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ABSTRACT 

The localized plastic flow auto-waves observed 
for the stages of easy glide and linear work 
hardening in a number of metals are considered. 
The propagation rates were determined expe- 
rimentally for the auto-waves in question with 
the aid of focused-image holography. The dis-
persion relation of quadratic form derived for 
localized plastic flow auto-waves and the de-
pendencies of phase and group rates on wave 
number are discussed. A detailed comparison of 
the quantitative characteristics of phase and 
group waves has revealed that the two types of 
wave are closely related. An invariant is intro-
duced for localized plastic flow phenomena 
occurring on the micro-and macro-scale levels 
in the deforming solid. 

Keywords: Metallic Materials; Mechanical Testing; 
Optical Interferometry; Strengthening and  
Mechanisms; Crystal Plasticity; Fracture 

1. INTRODUCTION 

The experimental evidence obtained previously [1-4] 
suggests that the plastic deformation tends to localize in 
the deforming solid over the entire flow process. Plastic 
flow localization is most pronounced on the macro-scale 
level where the type of local strain pattern is governed 
by the law of work hardening acting at a given flow stage, 
i.e.     ddE 1  (here Е is the elasticity 
modulus). The localization of plastic deformation will 
assume in this case the form of auto-wave1, i.e. a 

self-excited process [3,4]. The occurrence of auto- 
wave processes by the plastic deformation is consi- 
dered, e.g. in the context of gradient plasticity theory 
[6-8]. 

A considerable body of experimental and theoretical 
evidence pertaining to plastic flow macro-localization 
has been obtained thus far [1-4,6], which suggests that 
the macro-scale inhomogeneities of localized plastic 
flow have a typical scale of about 10–2 m. A characteris-
tic picture is created in the deforming specimen where 
deformed material zones move in a concerted manner, 
generating thereby localized plastic flow auto-waves, 
which have typical wavelength of about 10–2 m. Thus a 
deforming body would spontaneously separate into al-
ternating deformed and undeformed zones (Figure 1). 
Following H. Hacken [9], the spontaneous emergence of 
plastic flow inhomogeneities might be regarded as a 
manifestation of self-organization processes occurring in 
the deforming medium. 

2. EXPERIMENTAL PROCEDURE AND 
MATERIALS TESTED 

On the base of available experimental evidence [1-4], 
the quantitative characteristics of auto-wave processes 
were determined for a wide circle of pure metals and 
alloys, both single crystals and polycrystalline ones, 
having FCC, BCC and HCP crystal lattice. It is found 
that the mechanical characteristics of investigated mate-
rials and the shape of plastic flow curves obtained for the 
test specimens would vary significantly, depending on 
chemical composition, grain size of polycrystalline ma-
terials and extension axis orientation of single crystals. 
In what follows the distinctive features common to all 
the investigated materials are discussed. 

The experimental observations of localized plastic 
flow auto-waves [1-4] were conducted using the tech- 
nique of focused-image holography related to speckle 
photography [10]. This technique was specially deve- 

1Autowaves are opposed to, e.g. elastic waves of the type 

 kxwt sin , in that they are solutions to parabolic differential 

equations in the partial derivatives   yDyxy  , [5], while 

the latter obey hyperbolic equations of the type ycy  2 . 
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loped to facilitate the determination of displacement 
vector fields and the calculation of plastic distortion 
tensor components for the deforming specimen. One can 
visualize localized plastic flow nuclei, using the spatial 
distributions of plastic distortion tensor components; the 
kinetics of nuclei motion can be determined from the 
temporal evolution of nuclei. 

The most interesting scenario is realized in single 
crystals and polycrystalline specimens tested in tension 
at a constant rate.  

At the stages of easy glide and linear work hardening 
localized plastic flow auto-waves would be generated in 
the deforming specimen where the flow stress  is re-
lated to the deformation  as i    (here i = 1, 2 for 

easy glide stage and linear work hardening, respectively, 
and 1 2  ). The emergent picture comprises a set of 

equidistant localization zones, which moves as a whole 
at a constant rate, generating thereby so-called phase 
auto-waves (Figure 1). The nature of phase auto-waves 
merits special study. 

