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ABSTRACT 

Recovery by Equilibrium in Patches (REP) is a recovery method introduced by B. Boroomand. This method is using 
patch as recovery media as is used by Superconvergent Patch Recovery (SPR) which is well known as a good recovery 
method. In this research, a numerical study of REP implementation is held to estimate error in finite element analysis 
using DKMQ element. The numerical study is performed with both uniform and adaptive h-type mesh refinement. The 
result is compared with three other recovery method, i.e. SPR method, averaging method, and projection method. 
 
Keywords: Bending Plate; Finite Element Method; Superconvergent Patch Recovery; Recovery by Equilibrium in 

Patches; DKMQ Element 

1. Introduction 

Solution error is unavoidable in finite element method 
application, either caused by inappropriate model, nu- 
merical integration usage, inaccuracy of numerical solu- 
tion, or rounding error accumulation in numerical proc- 
ess. A complex problem usually has no exact solution, 
therefore, the error happened is also difficult to deter- 
mine. Error estimator is developed to gain solution as 
close as possible compared to exact solution. 

Error estimation procedure based on recovery method 
gives good result for various plate problem. A widely 
used error estimator is superconvergent method which has 
known giving high error convergence rate. The first su- 
perconvergent method is Superconvergent Patch Recov- 
ery (SPR) method which is developed by Zienkiewicz- 
Zhu [1,2]. The basic principle of this method is recover- 
ing element nodal forces by least square fit method anal- 
ogy on some internal force sample which is known more 
accurate.  

A study developed by Zhang [3] showed that the 
Zienkiewicz-Zhu patch recovery technique gives ultra- 
convergent result when even-order finite element spaces 
and local uniform meshes are used.  

The next super-convergent method is Recovery by 
Equilibrium in Patches (REP) which is developed by 
Boroomand [4-6]. This method is based on equilibrium of 
solution formulation to produce recovered internal forces 
field. Like SPR, REP uses patches as calculation media. 

Estimation error a posteriori continues to develop be- 
cause it is more easily and efficiently.  

Zhang [7] in 2004 named the method as a method of 
Polynomial Preserving Gradient Recovery, sometimes 
referred as the Polynomial Preserving Recovery (PPR). 

Zienkiewicz O.C. [8] in 2006 summarized the present 
state of the art concerning error estimation and adaptive 
re-meshing in finite element computation. He found that 
the residuals of the original solution need not be calcu- 
lated to obtain the best answers, because process of re- 
covery has important role in error estimation and its ac- 
curacy.  

Duster [9] in 2007 presented a pq-adaptive finite ele- 
ment procedure for three-dimensional computation of thin- 
walled structures. He used for the application plates and 
shells and this approach is using the hexahedral element 
with high-order shape functions. 

Destuynder [10] in 2008 presented a strategy concern- 
ing mesh refinements for thin shells computation espe- 
cially adaptive mesh refinements for thin shells whose 
middle surface is not exactly known.  

Ainsworth [11] in 2009 gave an overview of recent 
progress in developing a framework for the derivation of 
fully computable guaranteed posteriori error bounds for 
finite element approximation. He focused his study on 
conforming, non-conforming, mixed and discontinuous 
finite element schemes. 

Nie [12] in 2009 found that the CPU time cost greatly 
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increases if we use the overall mesh refinement thus the 
adaptive mesh is refined only in the localization region. 

Lukin [13] in 2011 used the HiFi/SEL high-order fi- 
nite element code to study the effects of various mesh 
distortions on solution quality of analytic problems. He 
uses the problems for spatial discretizations with differ- 
ent order of finite elements. He found that the total error 
increases with the degree of distortion. 

Bathe [14] in 2011 introduced a novel approach of 
stress calculations in finite element analysis using the 
element nodal point forces. It is very simple than using 
the stress assumption employed in establishing the stiff- 
ness matrix. Also, it is very simple to enhance the finite 
element stress predictions at a low computational cost.  

