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Abstract 
Series expansion of single variable functions is represented in Fourier-Bessel form with unknown coeffi-
cients. The proposed series expansions are derived for arbitrary radial boundaries in problems of circular 
domain. Zeros of the generated transcendental equation and the relationship of orthogonality are employed to 
find the unknown coefficients. Several numerical and graphical examples are explained and discussed. 
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1. Introduction 
 
Several boundary value problems in the applied sciences 
are frequently solved by expansions in cylindrical har-
monics with infinite terms. Problems of circular domain 
with rounded surfaces often generate infinite series of 
Bessel functions of the first and second types with un-
known coefficients. In this case, the intention is to find 
the series coefficients which should satisfy the boundary 
conditions. 

The subject of Fourier-Bessel series expansions was 
investigated and examined in many texts [1-10]. Nearly 
all of them has derived cylindrical harmonics expansions 
in J0(r) for the interval [0, a] only, where J0(r) is the 
Bessel function of the first kind with order zero and ar-
gument r [8]. The existence of the origin point excludes 
Y0(r), Bessel function of the second kind with order zero 
and argument r, because it goes to negative infinity as r 
approaches zero [9]. Both J0(r) and Y0(r) are shown plot-
ted in Figure 1. 

In many other problems in the applied sciences, the 
interval of expansion is found to be [a, b] such that a, b 
∈ R. An example of this could be a hollow cylinder in 
heat conduction problems or a circular band in vibrations 
analysis solved in the cylindrical coordinate system. In 
this case, cylindrical harmonics expansions in both J0(r) 
and Y0(r) are necessary. 

In this paper, the derivation of cylindrical harmonics 
expansion of a single variable function in [a, b] in both 
J0(r) and Y0(r) is solved. In accordance with the bounda-
ries at r = a and r = b, zeros of the obtained transcenden-
tal equation are first calculated. As shown in Figure 2, 

the solution region is for a ≤ r ≤ b where the desired se-
ries expansions are forced to be zero at r = a and r = b 
respectively. Unknown coefficients are then found and 
the complete series expansion can be achieved. 
 

 
Figure 1. Equation (6), ▬▬ J0(r), ▬ ▬ Y0(r). 

 
 

 
Figure 2. The solution region in radial boundaries. 
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2. Formulation and Solution 
 
The Bessel differential equation of order zero is well 
known as [1, 4]: 
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=++ rrfrf

dr
drf

dr
dr α       (1) 

∀ α and r ∈ R and a ≤ r ≤ b. 
The general solution to Equation (1) for real values of 

𝛼𝛼 is known to be [2, 3]: 
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As in Equation (1), the assumed boundary conditions 
at r = a and r = b are of Dirichlet type as f(a) = 0 and f(b) 
= 0 respectively. Both An and Bn are then related as: 
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Going after the elimination method, the transcendental 
equation can be obtained as: 

0)()()()( 0000 =− aYbJbYaJ αααα         (5) 

In order for Equation (5) to be satisfied, there exist 
many zeros or values of 𝛼𝛼 to be calculated. Thus, in all 
former and coming equations 𝛼𝛼 can be replaced by 𝛼𝛼n 
which are the zeros obtained from the transcendental 
equation ∀ n ∈ I. That is: 

0)()()()( 0000 =− aYbJbYaJ nnnn αααα      (6) 

The orthogonality feature of Bessel functions can be 
applied to Equation (2) by multiplying both sides by 

[ ])()( 00 rYBrJAr mmmm αα + and integrating it over all 
possible values of r from a to b as: 
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where, 

)()()( 00 rYBrJArC mmmmm αα +=       (8) 

)()()( 00 rYBrJArC nnnnn αα +=        (9) 

The terms under the summation in the left side of Eq-
uation (7) are zeros for all values of m ≠ n [5, 6, 7]. 
Hence, Equation (7) can be simplified to: 
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Either Equation (3) or (4) can help. Using Equation (3) 
we can obtain the Bn coefficients as: 
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where, S0(𝛼𝛼nr) is given by: 
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By Equation (3) or (4), the An coefficients can also be 
found. Once the coefficients An and Bn are calculated, the 
function f(r) can be expanded as in Equation (2). 
 
3. Numerical Examples 
 
The transcendental expression in Equation (6) shows a 
gradual decay as 𝛼𝛼 increases which mean small magni-
tudes between high zeros. This leads to the convergence 
of the series in Equation (2) above as n increases. As a 
consequence, a finite number of terms in Equation (2) 
can be sufficient for numerical approximations. 