The main characteristics of auto-waves, i.e. wave- 
length  and period Т, are determined from the 
co-ordinates of nuclei against time (see Figure 2). Then 
the propagation rate of auto-waves is estimated as 

kTVaw    (here T 2  is the frequency 

and 2k , the wave number). 

1) auto-wave propagation rate;  
2) dispersion relation for auto-waves;  
3) change in the entropy of the system upon auto- 

wave generation;  
4) correspondence between the emergent pattern and 

the given flow stage. 

3. CHARACTERISTICS OF LOCALIZED 
PLASTIC FLOW AUTOWAVES:  
EXPERIMENTAL RESULTS 

3.1. Autowave Rate 

Our findings [1,2] and complementary information along 
these lines obtained by other workers permit the follow-
ing conclusion: the propagation rate of auto-waves is a 
function of the work hardening coefficient, i.e. 

 /1~/VV 0aw                (1) 

where 0V  and  are constants and 0V . It is of 

importance that auto-wave rates are in the range 
10-5  awV 10-4 m·s-1. Relation (1) applies to both the 

easy glide and the linear work hardening stage, with the 
constants 0V  and   having different values for the 

same stages.  
To begin our discussion of the nature of auto-wave  

processes, we must mention that plasticity waves occur- 
ring by impact loading are described in sufficient detail 
(see, e.g. [11]). 

Plasticity wave rates are in the range 10 pwV  
1/2( / )   102 m·s-1 (cf. 5 410 10awV    m·s-1). 

Apparently, pwaw VV  . 

Besides, the dependencies of wave rate on work 
hardening coefficient, V(θ), obtained for these two types 

of wave differ essentially in form, i.e. 21~ pwV  [11]) 

and 1~ awV  (see Eq.1). The latter relation holds good 

for all the investigated materials whose plastic flow 
curve shows easy glide and linear work hardening stages. 
Thus, the above quantitative analysis of the wave char-
acteristics suggests that we are dealing here with two 
altogether different types of wave. 
 

 

Figure 1. Auto-wave of plastic deformation localization pro- 
pagating at the linear work hardening stage in the tensile single 
crystal of alloyed Fe; 

xx -local elongation; x and y-specimen 

length and width, respectively; F-external load; -spacing of 
nuclei (auto-wave length); awV -auto-wave propagation rate. 

 

 

Figure 2. Determination of the spatial () and temporal (T) 
periods of localized plastic deformation for the stages of easy 
glide (1) and linear work hardening (2) in single crystals of 
alloyed Fe; )( -stress-strain dependence;  tX -variation 
in the co-ordinates (▲,● and ▼) of localization nuclei with time. 
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3.2. Dispersion Relation for Autowaves 

To gain a better understanding of the nature of auto- 
wave processes involved in plastic flow localization, one 
must consider the dispersion relation  k , which is 

characteristic for localized plastic flow auto-waves gen-
erated at linear work hardening stage [12]. 

Relation  k  has been complemented by an addi- 

tional branch, which corresponds to the occurrence of a 
periodic localization pattern at the easy glide stage (see 
Figure 3(a)), i.e. 

   200 kkk                (2) 

where, , 0  and 0k  are constants, which depend on 

work hardening stage and kind of material. Note that for 
easy glide, and for linear work hardening, 
Substituting into relation (2) of  ~

0   and 

  2
1

00 /
~  signkkk  (here ~  is the dimen- 

sionless frequency and k
~

 is the wave number and 
  1sign    for 0 ;   1sign    for 0  is 

a signum function of the term from Eq.2) yields the fol-
lowing canonic formula 2  1 k    (see the plot pre-
sented in Figure 3(b)).  

The above dispersion relation of quadratic form satis-
fies the Schrödinger nonlinear equation [13,14] com-
monly applied to self-organization processes occurring 
in active nonlinear media, which is an undeniable proof 
that plastic flow localization is a process involved in the 
self-organization of the deforming medium. 

4. DISCUSSION OF RESULTS 

4.1. Invariant for Deformation Processes 

On the base of experimental data a close correlation has 
been established between the product of auto-wave 
macroscopic parameters, awV , and that of material 

microscopic parameters, Vd (here d is the spacing 

between close-packed planes of the lattice and V is the 

rate of transverse elastic waves).  
The Table 1 lists numerical data for seven metals in-

vestigated. In each instance, the following equality ap-
parently holds good within an acceptable range of accu-
racy, i.e. 