In this paper, a comparative study is held to evaluate 
the several stress recovery method in estimating error of 
finite element result using DKMQ (Discrete Kirchoff 
Mindlin Quadrilateral) element [15], which has been 
acknowledged internationally and implemented in com- 
mercial software of MIDAS. The performance of REP is 
then compared with other method, i.e. SPR method, pro- 
jection method and averaging method. 

2. The Recovery Method 

While FEM solution has been known to give continuity in 
displacement at nodal points, it yields discontinuity and 
inaccuracy problems when used to calculate internal 
forces at joined sides of the boundary elements [16]. By 
theory or analytical solution, the problem should not hap- 
pen as adjacent elements maintains uniformity in form 
and characteristics. Yet, the nature of FEM solution which 
calculates internal forces using the derivation of dis- 
placement function has created such problem (Figure 1). 

Displacement continuity resulted by FEM solution at 
nodal points does not occur to the internal forces at joined 
sides of the boundary elements. These internal forces are 
calculated from the derivation of displacement function 
which causes problems in continuity and accuracy. By 
theory or analytical solution, the problem should not hap-  

pen as the geometry maintains the continuity of shape. 
This problem occurs in the finite element method that 
later being the basic approach for estimating the error of 
finite element calculation. 

2.1. The Averaging Method 

The recovery is taken from the average value of finite 
element result in each element. 
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where  *

i
M  and  *

i
T  are recovered moment and 

shear forces,  hM
i
 and  h

i
T  are finite element re-  

sult of moment and shear forces in node i, while m is 
number of elements consisting node i. 

2.2. The Superconvergent Patch Recovery (SPR) 

Superconvergent Patch Recovery method is relative simple 
and easy-used. The idea is recovering finite element result 
with least square fit method analogy. 

The recovered moment/shear force *M  is assumed as 
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where P  is polinomial expansion function in  ,n  
parametric local coordinate system which assumed as 
continuous stress field in evaluated patch (Figure 2). The 
unknown parameter {an} is solved by minimizing the 
following function 
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where  ,k k   is Gauss coordinat in patch local 
coordinate system, n is number of Gauss point in patch, 

 ,h
x k kM    is finite element result.  

 

 

Figure 1. Illustration of internal forces continuity on 2D problem. 
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(a)                 (b)                   (c) 

Figure 2. Model of patch: (a) Nodal based patch; (b) Ele-
ment interface based patch; (c) Element based patch. 
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2.3. The Recovery by Equilibrium in  
Patches (REP) 

The Recovery by Equilibrium in Patches uses a weighted 
form of equilibrium equation to produce recovered solu- 
tion. 

The equilibrium equation of patch is expressed as 
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This leads us to a simple requirement that the recov-
ered values satisfy approximately 
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Where: 
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Hence, Equation (8) can be expressed as: 
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As an example, in recovering *
xM , substituting Equa- 

tion (2) to Equation (10a) will produce: 
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Using Gauss numerical integration, Equation (11) can 
be expressed as: 
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with n is the number of element’s Gauss integration 
points which included in patch, J is Jacobian matrix and 
ω is weighting factor. 

Equation (12) can also be expressed as 

    h
nD a F                 (13) 

Where 

   
1

m

e
i

D D


   and    
1

m
h

e
i

hF F


           (14) 

with m is number of elements in a patch, and 
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with NPG is number of Gauss points in each element in a 
patch, and n = m × NPG. Then, using least square fit 
method, we define the following function 
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In some patch configuration, [D] is probably unstable. 
This problem can be solved by defining function 
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           
                  

T
h h

n n

T
h h

e n e e n e

D a F D a F

D a F D a F

    

 
   (19) 

Minimizing that equation to {an} will produce: 
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with 
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In above,  eD  and  h
eF  have the same expression 

as  D  and  hF , but the integrals are applied on each 
element. 

2.4. Error Indicator and Refinement 

Error estimation will become actual error if element size 
is set to be very small so as to approach zero, which cre-
ates infinite number of elements. Since calculation will 
never stop if element size is close to zero, we need an 
effective condition as criteria to terminate discrete proc-
ess. 

