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Abstract

Series expansion of single variable functions is represented in Fourier-Bessel form with unknown coeffi-
cients. The proposed series expansions are derived for arbitrary radial boundaries in problems of circular
domain. Zeros of the generated transcendental equation and the relationship of orthogonality are employed to
find the unknown coefficients. Several numerical and graphical examples are explained and discussed.

Keywords: Fourier-Bessel Analysis, Boundary Value Problems, Orthogonality of Bessel Functions

1. Introduction

Several boundary value problems in the applied sciences
are frequently solved by expansions in cylindrical har-
monics with infinite terms. Problems of circular domain
with rounded surfaces often generate infinite series of
Bessel functions of the first and second types with un-
known coefficients. In this case, the intention is to find
the series coefficients which should satisfy the boundary
conditions.

The subject of Fourier-Bessel series expansions was
investigated and examined in many texts [1-10]. Nearly
all of them has derived cylindrical harmonics expansions
in Jyo(r) for the interval [0, a] only, where Jy(r) is the
Bessel function of the first kind with order zero and ar-
gument 7 [8]. The existence of the origin point excludes
Yo(r), Bessel function of the second kind with order zero
and argument r, because it goes to negative infinity as r
approaches zero [9]. Both Jy(r) and Yy(r) are shown plot-
ted in Figure 1.

In many other problems in the applied sciences, the
interval of expansion is found to be [a, b] such that a, b
€ R. An example of this could be a hollow cylinder in
heat conduction problems or a circular band in vibrations
analysis solved in the cylindrical coordinate system. In
this case, cylindrical harmonics expansions in both Jy(7)
and Yy(r) are necessary.

In this paper, the derivation of cylindrical harmonics
expansion of a single variable function in [a, b] in both
Jo(r) and Y (r) is solved. In accordance with the bounda-
ries at » = a and r = b, zeros of the obtained transcenden-
tal equation are first calculated. As shown in Figure 2,
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the solution region is for a < r < b where the desired se-
ries expansions are forced to be zero at r =a and r = b
respectively. Unknown coefficients are then found and
the complete series expansion can be achieved.
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Figure 1. Equation (6), === Jy(r), == = Y,(r).

Solution Region

Figure 2. The solution region in radial boundaries.
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2. Formulation and Solution

The Bessel differential equation of order zero is well
known as [1, 4]:

P2 Lty ratrn=0 )
dr? dr

Vaandr e Randa<r<b.
The general solution to Equation (1) for real values of
a is known to be [2, 3]:

[y =" A,Jo(ar)+ B, Yy (ar) 2)

n=0

As in Equation (1), the assumed boundary conditions
at r = a and r = b are of Dirichlet type as f{a) = 0 and f{b)
= 0 respectively. Both 4, and B, are then related as:

__Y(aa) B 3)
! Jo(aa)
n = _MBVI (4)
Jo(ab)

Going after the elimination method, the transcendental
equation can be obtained as:

Jo(aa)Y, (ab) = Jy(ab)Y,(aa) =0 ®)

In order for Equation (5) to be satisfied, there exist
many zeros or values of a to be calculated. Thus, in all
former and coming equations a can be replaced by «,
which are the zeros obtained from the transcendental
equation V n € I. That is:

Jo(a,a)Yo(@,b) = Jo(a, b)Yy (a,a) =0 (6)

The orthogonality feature of Bessel functions can be

applied to Equation (2) by multiplying both sides by

r[AmJO(amr)+BmY0(amr)] and integrating it over all
possible values of » from a to b as:

w b b
> [re.C,@dr = [re, o fmar @)
n=0 4 a
where,
Cm(r):AanO(amr)+BmY0(amr) (8)
Cn(r):AnJO(anr)+BnYO(anr) (9)

The terms under the summation in the left side of Eq-
uation (7) are zeros for all values of m # n [5, 6, 7].
Hence, Equation (7) can be simplified to:

b
J' rC,(MIC, ()~ f(r)ldr =0 (10)
Either Equation (3) or (4) can help. Using Equation (3)
we can obtain the B, coefficients as:
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b
I 1Sy (ct,r) f (r)dr

B, =4 (11)

'[r[So (a,, r)]2 dr
a
where, Sy(a,r) is given by:

Yo(a,4)

ola,a

SO(anr) = Y()(anr)_ Jo(an’”) (12)
By Equation (3) or (4), the 4, coefficients can also be

found. Once the coefficients 4, and B, are calculated, the

function f{7) can be expanded as in Equation (2).

3. Numerical Examples

The transcendental expression in Equation (6) shows a
gradual decay as a increases which mean small magni-
tudes between high zeros. This leads to the convergence
of the series in Equation (2) above as n increases. As a
consequence, a finite number of terms in Equation (2)
can be sufficient for numerical approximations.

