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ABSTRACT 

A variable Speed of Light is supported by the fact that all direct measurements of that speed are basically flawed, be- 
cause the “meter per second” is proportional to the Speed of Light. Since it is impossible to measure the Speed of Light 
directly, any variations of it can only be obtained in an indirect way. It will be shown that the recent Supernovae data 
are in very good agreement with a universe that is slowly expanding exponentially with a Speed of Light that falls over 
time, inversely proportionally to the expansion of the universe. It will be shown that the definition of the angular and 
standard impulse momentum has to be modified to get a consistent expansion of the universe. And that all clocks run 
inversely proportionally to the red-shift z + 1. General Relativity remains valid even with a varying Speed of Light and 
also Quantum Mechanics is unaffected. 
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1. Introduction 

It is essential that when making a measurement to make 
sure that the two quantities involved are independent of 
each other. When the two quantities are shown to be pro- 
portional to each other, one always obtains a constant 
value [1]. It was shown that the “m/s” is proportionally to 
the speed of the electron going around the proton. The 
latter speed equals the fine-structure constant α times the 
speed of light. K. Webb et al. [2] have shown that α only 
changes little over most of the time of the visible uni- 
verse. Hence measurements of Speed of Light are basi- 
cally flawed and invalid. 

There have been several publications in the past deal- 
ing with Variable Speed of Light (VSL) in cosmology 
[3-6]. Some of the models conserve the mass of the uni- 
verse and therefore not the energy. And all let the value 
of the speed of light vary in m/s. The VSL scheme dis- 
cussed in this paper will conserve the energy throughout. 
Angular impulse momentum and impulse momentum 
will also be conserved, but with some modification in the 
definition of these quantities in an expanding universe 
(this has to be done in any case!). And the measured value 
of the speed of light is constant. So the apparent speed of 
light is constant! 

It will be shown in Section 2, that the Hubble Law fits 
the Supernovae data in an excellent way when a varying 
Speed of light is taken into account. This then automati- 
cally leads to a slowly expanding universe, with an ex- 
pansion that is exponentially in time. Such an expansion 

is structurally very different from a power scaled model 
[7] leading to a very different universe. Although for 
small red-shifts the exponential expansion follows a power 
scaling a(t) = (t/t0)

n with n = 1/2 when c(t) = c0/a(t) and n 
= 1 in case c is really constant in time. A power scaling 
would then lead to a very dense universe (ρ > ρcr) in the 
case of the VSL and an empty universe for a constant 
speed of light. 

Section 3 will demonstrate that the present definition 
of the angular impulse momentum leads to orbits that are 
not proportional to the expansion of the universe and that 
in order to make a consistent expansion one has to multi- 
ply the angular momentum with z + 1. Then any orbit, 
including electrons around protons, will scale with a(t). 

In Section 4, it is shown that any clock scales inversely 
proportional to z + 1. All processes will therefore run 
faster when going back in time. It is also shown that the 
Lorentz length scales with a(t) and therefore Relativity 
remains valid even for a changing Speed of Light. 

2. The Hubble Law 

Over the course of time the Hubble Law has evolved to 
test models of our universe. Initially Hubble found that 
the expansion speed was proportional to the measured 
distance of the objects, leading to the relation of v = H.D. 
For small red-shifts z the velocity v = c·z with c the speed 
of light (see N. Wright [7] for more details). If one dis- 
plays the measured distances of the Supernovae against the 
product of the redshift z and the velocity of light c one gets a 
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curve that can be explained by an expanding empty uni- 
verse or also by a flat dark energy model [8]. 

Figure 1 shows the measured distances provided by A. 
Riess et al. [9] as a function of the red-shift z together 
with the calculated distance representing an expanding 
empty universe. Our universe is certainly not empty, but 
these distances are close to those calculated for a flat dark- 
energy model [8]. 

The fact that the speed of light is not necessarily a 
constant [1] and that a diminishing speed of light also 
puts the observations further away than a model in which 
the speed of light is constant, leads to a tempting modifi- 
cation of the Hubble Law by letting c(t)·z being the vari- 
able against which to plot the measured distances. The 
red shift is then a combination of the contribution by the 
expansion of the universe with scale a(t) and the contri- 
bution of the change in the speed of light c(t). It can be 
readily seen that with a conservation of the Planck con- 
stant ħ the red shift becomes: 

 
 0 0 0

obs c tλ

λ c a t


   

1 obs em

em

λ λ
z

λ λ
           (1) 

The first ratio of the wavelengths is due to the expan- 
sion of the universe and the second part related to the 
change in the speed of light. In case c(t) = c0/a(t) one gets 
a simple relation between a(t) and the red-shift z: 

1 2
1z

 a t . And of course c(t) = c0·(z + 1)1/2. In 
this way c·z = c0·(z + 1)1/2·z. 