 VdVaw 2/1                 (3) 

where the terms have the units of the diffusion coe- 
fficient 12 TL  . To verify relation (3), we used bor- 
rowed values of d and V [15,16]. Relation (3) was 

averaged for easy glide and linear work hardening stages 
as

 VdV2 aw   (1.04  0.14)  1. Eq.3 was plotted 

in the dimensionless co-ordinates awVVd   to give 

a rectilinear diagram aw
7 VV22.01082.0d   

(Figure 4). 
 

 
(a) 

● – single crystals of Cu, Sn and alloyed Fe; 
■ – single crystals of alloyed Fe; 
▲ – polycrystalline Al; 

 
(b) 

■ – easy glide stage;  
● – linear work hardening stage. 

Figure 3. A generalized dispersion curve obtained for the 
stages of easy glide. (1) and linear work hardening (2) in 
the test specimens; (a) –original data  k ; (b) –ca-

nonical form of dispersion relation in the dimensionless 
variables ( )k  . 

 

 
■ – easy glide stage; ● – linear work hardening stage. 

Figure 4. Verification of the validity of relation (2) plotted for 
auto-waves in the dimensionless co-ordinates 

awVVd  .  
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Table 1. The products awV  and Vd  matched for easy glide and linear work hardening stages. 

Flow stage 
Metal awV   107 (m2/s) D  1010 (m) V   10–3 (m/s) Vd   107 (m2/s) 



Vd

Vaw2
 

Cu 1.90 2.08 2.30 4.78 0.79 
Fe 3.03 2.07 3.32 6.87 0.88 Easy glide 
Sn 3.28 2.91 1.79 5.20 1.26 
Cu 3.60 2.08 2.30 4.78 1.50 
Al 7.92 2.33 3.23 7.52 2.10 
Zr 1.92 2.46 2.25 5.53 0.70 
V 2.80 2.14 2.83 6.06 0.92 
Fe 2.55 2.07 3.32 6.87 0.74 
Ni 2.10 2.03 3.22 6.54 0.64 

Linear work 
harde-ning 

Sn 2.34 2.91 1.79 5.20 0.90 

 
Eq.3 relates the micro-scale characteristics d and V , 

which are observed for elastic waves propa-gating in 
crystals, to the macro-scale parameters   and awV , 

which are observed for elastic waves propagating in 
crystals, to the macro-scale parameters   and awV , 

which are obtained for localized plastic flow auto-waves 
generated in the same crystals. The products of these 
values, Vd and awV , are invariants for elastic and 

plastic deformation processes, respectively (<< 1 and  1, 
respectively). The above regularity stems from the fact 
that the processes of elastic and plastic deformation are 
closely related. In the course of deformation the 
redistribution of elastic stresses occurs via micro-scale 
processes at the rate V , while the rearrangement of 

localized plastic flow nuclei involves macro-scale 
processes occurring at the rate awV , with the processes 

of both types being related by Eq.3. Thus, the macro- 
localization phenomena must be regarded as an attribute 
of plastic deformation rather than a random disturbance 
of plastic flow homogeneity. 

4.2. On the Physical Meaning of Relation (1) 

By considering the nature of localized plastic flow 
auto-waves, it might be pertinent to discuss the origin of 
dependency 1~ awV and, in particular, the meaning of 

deformation processes occurring in crystals is the 
propagation rate of elastic waves, i.e. sound rate SV . 

For most metals SV   5103 m·s-1; hence 1010SV . 

To account for relation (1), the Dirac large-numbers 
hypothesis [17] was invoked. An appropriate dimen- 
sionless relation of the same order was also required  
which could be applied to the quantities associated with 
the deformation processes2. The relation of deforming 
medium’s viscosities defined for two limiting cases was 
thought to be an appropriate one, with the limiting cases 
being the quasi-viscous motion of dislocations, invol- 
ving no interaction with local obstacles, and the break- 
away of dislocation segments from local obstacles. In 
the former case, the motion of dislocations occurs at 

high acting stresses; the dislocation velocity as a func- 
tion of applied stress  has the form BbVdisl   (here 

b is the Bürgers vector; B  (1-3)10–4 Pas is the coeffi- 
cient of dislocation drag, which characterizes the viscos-
ity of phonon gas in the crystal) [18]. In the latter case, 
viscosity is defined from internal friction measurements 
to yield   3106 Pas [19]. In the case of ultrasound 
waves, stresses have low amplitudes; therefore, the vis-
cosities observed for micro-scale plastic deformation 
processes might have similar values. Hence the ratio 