The zeros are first evaluated using the transcendental
cross product Bessel functions equation for the interval
[a, b]. A graph of Equation (6) is shown in Figure 3 for
the solution regions [0.65, 2.5] and [0.65, 5]. Table 1
shows the first 50 zeros of Equation (6) for a = 0.65 and
b =2.5. Zeros obtained from the transcendental equation
changes according to the values of a and b assumed for
the solution region. The data presented in Table 1 indi-
cates that the calculated zeros are not periodic and should
be calculated using a proper numerical technique.

Let’s assume that the function f{r) to be expanded as
in Equation (2) is sin(7) with a radial solution region in
[0.65, 2.5]. The coefficients B, can be evaluated from
Equation (11) and the 4, coefficients are then obtained
by Equation (3). Both coefficients are shown in Tables 2
and 3 respectively for n = 0 to 49.
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Figure 3. Equation (6), == [0.65, 2.5], = — [0.65, 5].
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Many variations can be noticed for the numerical val-
ues of 4, and B, with a general absolute scale of < 1 ex-
cept for By = 2.328. Some coefficients are in the order of
%107 meaning that their associated terms are very small
such as B, and A5, in Tables 2 and 3 respectively.

The function sin(7) and its approximate expansions are

plotted in Figure 4. Summation over the first 10 terms
produced an acceptable estimation in the interval [0.65,
2.5] with some apparent oscillations around the exact
function. An improved approximate expansion is also
plotted for n = 0 to 49 with less fluctuations in the same
radial domain.

Table 1. First fifty zeros of Equation (6) in [0.65, 2.5].

n o, n a, n o, n a, n o,
0 1.663 10 18.676 20 35.659 30 52.642 40 69.624
1 3.376 11 20.374 21 37.358 31 54.34 41 71.322
2 5.08 12 22.073 22 39.056 32 56.038 42 73.02
3 6.782 13 23.771 23 40.754 33 57.736 43 74.718
4 8.4815 14 25.47 24 42.452 34 59.434 44 76.416
5 10.182 15 27.168 25 44,151 35 61.133 45 78.115
6 11.881 16 28.866 26 45.849 36 62.831 46 79.813
7 13.579 17 30.564 27 47.547 37 64.529 47 81.511
8 15.279 18 32.263 28 49.245 38 66.227 48 83.209
9 16.977 19 33.961 29 50.943 39 67.925 49 84.907
Table 2. First fifty B, for f{(r) = sin(r) in [0.65, 2.5].
n B, n B, n B, n B, n B,
0 2.328 10 0.154 20 —0.300 30 -0.114 40 0.206
1 —-0.101 11 —0.138 21 7.1E-3 31 0.084 41 1.3E-3
2 -0.703 12 0.228 22 0.267 32 -0.123 42 -0.205
3 0.234 13 0.064 23 —0.082 33 —-0.047 43 0.057
4 —4.8E-3 14 —0.385 24 —0.030 34 0.250 44 0.042
5 —-0.181 15 0.048 25 0.087 35 -0.025 45 —0.068
6 0.455 16 0.231 26 -0.212 36 -0.173 46 0.148
7 0.030 17 -0.110 27 -0.024 37 0.074 47 0.024
8 -0.478 18 0.082 28 0.272 38 —-0.036 48 -0.212
9 0.105 19 0.081 29 —0.054 39 —-0.061 49 0.037
Table 3. First fifty A, for f(r) = sin(r) in [0.65, 2.5].
n A, n A, n A, n A, n A,
0 —0.475 10 0.424 20 0.126 30 -0.242 40 -0.109
1 0.462 11 -0.016 21 -0.102 31 2.1E-3 41 0.074
2 -0.547 12 —-0.346 22 0.159 32 0.229 42 -0.099
3 -0.114 13 0.111 23 0.052 33 -0.067 43 —0.044
4 0.675 14 0.021 24 -0.297 34 -0.036 44 0.218
5 -0.092 15 -0.110 25 0.034 35 0.075 45 -0.019
6 —0.338 16 0.279 26 0.193 36 -0.174 46 -0.160
7 0.170 17 0.025 27 —0.087 37 -0.024 47 0.064
8 -0.143 18 -0.333 28 0.054 38 0.236 48 -0.023
9 —0.111 19 0.070 29 0.069 39 —0.044 49 —0.057
Table 4. First fifty B, for f(r) = cos(r) in [0.65, 2.5].
n B, n B, n B, n B, n B,
0 -0.129 10 -0.067 20 0.131 30 0.050 40 —0.090
1 0.338 11 0.571 21 -0.030 31 -0.351 41 -5.5E-3
2 0.286 12 -0.099 22 -0.116 32 0.053 42 0.089
3 -0.919 13 -0.264 23 0.342 33 0.195 43 -0.237
4 2.0E-3 14 0.167 24 0.013 34 -0.109 44 -0.018
5 0.732 15 -0.199 25 -0.364 35 0.105 45 0.281
6 -0.196 16 —-0.100 26 0.092 36 0.075 46 —0.064
7 -0.122 17 0.457 27 0.100 37 -0.306 47 -0.100
8 0.207 18 —-0.036 28 -0.118 38 0.016 48 0.092
9 —0.433 19 —0.338 29 0.223 39 0.256 49 —0.153

