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ABSTRACT 

We have studied the Hoyle-Narlikar C-field cos-
mology with Bianchi type-V non static space- 
time in higher dimensions. Using methods of 
Narlikar and Padmanabham [1], the solutions 
have been studied when the creation field C is a 
function of time t only as space time is non 
static. The geometrical and physical aspects for 
model are also studied. 
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1. INTRODUCTION 

The study of higher dimensional physics is important 
because of several prominent results obtained in the de-
velopment of the super-string theory. In the latest study 
of super-strings and super-gravity theories, Weinberg [2] 
studied the unification of the fundamental forces with 
gravity, which reveals that the space-time should be dif-
ferent from four. Since the concept of higher dimensions 
is not unphysical, the string theories are discussed in 10- 
dimensions and 26-dimensions of space-time. Because 
of this, many researchers are inspired to study the higher 
dimensional to explore the hidden knowledge of the uni-
verse. Chodos and Detweller [3], Lorentz-Petzold [4], 
Ibanez and Verdaguer [5], Gleiser and Diaz [6], Banerjee 
and Bhui [7], Reddy and Venkateswara [8], Khadekar 
and Gaikwad [9], Adhav et al. [10] have studied the 
multi-dimensional cosmological models in general rela-
tivity and in other alternative theories of gravitation. 

The three important observations in astronomy 
namely the phenomenon of expanding universe, primor-
dial nucleon-synthesis and the observed isotropy of 
cosmic microwave background radiation (CMBR) were 
supposed to be successfully explained by big-bang cos-
mology based on Einstein’s field equations. However, 
Smoot et al. [11] revealed that the earlier predictions of 

the Friedman-Robertson-Walker type of models do not 
always exactly meet our expectations. Some puzzling 
results regarding the red shifts from the extra galactic 
objects continue to contradict the theoretical explana-
tions given from the big bang type of the model. Also, 
CMBR discovery did not prove it to be a out come of big 
bang theory. Infact, Narlikar et al. [12] have proved the 
possibility of non-relic interpretation of CMBR. To ex-
plain such phenomenon, many alternative theories have 
been proposed from time to time. Hoyle [13], Bondi and 
Gold [14] proposed steady state theory in which the uni-
verse does not have singular beginning nor an end on the 
cosmic time scale. Moreover, they have shown that the 
statistical properties of the large scale features of the 
universe do not change. Further, the constancy of the 
mass density has been accounted by continuous creation 
of matter going on in contrast to the one time infinite 
and explosive creation of matter at t = 0 as in the earlier 
standard model. But the principle of conservation of 
matter was violated in this formalism. To overcome this 
difficulty Hoyle and Narlikar [15] adopted a field theo-
retic approach by introducing a mass less and charge less 
scalar field C in the Einstein-Hilbert action to account 
for the matter creation. In the C-field theory introduced 
by Hoyle and Narlikar there is no big bag type of singu-
larity as in the steady state theory of Bondi and Gold 
[14]. A solution of Einstein’s field equations admitting 
radiation with negative energy mass less scalar creation 
fields C was obtained by Narlikar and Padmanabhan [1]. 
The study of Hoyle and Narlikar theory [15-17] to the 
space-time of dimensions more than four was carried out 
by Chatterjee and Banerjee [18]. The solutions of Ein-
stein’s field equations in the presence of creation field 
have been obtained for Bianchi type-V universe in four 
dimensions by Singh and Chaubey [19]. 

Here, we have considered a spatially homogeneous 
and anisotropic non static Bianchi type-V cosmological 
model in Hoyle and Narlikar C-field cosmology with 
five dimensions. Therefore, we have assumed that the 
creation field C is a function of time t only i.e. 
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   tCtxC , . 
This study is important because of the fact that the 

resulting cosmological model is considered to be ame-
nable to the model obtained by Singh and Chaubey [19]. 

2. HOYLE AND NARLIKAR C-FIELD 
COSMOLOGY 

Introducing a mass less scalar field called as creation 
field namely C-field, Einstein’s field equations are mo- 
dified. Hoyle and Narlikar [15-17] field equations are 

 ij

c

ij

m

ijij TTRgR  8
2

1
           (1) 

where ij

m T  is matter tensor of Einstein theory and ij

cT  

is matter tensor due to the C-field which is given by 







  k

k

ijjiij

c CCgCCfT
2

1
           (2) 

where 0f  and 
ii x

C
C




 . 

Because of the negative value of  00000 TT , the 

C-field has negative energy density producing repulsive 
gravitational field which causes the expansion of the 
universe. Hence, the energy conservation equation re-
duces to 

j
ji

j
ijc

j
ijm CfCTT ;;;               (3) 

i.e. matter creation through non-zero left hand side is 
possible while conserving the over all energy and mo-
mentum. 