B 1010 and, consequently, BVS   . Then one 

can write  

SV/B                     (4) 

Eq.4 can be interpreted as follows. Complex systems 
capable of structure formation will spontaneously sepa-
rate into an information subsystem and a dynamic one 
[20]. It is thus assumed that the information subsystem, 
which is characterized by low-amplitude stresses and 
high viscosity, is represented by acoustic emission sig-
nals whereas the dynamic subsystem, which is charac-
terized by high-amplitude stresses and low viscosity, is 
represented by the motion of individual dislocations and 
dislocation ensembles, with Eq.4 formalizing the rela-
tionship between the two subsystems. Thus, the former 
subsystem is related to the processes involving elastic 
wave propagation and the latter, to dislocation plasticity 
proper. 

To better understand the physical meaning of Eq.1, 
one can also invoke the notions incorporated into  
the concept of work hardening. It is assumed that 

  lddVaw ~  (here l is the length of slip line). Accor- 

ding to the work hardening concept proposed by Seeger 

[21],    * l , with and *  depending on ma-

terial kind; for linear work hardening, the coeffi- cient of 

work hardening   213 nb  (here b is the Bürgers 

vector of dislocations and n is the number of dislocations 
in a dislocation pileup). In the latter case, 2~   , i.e. 
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2
aw /d)/(1nbкdV             (5) 

where the coefficient has the units [T–1]. With *   
depending only weakly on material type [21], Eq.1 can 
be derived from (5), considering that 

 /1)/(  nbкVaw             (6) 

where   )/( nbк . 

The coefficient   can be calculated by taking into 

account that the values and *  depend only weakly on 
material kind and deformation [21]. Indeed, the deriva-
tive ddVaw   1.5·10–2 m·s can be estimated from the 

data reported in [1,2]. For the increment in the deforma-
tion    0.05, an increase in the length of slip line l is 
about 3·10–4 m [21]. Hence  /)d/dV(к aw   10 

s–1. Provided n  20 [21] and b  2·10–10 m,    8·10–7 
m·s-1, which is close to the experimental value    
5·10–7 m·s-1. 

The physical significance of the above difference lies 
in the fact that localized plasticflow auto-waves belong 
to an altogether different class of wave phenomena, 
which are not identical with plasticity waves [11]. There- 
fore, these two types of waves cannot be grouped to-
gether. 

4.3. Treatment of Dispersion Relation 

Dispersion relation (2) of quadratic form can be ex-
plained as follows. Relation (3) can be rewritten as  

kkVdVdVaw    )4/(/1)2/(        (7) 

Let the rate of localized plastic flow auto-wave, 

graw VV   (here Vgr is the group rate); then dkdVaw  . 

Hence 

dkkd                       (8) 

Integration can be performed for Eq.8 as follows 

 
 0

0 0

kk

dkkd 



                   (9) 

to yield the dependence.  

     200
2

00 2 kkkkk   , which is 

identical with dispersion relation (2) derived experi- 
mentally for localized plastic flow auto-waves. 

Apparently, the dispersion relation of quadratic form 

   200 kkk   , which is obtained for localized 

plastic flow auto-waves occurring at the stages of easy 
glide and linear work hardening, follows from the equal-
ity  VdVaw 21 , which relates the macro-scopic 

characteristics of localized plastic flow auto-waves and 
the microscopic parameters of material crystal lattice. 

The right-hand side of Eq.3 can be rewritten as 

DdVd  
221  (here D  is the Debye frequency 

and DdV  2 ). Using the well-known formula 

DBD k    (here Bk  is the Boltzmann constant; 

2h  is the Planck constant and D  is the tempe- 

rature-ependent Debye parameter [22]), one can write 

/)(2/1 2 TkdVVd DBaw          (10) 

Eq.10 may be useful since it predicts the temperature 
dependence  TV Daw  ~  for localized plastic flow 

auto-waves [1]. 