This relation is then given in Figure 2. The result 
clearly points to the fact that the measured distance has 
the following relation to the red shift z: 

 1 1 1z  0 0LD c t z               (2) 

This should be compared with the calculated one [8]: 
 

 

Figure 1. Measured distances of the Supernovae from A. 
Riess et al. against the measured red shift z. Also shown is 
the calculated distance (solid black curve) against z for an 
empty expanding universe a(t) = t/t0 with t0 = 14.4 G year. 
This calculated distance is very close to the one calculated 
for a flat dark energy model [8]. 

 

Figure 2. The measured distance DL versus the product 
c(t)·z in which c(t)= c0/a(t). c0 is the speed of light at present. 
A remarkable good fit with the data is obtained with a char-
acteristic time t0 of 14.082 G year. 
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with x = t/t0. 
The Equations (2) and (3) are very similar. This sug- 

gests that indeed a(t) = (z + 1)–1/2. From which together 
with Equation (1) it can be seen that c(t) = c0·(z + 1)1/2 = 
c0/a(t). Then it follows that (z + 1) scales as e(1–x). 

Type of Expansion 

Is the exponential expansion the only possible fit?  
In principle there are all kind of combinations of a(t) 

and c(t) possible that match Equations (2) and (3) and 
satisfy Equation (1). 

Equating Equations (2) and (3) and eliminating c0·t0, 
one gets: 

1 1

21 d 1
γ

x

z x z z
             (4) 

If one stipulates that a(t) = (z + 1)ɣ, one can by varying 
ɣ get a range of a(t) and c(t) pairs that satisfy Equation 
(1) and lead to the modified Hubble Law. For instance γ 
= –1 represents the expanding universe with a constant 
speed of light. But all other possibilities lead to a varying 
speed of light over time. The nature of the red-shift limits 
the range of gamma to values of: –1 ≤ ɣ ≤ 0. A universe 
that would not expand at all is represented by ɣ = 0. 

Differentiating Equation (4) as function of x yields:  
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Which gives the following relation between x and z after 
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integration: 
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It should be noted that for γ ≈ –1/2 we have 1 – x ≈ 
ln(z + 1) with a relative error of (γ + 1/2) ln(z + 1). 

For ɣ = 0, this is the case of no expansion, we get: 
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Indeed x = 1 or t = t0 yields z = 0, x = 0 yields z = 0.43, 
and x = –∞ leads to z + 1 = ∞. 

This latter does agree with the observations that the 
red-shift always increases when  looking back in time. 

For γ = –1, this is the case of c(t) = c0, the speed of 
light is a real constant, we get: 

 
4 1

1
1

x
z

1
1

3 3 1z

 
    

   
         (8) 

For x = 1 one gets again z = 0, which is fine. This time 
however one gets z = ∞ at x = –1/3. 

Equation (8) has one real root,  
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This is for small x + 1/3 close to: 
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So one has a choice to make: 
First of all one should realize that the modified Hubble 

Law required that c(t) = c0/a(t) and that therefore already 
we have strong evidence for γ = –1/2. 

Secondly, looking again at Equation (2) that was found 
from the measurements: 

 1 1 1z  0 0LD c t z              (2) 

And the definition of a measured distance (3): 
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The most obvious connection to make is to put: 
1 1 ( )z a t   and  

1
( 1)d ( 1) 1z x z   x

This then leads directly to: c(t) = c0/a(t) and z + 1 = e(1–x). 
It is the most straightforward relation that we can ex- 

tract from Equations (2) and (3), but in principle it does 
not exclude other options discussed above. 

The “obvious” connection leads to an expansion grow- 
ing exponentially in time: its scale factor is  

a(t) = exp[(t/t0 – 1)/2]. The growth is slow with an 
e-folding time of 28.2 G year. 

Thirdly as shown in the discussion in Section 5, there 
is supporting evidence that the sizes of the galaxies scale 
as (z + 1)m, with –1 < m < 0. So that γ = –1/2. 