In addition, f{r) = cos(r) is expanded as in Equation (2)
and the first fifty coefficients are listed in Tables 4 and 5
for the B, and 4, respectively. Similar to the sin(7), the
cos(r) coefficients go through several variations with a
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general absolute scale of < 1 except 4; =—1.550. Also,
only four coefficients are in the order of x10~ implying
that their related terms in the series are extremely small
such as B, and A4 in Tables 4 and 5 respectively.
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Table 5. First fifty 4, for f(r) = cos(r) in [0.65, 2.5].

n A, n A, n A, n A, n A,

0 0.026 10 -0.184 20 —-0.055 30 0.105 40 0.047
1 -1.550 11 0.068 21 0.422 31 —8.9E-3 41 —0.306
2 0.222 12 0.150 22 —-0.069 32 —0.100 42 0.043
3 0.448 13 -0.461 23 -0.218 33 0.279 43 0.182
4 -0.287 14 -9.1E-3 24 0.129 34 0.016 44 -0.095
5 0.371 15 0.455 25 -0.139 35 -0.314 45 0.080
6 0.145 16 -0.121 26 -0.084 36 0.076 46 0.070
7 —0.696 17 —-0.105 27 0.362 37 0.100 47 —0.268
8 0.062 18 0.145 28 -0.023 38 —0.103 48 0.010
9 0.458 19 —-0.289 29 —0.286 39 0.182 49 0.235

Figure 4. == sin(r), *e= Equation (2) with n =0 to 10,
== == Equation (2) with n = 0 to 49.

_&.65 1.02 139 178 213 2.5
r

Figure 5. == cos(r), °*= Equation (2) with n =0 to 10,
== == Equation (2) with n = 0 to 49.

The function cos(r) and its estimated expansions are
shown plotted in Figure 5. Finite summation over the
first 10 terms generated a satisfactory estimation in the
interval [0.65, 2.5] with several obvious oscillations
close to the exact function. A better approximate expan-
sion is also plotted for n = 0 to 49 with less fluctuations
in the same solution region.

The calculated coefficients for the function " are also
shown in Tables 6 and 7 for B, and 4, respectively. Ap-
parently, the coefficients swing around the exact values
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with an absolute level of > 1 or < 1.

The greatest values in Tables 6 and 7 are found as B,
=13.852 and 4, = 11.499. In addition, no coefficients are
calculated in the order of x107 implying that all coeffi-
cients are to be included in the series expansion.

The function exp(r) and its estimated expansions are
shown plotted in Figure 6 in [0.65, 2.5]. A satisfactory
estimation of a finite summation over the first 10 terms
are generated with several oscillations close to the exact
function. A good approximated expansion is also plotted
for n = 0 to 49 with fewer variations in the same solution
region.

The last numerical example to be discussed is the
square function expressed as:

I 126<r<1.88 13
/) -1 otherwise (13)
The calculated B, and A4, coefficients for this function are
shown in Tables 8 and 9 respectively. Similar to former
expansions, both coefficients vary about the exact values
of Equation (13). The B, coefficients have a general ab-
solute level of < 1 except Bz, Bg, 314, Bz() and 326 that
have an absolute scale of > 1. Furthermore, the 4, coef-
ficients show an absolute level of < 1 except the absolute
values of 4,, A3, Asg and Ay, that are > 1. Some B, and 4,
coefficients are calculated in the order of x107 like Ay or
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Figure 6. == exp(r), *=* Equation (2) with n =0 to 10,
== == Equation (2) with n = 0 to 49.
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Table 6. First fifty B, for f(r) = exp(r) in [0.65, 2.5].