4.4. Group and Phase Rates of Localized  
Plastic Flow Autowaves 

In accordance with dispersion relation (2), the phase and 
group rates of localized plastic flow auto-waves can be 

represented in the dimensionless variables ~  and k
~

 

(see Figures 5(a) and 5(b)) as kkkVph

~
1

~
~

~~~
  

and kkddVgr

~
~

~~~  , respectively (see also Figure 

3(a)).  
From Eq.10 follows that 

kkhkdkdV DBDBaw   )/(/1)/( 22      (11) 

The experimental evidence suggests that kVgr ~ . The 

quantity DDB dhkd   22  from (11) is taken to 

be a proportionality coefficient, which can be readily 
calculated, using d values reported in [15] and the Debye 
temperatures, FeD  420 K and AlD  394 K ob-

tained for the single crystals of iron and aluminum [22]. 
The calculated values of the proportionality coeffi- 

cient obtained for the single crystals of iron and alumi- 

num are, respectively, hkd DB Fe
2

Fe    ≈ 3.7·10–7 

m2·s–1 and hkd DB Al
2

Al    ≈ 4.45·10–7 m2·s–1. The 

experimental values determined for the same materials 

from the inclination of  kVgr  plots are Fe  = (1 ± 

0.08)·10–7 m2·s–1 and Al  = (12.9 ± 0.15)·10–7 m2·s–1, 

respectively. Matching of the calculated and the experi-
mental values reveals a satisfactory agreement between 
the two sets of data. 

It also follows from Figures 5(a) and 5(b) that the 
functions  kV ph

~~  and  kVgr

~~  show fundamentally 

different behaviours for the stages of easy glide and lin-
ear work hardening: in the former case, they would not 

intersect for any k
~

 values, while in the latter case, they 

fully coincide for 1
~
k . The above difference in the 

function behaviours is attributable to the fact that the 
stage of easy glide is generally characterized by plastic 

2We had to overcome a certain difficulty since Dirac’s hypothesis was 
initially applied to values in the ratio of about 1032. 
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flow instabilities, while at the stage of linear work hard-
ening the plastic flow will occur in a steady-state regime, 
with the latter case evidently corresponding to the ab-
sence of dispersion, i.e. 

phgr V
~

V
~

 . 

4.5. Change in the Entropy of the Deforming 
System by Auto-Wave Generation 

The dependencies  wV  obtained for the above two 
types of wave are found to differ radically in form, i.e. 

21~ pwV  and 
1~ awV . It might be also expected that 

the thermodynamic properties of the medium, in par-
ticular, entropy, will change in a dissimilar way by the 
generation of the two types of wave. It would appear 

reasonable to suggest that plastic deformation wV~  

(here wV  is the rate of a certain type of wave). Provided 

mobile dislocation density constm  , the Taylor- 

Orowan equation for plastic flow rate dislmVb   [23] 

can be applied to give wdisl VV ~~  . For thermally ac-
tivated dislocation motion, the rate is given as 

)/exp(~ TkGV Bdisl   (here ATSUG   is the 
Gibbs thermodynamic potential; U is the internal energy; 

S is the entropy of the process; A is the work of 
external stresses by the deformation and  is the activa-
tion volume of an elementary deformation act [23]). 
Hence the propagation rate is given for any type of wave 
as 

)/)(exp()/exp(~~~ TkUkSVV BBdislw    (12) 

The enthalpy  UH  observed for linear work 
hardening stage is virtually the same for most metallic 
materials. Consequently, taking the logarithm of (12) 

evidently yields SV w ~ln . 
Thus, a close correspondence is found to exist between 

the rectilinear diagrams  wV  plotted in the co- ordi-

nates lnln wV  for the both types of wave process 
(see Figure 6) on the one hand and the linear dependen-

cies lnS  obtained for the same processes on the 
other hand. The diagrams were plotted using wave rates 
listed in the table for the stage of easy glide in single 
crystals and for the stage of linear work hardening in 
single crystals and polycrystalline metals and alloys 
(Figure 6, lines 1 and 2, respectively). The wave rates 

were calculated from the expression 2
1

0 )/( pwV  
(Figure 6, line 3) and the  values, from the loading 
curves of investigated materials; besides, borrowed 

0 values were used [15].  