The zeros are first evaluated using the transcendental 
cross product Bessel functions equation for the interval 
[a, b]. A graph of Equation (6) is shown in Figure 3 for 
the solution regions [0.65, 2.5] and [0.65, 5]. Table 1 
shows the first 50 zeros of Equation (6) for a = 0.65 and 
b = 2.5. Zeros obtained from the transcendental equation 
changes according to the values of a and b assumed for 
the solution region. The data presented in Table 1 indi-
cates that the calculated zeros are not periodic and should 
be calculated using a proper numerical technique. 

Let’s assume that the function f(r) to be expanded as 
in Equation (2) is sin(r) with a radial solution region in 
[0.65, 2.5]. The coefficients Bn can be evaluated from 
Equation (11) and the An coefficients are then obtained 
by Equation (3). Both coefficients are shown in Tables 2 
and 3 respectively for n = 0 to 49. 

 
Figure 3. Equation (6), ▬▬ [0.65, 2.5], ▬ ▬ [0.65, 5]. 
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Many variations can be noticed for the numerical val-
ues of An and Bn with a general absolute scale of < 1 ex-
cept for B0 = 2.328. Some coefficients are in the order of 
×10-3 meaning that their associated terms are very small 
such as B4 and A31 in Tables 2 and 3 respectively. 
  The function sin(r) and its approximate expansions are  

plotted in Figure 4. Summation over the first 10 terms 
produced an acceptable estimation in the interval [0.65, 
2.5] with some apparent oscillations around the exact 
function. An improved approximate expansion is also 
plotted for n = 0 to 49 with less fluctuations in the same 
radial domain. 
 

Table 1. First fifty zeros of Equation (6) in [0.65, 2.5]. 

n αn n αn n αn n αn n αn 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

1.663 
3.376 
5.08 
6.782 

8.4815 
10.182 
11.881 
13.579 
15.279 
16.977 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

18.676 
20.374 
22.073 
23.771 
25.47 

27.168 
28.866 
30.564 
32.263 
33.961 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

35.659 
37.358 
39.056 
40.754 
42.452 
44.151 
45.849 
47.547 
49.245 
50.943 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

52.642 
54.34 

56.038 
57.736 
59.434 
61.133 
62.831 
64.529 
66.227 
67.925 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

69.624 
71.322 
73.02 

74.718 
76.416 
78.115 
79.813 
81.511 
83.209 
84.907 

 
Table 2. First fifty Bn for f(r) = sin(r) in [0.65, 2.5]. 

n Bn n Bn n Bn n Bn n Bn 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

2.328 
–0.101 
–0.703 
0.234 

–4.8E-3 
–0.181 
0.455 
0.030 
–0.478 
0.105 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

0.154 
–0.138 
0.228 
0.064 

–0.385 
0.048 
0.231 

–0.110 
0.082 
0.081 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

–0.300 
7.1E-3 
0.267 

–0.082 
–0.030 
0.087 

–0.212 
–0.024 
0.272 

–0.054 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

–0.114 
0.084 

–0.123 
–0.047 
0.250 

–0.025 
–0.173 
0.074 

–0.036 
–0.061 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

0.206 
1.3E-3 
–0.205 
0.057 
0.042 
–0.068 
0.148 
0.024 
–0.212 
0.037 

Table 3. First fifty An for f(r) = sin(r) in [0.65, 2.5]. 

n An n An n An n An n An 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

–0.475 
0.462 

–0.547 
–0.114 
0.675 

–0.092 
–0.338 
0.170 

–0.143 
–0.111 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

0.424 
–0.016 
–0.346 
0.111 
0.021 

–0.110 
0.279 
0.025 

–0.333 
0.070 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

0.126 
–0.102 
0.159 
0.052 

–0.297 
0.034 
0.193 

–0.087 
0.054 
0.069 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

–0.242 
2.1E-3 
0.229 

–0.067 
–0.036 
0.075 

–0.174 
–0.024 
0.236 

–0.044 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

–0.109 
0.074 
–0.099 
–0.044 
0.218 
–0.019 
–0.160 
0.064 
–0.023 
–0.057 

 
Table 4. First fifty Bn for f(r) = cos(r) in [0.65, 2.5]. 

