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ABSTRACT 

In this paper, homotopy perturbation method is applied to solve moving boundary and isoperimetric problems. This 
method does not depend upon a small parameter in the equation, homotopy is constructed with an imbedding parameter 
p, which is considered as a “small parameter”. Finally, we use combined homotopy perturbation method and Green’s 
function method for solving second order problems. Some examples are given to illustrate the effectiveness of methods. 
The results show that these methods provides a powerful mathematical tools for solving problems. 
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1. Introduction 

In the modeling of a large class of problems which 
comes up in science, engineering and economics, it is 
necessary to minimize amounts of a certain functional. 
Because of the key role of this subject, it has been con- 
siderable attention has been devoted to these kinds of 
problems. Such problems are called variational problems 
(see [1,2]). 

Consider the simplest form of a variational problem 
as: 

     1

0
, , d ,

x

x
v y x F x y x y x x         (1) 

where v is the functional that its extremum must be 
achieved. There are two kinds of boundary conditions 
that functional v can be considered by. In the case of 
fixed boundary problems, the admissible function  y x  
must satisfy the boundary conditions 

   0 0 1, 1y x y y x y             (2) 

In moving boundary problems at least one of the 
boundary points of the admissible function is movable 
along a boundary curve. As a matter of fact, many appli- 
cations of the calculus of variations lead to problems in 
which not only boundary conditions, but also conditions 
of quite a different type, known as constraints are im- 
posed on the admissible function. The necessary condi- 
tion for the admissible solutions at this problems is to 
satisfy the Euler-Lagrange equation which is mainly 
consider as nonlinear. 

In this work we consider Homotopy perturbation me- 
thod, which is an effective and applicable mathematical 

tool for linear and nonlinear equations. It yields a rapid 
convergence of the solution, and doesn’t have previous 
perturbation method limits (see [3-12]). 

Author of [13] solved variational problems with mov- 
ing boundaries with Adomian decomposition method. 

In [14] Homotopy perturbation method applied to 
solve variational problems with fixed boundaries. In this 
paper solution of variational problems with moving 
boundaries problems can be obtained by Homotopy per- 
turbation method first. Then we obtain solution of them 
by using combined homotopy perturbation method and 
Green’s function method. This algorithm is offered for 
the solution of second-order boundary value problems 
with two-point boundary conditions. To transform the or- 
dinary differential equation into an equivalent integral 
one, which has already satisfied the boundary conditions, 
we apply the Green’s function method first. Then, the 
homotopy perturbation method is used to the resulting 
equation to construct the numerical solution for such 
problems. To illustrate a clear overview of the procedure 
several illustrative examples are involved. 

2. Statement of the Problem 

2.1. Moving Boundary Problems 

The essential condition for the solution of problem (1) 
has been fulfilled the Euler-Lagrange equation 

d
0,

d

F F

y x y

 
 

 
              (3) 

The general form of the variational problem (1) is 
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  1

0
1 22 1, , , , , , , , , , d ,n

x

n nx
v y y y F x y y y y y x    1   (4) 

Here the necessary condition for the extremum of the 
functional (4) is satisfying the system of second-order 
differential equations below 

d
0, 1,2, ,

d ii

F F
i

y x y

 
  

 
 n          (5) 

In the fixed boundary problems, Euler-Lagrange equa- 
tion must be considered by the boundary conditions, but 
for the problems with variable boundaries, Euler-La- 
grange equation has to satisfy natural boundary condi- 
tions or transversality conditions that has been discussed 
in the following theorems. 

Type 1: Firstly, we consider problems for which at 
least one of the boundary points move freely along a line 
parallel to the y-axis, actually at this point  y x  is not 
specified. In this case all admissible functions have the 
same domain of definition  0 1,x x  and satisfy the Euler- 
Lagrange equation in this interval. Furthermore such 
functions must satisfy conditions called natural boundary 
conditions prescribed in the following theorem. 