An analysis of the dependencies  wV  shows that in 
the case of plasticity waves, an increase in the entropy of 

the system would occur ( 0S ) (see Figure 6, line 3), 

which is characteristic for processes accompanied by 
dissipation of energy. In the case of auto-waves, the en-

tropy of the system would decrease ( 0S ) (see Figure 
6, lines 1 and 2 for easy glide and linear work hardening, 
respectively). 

The above results suggest that localized plastic flow 
waves differ radically from other types of wave process 
related to plastic deformation in solids. The generation 
of localized plasticity waves would cause a decrease in 
the entropy of the deforming system, which is an indica- 
tion of its self-organization (ordering) [9] since entropy 
is a function of the parameter of order [24]. By consi- 
dering localized plastic flow waves, the coefficient of 

work hardening 1  might be regarded as a para- 

meter of order so that ln~S . With growing  value, 
the entropy of the system would change linearly, with 

0S  corresponding to auto-waves and 0S , to 
 

 
(a) 

 
(b) 

Figure 5. Wave number dependencies of phase (■) and 
group (●) propagation rates plotted for localized plastic flow 
auto-waves in the dimensionless invariables kV

~~
 ; (a) 

easy glide stage; (b) linear work hardening stage. 
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Figure 6. Changes in the entropies of plasticity waves (3) 
and of localized plastic flow auto-waves plotted for the 
stages of easy glide (1) and linear work hardening (2) in 
the co-ordinates lnln wV  (see the axis SVw ~ln ). 

 
plasticity waves (see Figure 6). 

The above suggests that plasticity waves [11] are 
commonly known dissipative processes, while localized 
plastic flow auto-waves are self-organization processes 
that are liable to cause a decrease in the entropy of the 
deforming system [9]. 

4.6. Correspondence Between Localized  
Plastic Flow Patterns and Work  
Hardening Stages 

Of particular importance is the finding that localized 
plastic flow patterns emerging in a deforming solid are 
related to the respective flow stages [21]. These stages 
can be readily distinguished on the flow curve of the 
form [21] 

  n  0                (13) 

where 0  is the proof stress and n is the parabola ex-

ponent. The latter value will change discretely with the 
deformation, which enables individual stages to be sin-
gled out on the flow curve.  

Using this method, a correspondence rule has been 
established for single crystals of metals and alloys and 
polycrystalline materials. This holds that  

For n = 0 (yield plateau) or n  0 (easy glide), a soli-
tary nucleus of localized plastic flow travels along the 
extension axis;  

For n = 1 (linear work hardening), localized plastic 
flow auto-waves are generated, which have wavelength 
and propagation rate awV ; 

For n = ½ (parabolic work hardening or Tailor’s stage), 
a set of immobile localized plastic flow nuclei is ob-
served;  

For 0 < n < ½ (pre-failure stage), collapse of auto- 
wave takes place, which corresponds to macro-necking 

[25] and  
For n = 0, ductile failure of material will occur. 
The proposed rule evidently states that typical local-

ization patterns observed on the macro-scale level are 
reflections of vastly different microscopic mechanisms 
involved in material work hardening at the different flow 
stages. This also testifies to the fact that the events in-
volved in the deformation on the micro-scale level are 
directly related to those occurring on the macro-scale 
level in the deforming medium. 

5. CONCLUSIONS 

At all its stages the plastic flow involves localization 
processes that take the form of different types of auto- 
wave. The plastic flow tends to localize over the entire 
process; therefore, localization is taken to be its integral 
attribute.  

The parameters of localized plastic flow evolution are 
found to be related to those of elastic deformation proce- 
sses as  VdVaw 2/1 . This suggests that the defor- 

mation process will exhibit scale invariance on both the 
micro-scale level  Vd  and the macro-scale one 

 awV . 

Due to the deformation process exhibiting invariance, 
the dispersion relation derived for localized plastic flow 
auto-waves that are generated at the stages of easy glide 
and linear work hardening has quadratic form, i.e. 

2~
1~ k . 

A decrease in the entropy of the deforming medium 
strongly suggests that localized plasticity auto-waves are 
processes involved in the self-organization of the me-
dium.  

The localized plastic flow patterns are found to strictly 
correspond to the respective flow stages in single crys-
tals and polycrystalline materials. 
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