It is interesting to note that for small z, (t close to t0) 
one can expands a(t) and obtains a power scaling of a(t) 
≈ (t/t0)

1/2 . This would be the power scaling for a dense 
universe with ρ > ρcr the latter being the critical density at 
which the expansion of the universe is just not stopping 
[8]. So by letting the speed of light relax over time the 
universe can have density compared to the power scaling 
of a(t) = (t/t0) which fitted the data so good for the con- 
stant speed of light model, but had zero density power 
scaling. 

An exponential growth is structurally different from a 
power scaling. A power scaling has a beginning at t = 0, 
an exponential growth has no beginning (t = –∞ is the 
start of all) and it has no end. t0 is just an e-folding time 
for (z + 1) and 2*t0 for a(t). But for sure the beginning 
and the end of the universe are both well outside the 
measurements. It may well be that the beginning was 
linear and the end will be in a saturation state, in this case 
the exponential expansion can no longer be applied. 

The quality of the fit of the exponential growth model 
to the Supernovae data is remarkable good. This is shown 
in Figure 3. 

There is no systematic difference between the measured 
distances and the calculated one. In the case for the zero 
density power scaling [9] there is a positive difference. 
An accelerating dark-energy model was required to ex- 
plain this difference. 

An expansion accelerating in recent times is of course 
in agreement with an exponential growing expansion. But 
the latter came “naturally” out of the measured data itself.  
 

 

Figure 3. The relative difference between the measured and 
calculated distances. The red line is the straight line fit to 
the Gold data of A. Riess et al. Note: z = 1.755 is 14.5 G 
years ago. 
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It is clear, that an exponentially growing expansion 
needs an “explanation” too in the form of dark energy 
that drives the growth. 

3. The Expansion and Conservation Laws 

It is necessary to check whether conservation laws re- 
main valid in these changing conditions. It should be 
noted that this section is valid for all combinations of a(t) 
and c(t), i.e. whether the speed of light is a real constant 
or not. 

The first law to check is the energy conservation law 
for e.g. a planet of mass m orbiting a star with mass M at 
a distance r. The condition that the planet is in an orbit 
around the star gives the following condition: 

2 M
v G

r
                (11) 

The energy is the kinetic plus potential energy, which 
equals: 
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With changing a(t) and c(t) energy is thus conserved if 
the ratio of v/c is conserved, since from relativity mc2 is 
conserved. This implies too that the relativistic energies 
are conserved. 

The law of angular impulse momentum is: 
2mv

v r
ω

   P m             (13) 

Since mv2 is conserved, angular impulse momentum 
conservation would mean conservation of ω. Also it 
would follow then that r/c is conserved and this implies: 
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It is clear that for –1 < γ < 0 Equation (14) leads to se- 
rious problems with the expansion condition that r(t) 
should be equal to r0·a(t).  

Let us see how one can redefine the angular impulse 
momentum in such a way that the latter is conserved and 
the orbit can expand in the correct way. Put: 
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The same logic applies for the hydrog
angular impulse momentum is: 
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It then follows that the Bohr radius is: 
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With th  definition of the angular impulse 
conservation implies that the scaling with the expansion 
sc

is momentum, 

ale factor a(t) is maintained for both planet orbits and 
atoms. 

The conservation of the electric charge has to be 
adapted to the expansion too.  

The force balance in the hydrogen atom stipulates that: 
2e 2 2
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Therefore:  
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And since ε0μ0=1/c2 one may assume th
ε0(t0)·c0/c(t). This leads to: 
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4. The Clocks and Expansion 

he elec-Let us take as atomic clock the time it takes for t
tron to go around the proton: 
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Also the orbit time for a planet around a sta
like that: Equation (17). 

r scales 

How does the pendulum scales? One has to know how 
the gravitational constant scales with c and a(t). Energy 
conservation gives the following relation: 
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les with 
nt speed 

 light one has to take into account that G still scales 
then with a(t). 

The pendulum can now be calculated: 
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We can conclude that the clock of the pendulum, the 
orbit period of planets and the orbit period of the e
all change at the same rate in time: inversely proportional 
to

lectron 

 the red-shift z + 1. Note that also for a really constant 
speed of light the clocks would still scale like that too. 

This dependence of the clocks has implications for the 
Lorentz equation and so on Relativity. It can be seen that 
Relativity is unaffected by the expansion of the universe. 

The Lorentz equation is: 

    2 2 2
02 2 2 2 2 2 2 2 2 2
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c c a t
x y z c τ a t x y z τ

c
        

(26) 

This just states that the Lorentz length too is multip ie
by a(t). Since also all ratios of (v/c) are conserved, it fol-
lows that Relativity remains unaltered.  
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is a function of the red-shift z [10]
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