Theorem 2.1. Suppose the function  y y x  in 
 1

0 1,C x x , yields a relative minimum of the functional 
(1) for which  0 0y x y  is given,  1 1y x y


 is arbi-  

trary (free right endpoint) or  0 , 1y x y x  are arbitrary 

(free endpoints). 
Then  0y x  satisfies, respectively, the following 

natural boundary conditions: 

    1 0 1 0 1, ,
F

x y x y x
y

  


 0,           (6) 

Or 

    

    

0 0 0 0

1 0 1 1

0

0

, ,

, ,

F
x y x y x

y

F
x y x y x

y

 

  


0

         (7) 

Type 2: Secondly, we ought to turn to the beginning 
and end points (or only one of them) that move freely on 
given curves    , .y x y x  

 
 In this case, we look 

for a function y x , which emanates at some 0x x  
from the curve  y x  and terminates for some 

1x x  on the curve  y x  and minimizes the func-
tional (1). In this problem the points 0 1,x x  are unknown, 
they must satisfy the necessary conditions called trans-
versality conditions, prescribed in the following theorem. 

Theorem 2.2. If the function    1
0 0 , ,y y x C x x  1  

which emanates at some 0x x  from the curve 
 and terminates for some 1   1 ,y x C    x x  

on the curve  yields a relative 
minimum for functional (1), where 

 y x  , ,
 1 ,

1C
F C R R  being 

a domain in the  , , x y y  space that contains all lineal 

elements of  0y y x , then it is necessary that  
 0y y x  must satisfy the Euler-Lagrange equation in 

the interval  0 1,x x  and that at the point of departure 
and the point of arrival, the transversality conditions: 

 

 

0 0 0

0 0 0 0

, ,

, ,

       

  
0 0 0

0

0 0

0,

F
x y x

x y x

y x x y x
y

F y x

    


 
     (8) 

 

 

1 0 1

1 0 1

, ,

, ,

       

  
10 01 1

0 1 0,

F
x y x

y x y

y x x y x
y

F x x

   


 
      (9) 

are satisfied. In such a state that one of the points is fixed, 
then the transversality condition has to hold at the other 
point. One can consider transversality conditions for the 
problems with more than one unknown functions. For 
example, in the two dimensional case we seek a vector 
function       2, y x1y x y x

  1

0
1 2

x

x
y F 

 as minimizes 

 1 2 1 2, , , , ,v y x y y y y x  d ,          (10) 

in which    ,
0 01 0 1, 2 0 2,x x  and the endpoint 

lies on a two-dimensional surface that is given by 
y x y y x y 

 .1 2,x u y
1

y  Here the transversality conditions at 
x x  are: 

 0 0
1 2 1

2 1

1 0,
u u

y F x
y y

    

1 1

u u
F y

y y

 
      

 
  

 (11) 

 0 0
1 2 1

2 1

u u

y y

 

2 2

1 0,
u u

F y y F x
y y

    
      

 
  

 (12) 

In which     0
2, y x0

1y x  is an admissible vector 
function. 

For more information on transversality conditions, 
specially for the proofs of Theorems 2.1 and 2.2 and 
conditions (11), (12) (see [15]). 

2.2. Isoperimetric Problems 

Assume that two functions  and  , ,G x y y  , ,F x y y  
are given. From among all curves    1

0 1,C x x y y x  
along which the functional 

   1

0
, , d

x

x
K y G x y y  x  

assumes a given value l, determine the one for which the 
functional 

   1

0
, , d

x

x
J y F x y y  x  

assumes an extremal value. We assume that F and G 
have continuous first and second partial derivatives for 

0 1x x x 
y

 and for arbitrary values of the variables y and 
 . 
Euler’s theorem: If a curve  y y x  extremizes the  
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functional    1

0
, , d

x

x
J y F x y y x   subject to the condi-

tions 

       1

0
0 0 1, , d , ,

x

x 1K y G x y y x l y x y y x   y  

and if  y y x

 

 is not an extremal of the functional K, 
then there exists a constant λ, such that the curve 
y y x

x

  is an extremal of the functional 

   1

0
, , , , d

x
L F x y y G x y y x     

The vital condition for the solution of this problem is 
to satisfy the Euler-Lagrange equation 

d
0

d

H H

y x y

 
 

 
 

with given boundary conditions in which ,H F G   
see [15] for further information. 