n Bn n Bn n Bn n Bn n Bn 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

–0.129 
0.338 
0.286 

–0.919 
2.0E-3 
0.732 

–0.196 
–0.122 
0.207 

–0.433 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

–0.067 
0.571 
–0.099 
–0.264 
0.167 
–0.199 
–0.100 
0.457 
–0.036 
–0.338 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

0.131 
–0.030 
–0.116 
0.342 
0.013 
–0.364 
0.092 
0.100 
–0.118 
0.223 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

0.050 
–0.351 
0.053 
0.195 
–0.109 
0.105 
0.075 
–0.306 
0.016 
0.256 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

–0.090 
–5.5E-3 
0.089 
–0.237 
–0.018 
0.281 
–0.064 
–0.100 
0.092 
–0.153 

                                                          
In addition, f(r) = cos(r) is expanded as in Equation (2) 
and the first fifty coefficients are listed in Tables 4 and 5 
for the Bn and An respectively. Similar to the sin(r), the 
cos(r) coefficients go through several variations with a 

general absolute scale of < 1 except A1 = −1.550. Also, 
only four coefficients are in the order of ×10-3 implying 
that their related terms in the series are extremely small 
such as B4 and A41 in Tables 4 and 5 respectively. 
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Table 5. First fifty An for f(r) = cos(r) in [0.65, 2.5]. 
n An n An n An n An n An 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

0.026 
–1.550 
0.222 
0.448 

–0.287 
0.371 
0.145 

–0.696 
0.062 
0.458 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

–0.184 
0.068 
0.150 
–0.461 
–9.1E-3 
0.455 
–0.121 
–0.105 
0.145 
–0.289 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

–0.055 
0.422 

–0.069 
–0.218 
0.129 

–0.139 
–0.084 
0.362 
–0.023 
–0.286 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

0.105 
–8.9E-3 
–0.100 
0.279 
0.016 

–0.314 
0.076 
0.100 

–0.103 
0.182 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

0.047 
–0.306 
0.043 
0.182 
–0.095 
0.080 
0.070 
–0.268 
0.010 
0.235 

 
 

 
Figure 4. ▬▬ sin(r), ••• Equation (2) with n = 0 to 10, 
▬ ▬ Equation (2) with n = 0 to 49. 
 

 
Figure 5. ▬▬ cos(r), ••• Equation (2) with n = 0 to 10, 
▬ ▬ Equation (2) with n = 0 to 49. 
 
The function cos(r) and its estimated expansions are 
shown plotted in Figure 5. Finite summation over the 
first 10 terms generated a satisfactory estimation in the 
interval [0.65, 2.5] with several obvious oscillations 
close to the exact function. A better approximate expan-
sion is also plotted for n = 0 to 49 with less fluctuations 
in the same solution region. 

The calculated coefficients for the function er are also 
shown in Tables 6 and 7 for Bn and An respectively. Ap-
parently, the coefficients swing around the exact values 

with an absolute level of > 1 or < 1. 
The greatest values in Tables 6 and 7 are found as B0 

= 13.852 and A1 = 11.499. In addition, no coefficients are 
calculated in the order of ×10-3 implying that all coeffi-
cients are to be included in the series expansion. 

The function exp(r) and its estimated expansions are 
shown plotted in Figure 6 in [0.65, 2.5]. A satisfactory 
estimation of a finite summation over the first 10 terms 
are generated with several oscillations close to the exact 
function. A good approximated expansion is also plotted 
for n = 0 to 49 with fewer variations in the same solution 
region. 

The last numerical example to be discussed is the 
square function expressed as: 



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88.126.11
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The calculated Bn and An coefficients for this function are 
shown in Tables 8 and 9 respectively. Similar to former 
expansions, both coefficients vary about the exact values 
of Equation (13). The Bn coefficients have a general ab-
solute level of < 1 except B2, B8, B14, B20 and B26 that 
have an absolute scale of > 1. Furthermore, the An coef-
ficients show an absolute level of < 1 except the absolute 
values of A2, A32, A38 and A44 that are > 1. Some Bn and An  
coefficients are calculated in the order of ×10-3 like A0 or  
 

Figure 6. ▬▬ exp(r), ••• Equation (2) with n = 0 to 10, 
▬ ▬ Equation (2) with n = 0 to 49. 
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Table 6. First fifty Bn for f(r) = exp(r) in [0.65, 2.5]. 
n Bn N Bn n Bn n Bn n Bn 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