Above equation is similar to 

0 j

i

ij C
ds

dx
mg                (4) 

which implies that the 4-momentum of the created parti-
cle is compensated by the 4-momentum of the C-field. In 
order to maintain the balance, the C-field must have 
negative energy. Further, the C-field satisfy the source 

equation i
i

i
i JCf ;;   and i

i
i v

ds

dx
J   , where   

is homogeneous mass density. 

3. METRIC AND FIELD EQUATIONS 

The five-dimensional Bianchi-Type-V line element can 
be written as 

222

4

222

3

222

2

22

1

22 dueadzeadyeadxadtds mxmxmx  
(5) 

where 1a , 2a , 3a  and 4a  are functions of t only and 

m is constant. 
Here the extra coordinate is taken to be space like. 

The above space time is non static, hence, we have 
assumed that creation field C is function of time t only 
i.e. 

   tCtxC ,  and  ppppdiagT i

j

m  ,,,,  

(6) 
We have assumed that velocity of light and gravita-

tional constant are equal to one unit. 
Now, the Hoyle-Narlikar field Eq.1 for metric (5) 

with the help of Eqs.2, 3, and 6 can be written as 
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where dot )(  indicates the derivative with respect to t. 

From Eq.12, we get 

432

3

1 aaaa                    (14) 

Assume that V is a function of time t defined by 

4321 aaaaV                  (15) 

From Eqs.14 and 15, we get 
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1 Va                     (16) 

Above Eq.13 can be written in the form 

      VCV
dV

d
VCfpV

dV

d           (17) 

In order to obtain a unique solution, one has to specify 
the rate of creation of matter-energy (at the expense of 
the negative energy of the C-field). Without loss of gen-
erality, we assume that the rate of creation of matter en-
ergy density is proportional to the strength of the exist-
ing C-field energy-density. i.e. the rate of creation of 
matter energy density per unit proper-volume is given by 

   VgCpV
dV

d 2222             (18) 

where   is proportionality constant and we have de-

fined    VgVC  . 

Substituting it in Eq.17, we get 
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Comparing right hand sides of Eqs.18 and 19, we get 
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Integrating , which gives 
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where 1A  is arbitrary constant of integration. 

We consider the equation of state of matter as 

p                   (22) 

Substituting Eqs.21 and 22 in the Eq.18, we get 
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which further yields 



























12

2

2

1

2
2

12

f

V

f

A



            (24) 

From Eq.22, we get 
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Subtracting Eq.8 from Eq.9, we get 
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Now, from Eqs.15 and 26, we get 
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Integrating, which gives 
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Subtracting Eq.9 from Eq.10, we get 
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Integrating, we get 
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Subtracting Eq.10 from Eq.11, we get 
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which on integration gives 
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Subtracting Eq.8 from Eq.11, we get 

0
4

4

1

1

4

4

1

1 


















V

V

a

a

a

a

a

a

a

a

dt

d 
 

Integrating, we get 
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where 3214 dddd  , 3214 xxxx   and 4321 aaaaV  . 

Using Eqs.27, 28, 29 and 30, the values of  ta1 , 

 ta2 ,  ta3  and  ta4  can be written explicitly as 
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where the relations 14321 DDDD  and  21 XX  
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From Eq.15, we have 
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From Eqs.35, 36 and 22, we get 
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Substituting Eq.16 in Eq.37, we get 
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Substituting Eq.24 in Eq.38, we get 
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where 1k  is integration constant. 

For 1  (Zeldovich fluid or Stiff fluid) and 01 k , 

the above equation gives 
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Substituting Eq.28 in Eq.21, we get 
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Also, from equation    VgVC  , we get 
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Substituting Eq.41 in Eq.24, the homogeneous mass 
density becomes 
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Using Eq.25 and 1 , pressure becomes 
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           (45) 

From Eqs.38 and 39, it is observed that for 2f , 

there is no singularity in density and pressure. 
Using Eq.41 in Eqs.31, 32, 33 and 34, we get 

  mtta 1                   (46) 

  
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mtDta            (47) 
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34
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3
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X
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4. PHYSICAL PROPERTIES 

The expansion scalar   is given by 

H4
t

4
                  (50) 

The mean anisotropy parameter is given by 
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The shear scalar 2  is given by 
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(52) 
The deceleration parameter q is given by 

1
1









Hdt

d
q =0               (53) 

where HHH ii   and H is the Hubble parameter. 
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For large t, the expansion scalar and shear scalar tend 
to zero. Further, if 2f , for large t, the model re-

duces to the vacuum case. 

5. CONCLUSIONS 

In this paper, we have considered the space-time geome-
try corresponding to Bianchi type-V in Hoyle-Narlikar 
[15-17] creation field theory of gravitation with five di-
mensions. Bianchi type-V universe in creation-field cos- 
mology has been investigated by Singh and Chaubey [19] 
whose work has been extended and studied in five di-
mensions. An attempt has been made to retain Singh and 
Chaubey’s [19] forms of the various quantities. We have 
noted that all the results of Singh and Chaubey [19] can 
be obtained from our results by assigning appropriate 
values to the functions concerned. 
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