Indicator for exact error of a structure is defined by 
exact error of energy norm that is normalized by exact 
strain energy norm: 
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where e  is error in energy norm from this equation 
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of element in structure while u  is twice as much as 
exact strain energy of the whole structure, which for 
plate structure consists of bending and shear energy. 

The above indicator can be computed only if exact so- 
lution is available which can be estimated by recovering 
the solution as discussed before. 

Indicator for relative error * of a structure with recov- 
ery method is: 
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Value of e  is obtained from: 
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Error indicator represents value used as criteria to ter- 
minate the refinement process. This can be done by set- 
ting a condition for * , that is whenever * ˆ   then 
the refinement process will stop. Generally, the value of 
̂  is taken to be 5%. The permitted error indicator for 
structure is determined by:  
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where ê  is permitted error of global energy norm, 
given by:  
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In an optimal element mesh, distribution of error of en-
ergy norm is uniform in all elements, thus:  
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where: m = number of element. 
And then, we have: 
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Thereby we can set a condition that error in every ele- 
ment i must be equal to or less than: 
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where: ˆ
i

e  = permitted error of energy norm estimated 
for each element i. 

Element whose error exceeds the permitted value most 
probably will be refined. Let us set a ratio: 
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3. Numerical Study 

The following notation is used in the numerical study. 
REP1: REP method, element based patch, minimum 3 

elements in one patch. 
REP2: REP method, element based patch, minimum 5 

elements in one patch. 
REP3, REP: REP method, element based patch, mini- 

mum 7 elements in one patch. 
SPR1: SPR method, nodal based patch. 
SPR2: SPR method, element based patch. 
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NELT: number of elements. 
A study is held subjected to circular plate under uni- 

form load (Figure 3). The study implements REP meth- 
ods and covers various patch configurations as classified 
above. The result shows that all patch configuration give 
accurate result and close to other recovery methods for 
moment recovery. 

However, external patch usage, happened if we allow 
minimum 3 or 5 elements in one patch (REP1 and REP2), 
may produce inaccurate result for shear force (Figure 4). 
Meanwhile, using only internal patches, which have 
minimum 7 elements in one patch, gives better result for 
shear force. 

Figure 4 shows that external patches produce very 
large different results for shear force in the center of the 
plate. Approaching plate edge/support, the difference 
between REP1, REP2 and REP3 becomes smaller, but 
the result differs quite significant compared to other 
method’s result. It is widely known that bending plate 
element like DKMQ is developed with an aim to solve 
shear locking problem, hence, shear force accuracy is not 
considered important (Figure 5 and Figure 6). 

The circular plate study is also analyzed for various 
plate thickness, including thin and thick plates, with R/h 
varied from 50, 5, and 2. The study shows similar accu- 
racy characteristic for all R/h (Figure 7 and Figure 8). 
External patches usage for all R/h values produces inac- 
curate result for shear force in plate center. 
 

 

Figure 3. Circular plate under uniform load. 
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Figure 4. Shear force distribution, circular plate, R/h = 50. 
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Figure 5. Mr moment distribution, circular plate, R/h = 50. 
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Figure 6. Mθ　 moment distribution, circular plate, R/h = 50. 
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Figure 7. Shear force distribution, circular plate, R/h = 5. 
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Figure 8. Shear force distribution, circular plate, R/h = 2. 
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In this numerical study, relative error indicator is 
studied for various element numbers, i.e. 3, 12, 27, and 
48 elements. For thin plate (R/h = 50), all patch configu- 
ration including external patch give close relative error 
indicator result compared to SPR method result (Figure 
9). However, for thicker plate with R/h equal 5 and 2 
(Figure 10 and Figure 11), only full internal patch usage 
(REP3) gives very close result compared to SPR, while 
other patch configurations give fluctuant result. Based on 
this result, it can be concluded that only full internal 
patch usage is reliable and hence, for other study, only 
this patch configuration will be applied for REP method. 

