classical 
expression which include potential energy 

0V m                 (36) 

the gravitational red shift can be obtained by setting  
0   and bearing in mind that   is small to get 
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For the photon : 
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Hence 
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Then 
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While   denotes the potential field and given by: 
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as mentioned before, then Eq.41 becomes: 
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This means that the gravitational red shift can be ex- 
plained with the framework of our model [9]. 

5. CONCLUSION 

The effect of gravity as well as motion on time, volu- 

me and mass shows the dependence of them on the po- 
tential on the same footing as velocity. Unlike SR the ex- 
pression of energy include the potential energy when the 
classical limit is considered. It is very interesting to note 
that when the effect of gravity alone is considered on 
mass as shown in Eq.16 the mass increases which indi- 
cate that the field increase the mass. The generalized ex- 
pression of time, volume, mass, and energy in which the 
effect of fields on them is present through the metric is 
also exhibited. The expression for minimum energy and 
minimum potential indicate that the ground state energy 
contains both the mass of both particle and antiparticle 
agree with the Dirac relativistic quantum theory. 
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