n B, N B, n B, n B, n B,

0 13.852 10 2217 20 —4.350 30 —-1.660 40 2.987

1 —2.506 11 -5.266 21 0.274 31 3.254 41 0.051

2 -9.361 12 3.298 22 3.873 32 —-1.780 42 -2.971
3 8.069 13 2.443 23 -3.169 33 —-1.813 43 2.202
4 —0.068 14 -5.566 24 —0.433 34 3.618 44 0.602
5 —6.632 15 1.841 25 3.372 35 -0.971 45 -2.611
6 6.506 16 3.343 26 -3.078 36 -2.505 46 2.140
7 1.113 17 —4.227 27 -0.931 37 2.841 47 0.932
8 —6.867 18 1.182 28 3.937 38 —0.525 48 -3.072
9 3.985 19 3.127 29 -2.069 39 -2.371 49 1.419

Table 7. First fifty 4, for f(r) = exp(r) in [0.65, 2.5].

n A, n A, n A, n A, n A

0 -2.828 10 6.108 20 1.821 30 -3.511 40 -1.575
1 11.499 11 —-0.625 21 -3.915 31 0.083 41 2.841
2 —7.286 12 —4.992 22 2.304 32 3317 42 —-1.431
3 -3.934 13 4.263 23 2.019 33 -2.586 43 —-1.691
4 9.496 14 0.304 24 —4.301 34 -0.526 44 3.168
5 -3.360 15 —4.213 25 1.292 35 2912 45 —0.747
6 —4.824 16 4.033 26 2.799 36 -2.523 46 -2.318
7 6.376 17 0.969 27 -3.353 37 -0.925 47 2.490
8 -2.059 18 —4.814 28 0.782 38 3.423 48 —0.336
9 —4.216 19 2.675 29 2.650 39 —1.690 49 —2.185

Table 8. First fifty B, for Equation (13) in [0.65, 2.5].

n B, n B, n B, n B, n B,

0 0.026 10 1.64E-3 20 1.527 30 —0.021 40 —0.051
1 0.1 11 0.081 21 —SE-3 31 -0.404 41 -3E-4
2 3.515 12 0.031 22 —0.025 32 0.614 42 —-0.037
3 -0.516 13 —0.205 23 0.042 33 —9E-3 43 -0.329
4 —3E-4 14 1.968 24 —SE-3 34 —-0.05 44 —-0.201
5 0.105 15 —0.053 25 -0.37 35 8E-3 45 -0.07
6 0.048 16 —9.1E-3 26 1.072 36 —0.033 46 —0.048
7 —-0.076 17 0.061 27 6E-3 37 —0.388 47 —3E-3
8 2.447 18 0.013 28 —0.037 38 0.179 48 —0.037
9 —0.17 19 —0.305 29 0.025 39 —0.039 49 —0.228

Table 9. First fifty A, for Equation (13) in [0.65, 2.5].

n A, n A, n A, n A, n A,
0 —5E-3 10 4.5E-3 20 -0.639 30 —0.045 40 0.027
1 -0.457 11 9.6E-3 21 0.069 31 -0.01 41 -0.016
2 2.735 12 —-0.047 22 —-0.015 32 —-1.144 42 -0.018
3 0.252 13 -0.375 23 —-0.027 33 —-0.013 43 0.253
4 0.039 14 —-0.108 24 —-0.052 34 7.2E-3 44 —-1.056
5 0.053 15 0.121 25 -0.142 35 -0.024 45 -0.02
6 —0.035 16 —0.011 26 -0.975 36 —0.033 46 0.052
7 —0.433 17 -0.014 27 0.02 37 0.126 47 —6.8E-3
8 0.734 18 —-0.053 28 —7.3E-3 38 —-1.168 48 —4E-3
9 0.18 19 —0.261 29 —0.032 39 —0.027 49 0.352

in the order of x10™ such as By indicating that their as-
sociated terms in the series are very small.

The function expressed by Equation (13) and its ap-
proximate expansions are plotted in Figure 7. Summa-
tion over the first 10 terms produced an acceptable esti-
mation in the interval [0.65, 2.5] with some noticeable
oscillations around the exact function. A better approx-
imate expansion is also plotted for » = 0 to 49 with less
fluctuations in the same radial domain.

In all graphical plots previously shown, the curves re-
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turn to zero at the assumed boundaries a = 0.65 and b =
2.5. In addition, accuracy of the expanded curves may
appear better as n increases due to larger number of
terms involved in the series and less fluctuations seen
around the exact values.

4. Conclusions

Functions were expanded as a Fourier-Bessel series
summation in both Jy(r) and Yy(r). A finite series expan-
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Figure 7. === Equation (13), s Equation (2) with n =0 to
10, = = Equation (2) with n» = 0 to 49.

sion was obtained for arbitrary radial boundaries in [a, b].

Coefficients were found by calculating the zeros of the
transcendental equation and by employing the relation-
ship of orthogonality. A number of examples were nu-
merically and graphically discussed.
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