3. Homotopy Perturbation Method 

We consider the following nonlinear differential equation 

    0,A y f r r                (13) 

with natural boundary conditions or transversality condi-
tions 

, 0,
y

B y r
n

     
               (14) 

where A is a general differential operator, B is a bound-
ary operator,  f r  is a known analytic function and   
is the boundary of the domain  .  

The operator A can, generally, be divided into two 
parts L and N, where L is Linear, while N is nonlinear, so 
that we can write 

      0.L y N y f r               (15) 

By Homotopy perturbation technique [3] and [4], we 
create a homotopy  which satis-
fies 

 , : [0,1]v r p R 

       
     

0, 1

0, 0,1 , .

H v p p L v L y

p A v f r p r

   
     




      (16) 

Or 

      
   

0,

0.

0H v p L v L y pL y

p N v f r

  

    
      (17) 

where  0,1p  is an embeding parameter, and 0  is 
an initial approximation of Equation (13). Obviously 
from Equation (16): 

y

     0,0 0,H v L v L y               (18) 

     ,1 0,H v A v f r                (19) 

 ,v r p  have to change from 0  to ( )y r  y r

 

 due to 
the changing process of p from zero to unity. In topology, 
this is named deformation, and      0 ,L v L y A v f r   
are called homotopic. 

In this method, using the homotopy parameter p, we 
have the following power series in p 

2
0 1 2v v pv p v                    (20) 

Setting 1p   results in the approximate solution of 
Equation (13) 

1 0 1 2lim py v v v v               (21) 

Numerical Examples 

Example 3.1.1. Consider the following problems: 

      2

0
* d

T
J y a by t y t c   t

0

      (22) 

In which  and , 0, *a b c   y t  is the amount of 
a capital at time t. Here, the capital stock  0y  at the 
initial time 0,t   of the planning period is pretended to 
be known:   00 ,y y  on the other hand, the planner 
will not want to prescribe how large the capital will be at 
time t T . Hence, there exists a variational problem 
with free right endpoint. Here we let  * 1,a b c 

1,T   and 0 2y   which has the analytical solution 
 y t 1 te  . 
The Euler-Lagrange equation for this problem is: 

    1 0.y t y t                  (23) 

We know the natural boundary condition at 1t   is 

         11, 1 , 1 2( 1) 0t

f
y y y t y t

y 
      


. 

Therefore, we have the following boundary conditions 
for (3.1.2): 

     0 2, 1 1 1 0y y y .              (24) 

We can readily construct a homotopy which satisfies 

        
 

0 0 0

0 0

v t v t y t y t py t

py t p

    

  


     (25) 

With initial approximation , Suppose that 
the solution of Equation (25) has the (20). 

 0
ty t ae

Substituting (20) into (25), and equating the terms with 
the identical powers of p: 

       0 0 0 0v t v t y t y t     , 

       1 1 0 1 0v t v t y t y t      , 

   2 2 0v t v t   . 

assuming    0 0v t y t ae  t , we have , 
and 

 1
tv t b ce 

 2v t tde . So, for Equation (22) we have an ap-
proximate solution: 
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 0 1 2
ty v v v b a c d e        .        (26) 

Imposing (24) at (26), we have: .   1 ty t e 
Now we solve this problem with Adomian decomposi-

tion method. Using the operator form of (23), we have: 

1Ly y  , 

      1 12 1y x Ax L L y x     . 

Applying the Adomian decomposition: 

    
2

1
0

2
2n nn

x
y x Ax L y x

 


    0n . 

So, we use the reccursive relations 

 
2

0 2
2

x
y x Ax   , 

    1
1n ny x L y x
  . 