Another way to obtain good relative error indicator 
result is to consider only bending error indicator partially. 
Partial relative error indicator for bending gives no fluc- 
tuant result (Figures 12-14). 

The next numerical study is held on fixed supported 
rectangular plate under uniform load (Figure 15). Uni- 
form mesh refinement is used with 2 × 2, 4 × 4, 8 × 8 and 
16 × 16 meshing. Moment recovery is studied at the plate 
center and at the support. The study shows that REP 
method gives super convergent result (Figures 16-18). 

At plate center, 2 × 2 mesh of REP method gives quite 
high error percentage, but the result converges rapidly 
which is less than tolerance limit 5% for only 4 × 4 mesh.  
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Figure 9. Total relative error indicator, circular plate, R/h = 
50. 
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Figure 10. Total relative error indicator, circular plate, R/h 
= 5. 
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Figure 11. Total relative error indicator, circular plate, R/h 
= 2. 
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Figure 12. Partial relative error indicator for bending, cir-
cular plate, R/h = 50. 
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Figure 13. Partial relative error indicator for bending, cir-
cular plate, R/h = 5. 
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Figure 14. Partial relative error indicator for bending, cir-
cular plate, R/h = 2. 
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Figure 15. Rectangular plate under uniform load. 
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Figure 16. Error percentage of flexural moment, center of 
fixed supported rectangular plate, uniform load. 
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Figure 17. Error percentage of flexural moment, support of 
fixed supported rectangular plate, uniform load. 
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Figure 18. Relative error indicator, fixed supported rec- 
tangular plate, uniform load. 

With the same meshing, SPR1 (nodal based patch) has 
reached that tolerance limit, but SPR2 (element based 
patch), projection method and averaging method give 
higher value than tolerance limit. 

At plate support, 4 × 4 mesh of REP method still gives 
much high error percentage (24.5%), but 16 × 16 mesh 
gives almost exact solution (0.01%) which is much better 
compared to SPR and averaging method. In this case, 
projection method gives very poor result compared to 
others.   

Total relative error indicator produced by REP method 
shows close result to SPR1, SPR2, and averaging method, 
while projection method gives poorer result. 

Circular plate as shown in Figure 19 is also studied 
for both uniform and adaptive mesh refinement. The 
uniforrn mesh refinement scheme is shown in Figure 20 
and the adaptive mesh refinement is shown in Figure 21. 
It has been shown that adaptive mesh refinement gives 
better result than uniform one. For both refinements, for 
either fixed nor simply supported circular plate, REP 
method gives super convergent result, close to SPR result 
(Figures 22 and 23 for uniform mesh refinement and 
Figures 24 and 25 for adaptive mesh refinement). REP’s 
total error indicator for both refinements and both sup- 
port types are closed to those of SPR1, SPR2 and aver- 
aging method, which are much better than that of projec- 
tion method. 

4. Conclusions 

Patch type usage is sensitive in REP application. External 
patches usage gives fluctuant result in shear force recov- 
ery in REP application, hence, only internal patches are 
recommended. External patch usage still gives similar 
REP relative error indicator for thin plate, but gives 
higher relative error indicator for thick plate. Full internal 
patch usage does not give significant REP relative error 
indicator difference for both thin and thick plates. 

Partial relative error indicator for bending gives good 
result without any fluctuant result for various element 
numbers. 
 

 

Figure 19. ¼ of circular plate under uniform load. 
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Figure 20. Uniform mesh refinement scheme for circular plate. 
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Figure 24. Relative error indicator, fixed supported cir- 
cular plate, adaptive mesh refinement. 
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Figure 21. Adaptive mesh refinement scheme for circular 
plate. 
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Figure 25. Relative error indicator, simply supported cir- 
cular plate, adaptive mesh refinement. 
 

REP method gives very close result compared to SPR 
method. Generally, both REP and SPR give better result 
than averaging and projection method. 

Figure 22. Relative error indicator, fixed supported cir- 
cular plate, uniform mesh refinement. 
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