13.852 
–2.506 
–9.361 
8.069 

–0.068 
–6.632 
6.506 
1.113 

–6.867 
3.985 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

2.217 
–5.266 
3.298 
2.443 

–5.566 
1.841 
3.343 

–4.227 
1.182 
3.127 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

–4.350 
0.274 
3.873 

–3.169 
–0.433 
3.372 

–3.078 
–0.931 
3.937 

–2.069 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

–1.660 
3.254 

–1.780 
–1.813 
3.618 

–0.971 
–2.505 
2.841 

–0.525 
–2.371 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

2.987 
0.051 

–2.971 
2.202 
0.602 

–2.611 
2.140 
0.932 

–3.072 
1.419 

 
Table 7. First fifty An for f(r) = exp(r) in [0.65, 2.5]. 

n An n An n An n An n An 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

–2.828 
11.499 
–7.286 
–3.934 
9.496 

–3.360 
–4.824 
6.376 

–2.059 
–4.216 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

6.108 
–0.625 
–4.992 
4.263 
0.304 
–4.213 
4.033 
0.969 
–4.814 
2.675 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

1.821 
–3.915 
2.304 
2.019 
–4.301 
1.292 
2.799 
–3.353 
0.782 
2.650 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

–3.511 
0.083 
3.317 
–2.586 
–0.526 
2.912 
–2.523 
–0.925 
3.423 
–1.690 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

–1.575 
2.841 

–1.431 
–1.691 
3.168 

–0.747 
–2.318 
2.490 

–0.336 
–2.185 

 
Table 8. First fifty Bn for Equation (13) in [0.65, 2.5]. 

n Bn n Bn n Bn n Bn n Bn 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

0.026 
0.1 

3.515 
–0.516 
–3E-4 
0.105 
0.048 
–0.076 
2.447 
–0.17 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

1.64E-3 
0.081 
0.031 

–0.205 
1.968 

–0.053 
–9.1E-3 
0.061 
0.013 

–0.305 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

1.527 
–5E-3 
–0.025 
0.042 
–5E-3 
–0.37 
1.072 
6E-3 

–0.037 
0.025 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

–0.021 
–0.404 
0.614 
–9E-3 
–0.05 
8E-3 

–0.033 
–0.388 
0.179 
–0.039 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

–0.051 
–3E-4 
–0.037 
–0.329 
–0.201 
–0.07 

–0.048 
–3E-3 
–0.037 
–0.228 

 
Table 9. First fifty An for Equation (13) in [0.65, 2.5]. 

n An n An n An n An n An 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

–5E-3 
–0.457 
2.735 
0.252 
0.039 
0.053 

–0.035 
–0.433 
0.734 
0.18 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

4.5E-3 
9.6E-3 
–0.047 
–0.375 
–0.108 
0.121 

–0.011 
–0.014 
–0.053 
–0.261 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

–0.639 
0.069 
–0.015 
–0.027 
–0.052 
–0.142 
–0.975 
0.02 

–7.3E-3 
–0.032 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

–0.045 
–0.01 

–1.144 
–0.013 
7.2E-3 
–0.024 
–0.033 
0.126 

–1.168 
–0.027 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

0.027 
–0.016 
–0.018 
0.253 
–1.056 
–0.02 
0.052 

–6.8E-3 
–4E-3 
0.352 

 
in the order of ×10-4 such as B41 indicating that their as-
sociated terms in the series are very small.  

The function expressed by Equation (13) and its ap-
proximate expansions are plotted in Figure 7. Summa-
tion over the first 10 terms produced an acceptable esti-
mation in the interval [0.65, 2.5] with some noticeable 
oscillations around the exact function. A better approx-
imate expansion is also plotted for n = 0 to 49 with less 
fluctuations in the same radial domain. 

In all graphical plots previously shown, the curves re-

turn to zero at the assumed boundaries a = 0.65 and b = 
2.5. In addition, accuracy of the expanded curves may 
appear better as n increases due to larger number of 
terms involved in the series and less fluctuations seen 
around the exact values. 
 
4. Conclusions 

Functions were expanded as a Fourier-Bessel series 
summation in both J0(r) and Y0(r). A finite series expan- 
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Figure 7. ▬▬ Equation (13), ••• Equation (2) with n = 0 to 
10, ▬ ▬ Equation (2) with n = 0 to 49. 
 
sion was obtained for arbitrary radial boundaries in [a, b]. 
Coefficients were found by calculating the zeros of the 
transcendental equation and by employing the relation-
ship of orthogonality. A number of examples were nu-
merically and graphically discussed. 
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