Now we use ( )ng x
3

 as the approximation of y(x), for 
example, for  we have: n

 
2 3 4

3

5 6 7 8

2
2 6 24

120 720 5040 40320

x Ax x
g x Ax

Ax x Ax x

    

   

. 

We solve the equation    3 31 1 1g g   0 , for the 
determination of A. Table 1 shows the error of 3g . 

Solutions of two methods show that the homotopy 
perturbation method is better than adomian decomposi-
tion method. 

Example 3.1.2. We want to find the minimum of the  

integral    1 2

0
dJ y x y x x     subject to the condi-

tions 

     1

0
d 3, 0 1, 1 6y x x y y   .        (27) 

From the auxiliary function [15]: 

   1 2

0
 dy x y x x                  (28) 

A homotopy can be constructed as follows 

     0 0 0.
2

v t y t py t p
              (29) 

Our initial approximation is:  0y t at  b . Suppos-
ing the approximate solution of Equation (29) has the 
form of (20), by the same manipulation like above exam-
ple, we have 

   0 0 0v t y t   , 

 
Table 1. Shows the error of g3. 

x 0 0.2 0.4 0.6 0.8 1 

e 0 0.203617e–3 0.415371e–3 0.643003e–3 0.889442e–3 0.113584e–2

   1 0 0
2

v t y t
    , 

 2 0v t  . 

We suppose that    0 0v x y t ax b   . 

So    2
1 2, ,

4
v t t ct d v t et f


       

Therefore we find the following equation 

    2

4
v x t a c e t b d f 

             (30) 

Imposing      1

0
0 1, 1 6, d 3y y y x x     on (30) we 

have: 

  212, 3 2 1y x x x      

4. Combined Homotopy Perturbation 
Method and Green’s Function Method for 
Solving Second-Order Moving Boundary 
Problems 

Assume that [16] 

         2 , ,0y x y x f y x y x F x x l         (32) 

with boundary conditions that obtained from transversal-
ity conditions. Where   is a real constant number, 
 ,f y y  is a nonlinear function, and  F x  is a non-

homogeneous term. 
We can write Equation (32) to an equivalent integral 

equation; 

          1

0
, ,y x F f y y G x d ,            (33) 

By adding a nonhomogeneous term, in moving boun- 
dary problems, the above equation is modified because 
boundary conditions are nonhomogeneous. Here, the 
function  ,G x   the function  ,G x   that called 
Green’s function, is adjusted as below: 

 
    
    

,

sin sin , 01

sin( ) sin sin , .

G x

l x x

l x l x l



  

     

   
 





   (34) 

In Equation (33), if 0  , then Green’s function 
amended as below: 

 
( ), 01

,
( ),

l x x
G x

.x l xl l

 


 
  

    
             (35) 

We construct the homotopy form of Equation (33), 
which satisfies: 

       

       

1

0

1

0

, , d

, , d 0,

H v p v x F G x

p f v v G x p

  

   

 

   



 0,1 .
  (36) 

The solution of the Equation (32) is assumed to be the 
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d

power series of p as expressed in Equation (20) and sub-
stituting Equation (20) into (36) and equating the term 
with identical powers of p, The following equations can  

be obtained: 

     10
0 0

: ,p v x F G x    , 

 

                 1

1 2 0 1 2 00
: , , , , , , , , d ,i

i i i i ip v x f v v v v v v G x i                   1,2,3,



 

 
We obtain the approximate solution from Equation (20) 

by solving these integral equation. If we construct the 
homotopy as: 

     1

10
, d , 4,5,6,i iv x v G x i     . 

Assume that     1 0 1r x v x v x 

       

          
   

1

0

1

0

, , d

1 , ,

, d 0, 0,1 .

exa exa

H v p v x F G x

p f y y pf v v

G x p

  

   

 

 

       
  



 (37) 

  and by imposing 
boundary condition on that, we have: 

1, 2,a b   

so: 

  2 3 4
1

1 1 1
2 .

2 4 4
r x x x x x      

where  exay x  is the exact solution of (32), then we 
have: And assuming       2 0 1 2r x v x v x v x     and im- 

posing boundary condition on that, we have:      

     

1

0 0

1

0

, d

, ,exa exa

v x F G x

f y y G x

  

d  

 

   




1, 2,a b   


    (38) 

so: 

  2 3 4 5
2

1 1 3 5 5 1
2

2 4 8 8 8 8
r x x x x x x x      Equation (38) will give the exact solution. 6 . 

Numerical Examples Also we can write: 
Example 4.1.1. Considering Ramsey growth model, we 
have:   2 3 4

3

6 7 8

1 1 1 1 1
2

2 4 8 16 2
5 3 1

8 16
.

8

r x x x x x x

x x x

     

  

5

d .

 
   

   

1

0

1

10

, d

, d 0

i

i

y x ax b G x

y G x

 

  

  

 




           (39) 

But from (37) we have: 
Also we have: 

   10 2
0 0

1 1
: , d

2 2
p v x ax b G x ax b x x        , 

   

      

1

0

1

0

2 , d

1 ,

v x x G x

e pv G x

 

  

  

  




 

   11
1 00

2 3

1
: , d

2

,
1 1 1 1 1 1

2 2 4 2 2 4

p v x v G x bx

b a x a x x

    

           
   

 So: 

4

    

   

1

0 0

1

0

2 ,

1 , d

1 2 .x

v x x G x

e G x

x e xe



d 

 

  

 

   



 . 

   12
2 10

2 3

4 5

: , d

1 1 1 1

4 2 4 8

1 1 3 1 3 1

4 2 8 4 8 8
,

p v x v G x

bx b a x

b a x a x x

  

      
 

           
   



   

That is approach to exact solution. And also we obtain: 

  0, 1,2,iv x i   . 
6

13
3 20

4 5

6 7

1
: , d

8
3 1 1 3 3 1

8 4 16 8 8 4

1 3 3 1 1 1

8 8 8 8 4 16
,

p v x v G x bx

b a x b a x

b a x a x x

    

          
  
           
   



The plot of        0 1 2 3, , ,v x r x r x r x  has been shown 

3

8





 

in Figure 1. 
Example 4.1.2. We want to solve Example 3.1.2 with 

this method. The Euler-Lagrange equation is: 

0
2

y
   . 

Supposing  v x ax b   we have: 



S. GHADERI 408 

 

0         0.2        0.4        0.6        0.5         1 

r1 r2 r3

x

3 

2.8 

2.6 

2.4 

2.2 

2 

v0 (exact solution) 

 

Figure 1. The plot of v0(x), r1(x), r2(x), r3(x) of Example 
4.1.1. 

   
 

 
 

1
,

0

1 1

1 0

x l x
G x

l x xl

x x

l

x x

 


 

 
 

     



      

 

and 

     

     

 

1

0

1

0

1

0

, d

, ,

, d ,
2

y x ax b F G x

p f y y G x

ax b G x

  

d  

  

  

   

  







  

So 

   10
0 0

2

: ,
2

1
,

4 4

p v x ax b G x

x a x b


d 



  

     
 


 

 

                 1

1 2 0 1 2 00
: , , , , , , , , d 0, 1,2,3,i

i i i i ip v x f v v v v v v G x i                      

 

by imposing boundary condition on that, we have: 

  25, 1, 12, 3 2 1a b y x x x      . 

5. Conclusion 

In this paper, we solve the moving boundary and iso-
perimetric problems by using Homotopy perturbation 
method. Embedding parameter  0,1p  can be taken 
into account as a perturbation parameter. By the applica-
tion of Green’s function, the problem concerned is trans-
formed into an equivalent integral equation, which is 
solved using the homotopy perturbation method. Nu-
merical examples show that these proposed methods 
were valid and effective for solving problems. 
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