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ABSTRACT 

Paraquantum Logics (PQL) has its origins in the fundamental concepts of the Paraconsistent Annotated Logics (PAL) 
whose main feature is to be capable of treating contradictory information. Based on a class of logics called Paraconsis- 
tent Logics with annotations of two values (PAL2v), PQL performs a logical treatment on signals obtained by meas- 
urements on physical quantities which are considered Observable Variables in the physical world. In the process of ap- 
plication of the PQL the obtained values are transformed in Evidence Degrees and represented on a Lattice of four Ver- 
tices where special equations transform these degrees into Paraquantum logical states ψ which propagate. The propaga- 
tion of Paraquantum logical states provides us with results which can be interpreted and modeled through phenomena 
studied in physics. Using the Paraquantum equations, we investigate the effects of balancing of Energies and the quan- 
tization and transience properties of the Paraquantum Logical Model in real Physical Systems. As a demonstration of 
the usage of the Paraquantum equations we perform a numerical comparative study that applies the PQL to the Bohr’s 
model to find the energy levels of the Hydrogen atom. It is verified that the values of energy in each level of the Paraq- 
uantum logical model of the Hydrogen atom are close to the values found by the conventional way. The results through 
the Paraquantum Logic allow considering other important properties of the atom, as the forecast of number of electrons 
in each layer. 
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1. Introduction 

The conception of physical system models that prove to 
be more efficient in order to respond to the analyses in 
extreme conditions becomes necessary when we verify 
inconsistencies in computation obtained from models 
which reproduce the same natural phenomenon but are 
from different areas of physics (see [1,2]). In order to 
create a mathematical tool that conveniently make these 
results compatible, we present in this paper a model 
based on the concepts of a non-Classical logics called 
Paraconsistent Logics (PL) (see [3,4]). 

A Paraconsistent Logic is a non-classical logic which 
revokes the principle of non-Contradiction and admits 
the treatment of contradictory information in its theoreti- 
cal structure (see [4,5]). The foundational principles of 
the Paraconsistent Logics can be seen with details in [1] 
and [4]. In [5] we presented an interpretation of the 
Paraconsistent Logic that it resulted in the foundations of 
an applicable model in physical systems. This extension 
of the PL was denominated of Paraconsistent Annotated 
Logic with annotation of two values (PAL2v). The 
PAL2v is a class of Paraconsistent Logics particularly 

represented through a Lattice of four vertices and from 
its foundations the Paraquantum Logics (PQL) was cre- 
ated. 

The organization of the paper is as follows: in the Sec- 
tion 2 the basic concepts, the interpretation and the main 
equations of the LPA2v Logic are presented. In Section 3 
the main concepts of the Paraquantum Logic are pre- 
sented. In the Section 4 a Paraquantum Logical Model is 
proposed to quantization of values of Physical Quantities. 
In Section 5 the Paraquantum Logical Model is applied 
for calculations of the Energy levels in the Hydrogen 
Atom. In the Section 6 are presented conclusions about 
the Paraquantum Logic application results in the Hydro- 
gen Atom. 

2. The Main Concepts of the Paraconsistent 
Annotated Logic with Annotation of Two 
Values (PAL2v) 

According to [5] we can obtain through the PAL2v a 
representation of how the annotations or evidences ex- 
press the knowledge about a certain proposition P. This 
is done through a lattice on the real plane with pairs (, λ) 
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which are the annotations. In this representation an op- 
erator is fixed: ~:||  ||  
where  = {(, λ) |  , λ  [0, 1]  }.  

If P is a basic formula then: 
~ [(, λ)] = (λ, ) where , λ  [0, 1]  .  
The operator ~ stands for the “meaning” of the logical 

symbol of negation of the system to be considered. 
In applications for analyses of physical systems  is 

the Favorable Evidence Degree related to the Proposition 
P and λ is the Unfavorable Evidence Degree related to 
the Proposition P. See Figure 1. 

A Paraconsistent logical signal of the information 
about measurements of real Physical Systems can be 
written as: P(μ, λ) 
where: P is the proposition to be analyzed. 

(, λ) is the annotation composed by the two evidence 
degrees. 

In an intuitive way we can affirm that:  
PT = P(1, 1) → The annotation (, ) = (1, 1) assigns 

intuitive reading that P is inconsistent.  
Pt = P(1, 0) → The annotation (, ) = (1, 0) assigns in- 

tuitive reading that P is true.  
PF = P(0, 1) → The annotation (, ) = (0, 1) assigns in- 

tuitive reading that P is false.  
P = P(0, 0) → The annotation (, ) = (0, 0) assigns in- 

tuitive reading that P is Indeterminate. 
When the Paraconsistent universe is modeled in a Lat- 

tice of four vertexes the values of the evidence degrees 
obtained by measurements in the physical world will 
result in Paraconsistent logical states τ. 

In the internal point of the lattice which is equidistant 
from all four vertices, we have the following interpreta- 
tion: PI = P(0.5, 0.5) → The annotation (, ) = (0.5, 0.5) 
assigns intuitive reading that P is undefined. 

The Equations of PAL2v 

According to [5], with the values of x and y that vary 
between 0 and 1 and being considered in an Unitary 
Square on the Cartesian Plane (USCP), we can get linear 
transformations for a Lattice k of analogous values to the 
associated Lattice τ of the PAL2v. The following final 
transformation is obtained: 

   , , 1T X Y x y x y   

CD

          (1) 

With the transformation (1) we can convert points of 
the USCP which represent annotations of τ into points of 
 which also represent annotations of τ (see [3-5]). Ac- 
cording to the language of the PAL2v we have: 

x =  → is the Favorable evidence Degree; 
y = λ → is the Unfavorable evidence Degree. 
The first coordinate of the transformation (1) is called 

Certainty Degree DC. So, the Certainty Degree is ob- 
tained by: 

  

  1ctD

                 (2) 

The second coordinate of the transformation (1) is 
called Contradiction Degree Dct. So, the Contradiction 
Degree is obtained by: 

                (3)  

 

 

Figure 1. Representation of the paraconsistent universe in to lattice of four vertexes. 
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The second coordinate is a real number in the closed 

interval [–1, +1]. The y-axis is called “axis of the contra- 
diction degrees”. 

Since the linear transformation T(X, Y) shown in (1) is 
expressed with evidence Degrees μ and λ, from (2), (3) 
and (1) we can represent a Paraconsistent logical state τ 
into Lattice τ of the PAL2v [4,5], such that:  

 ,      ,  1   

 ,  C ctD D

0CD 

          (4) 

or 

 ,                (5) 

where: τ is the Paraconsistent logical state. 
DC is the Certainty Degree obtained from the evidence 

Degrees μ and λ. 
Dct is the Contradiction Degree obtained from the evi- 

dence Degrees μ and λ. 
The Paraconsistent logical state τ can be anywhere in 

the lattice τ, and a real Certainty Degree DCR can be ob- 
tained as follows:  

For  we compute: 

 2 2
C ctD D 

0CD 

1 1CRD          (6) 

For  we compute: 

 2 21 1ctD 



CR CD D         (7) 

where:  ,D fC    and  ,D fct  

 

. 
For DC = 0 we consider the undefined Paraconsistent 

logical state with: DCR = 0. 
The resulting evidence degree which expresses the in- 

tensity of the Paraconsistent logical state ετ is computed 
by: 

,

1

2
CRD 

 ER               (8) 

where:  ,ER    is the resulting evidence Degree in 
function of μ and λ.  

DCR is the real Certainty Degree calculated by (6) or (7). 

3. The Paraquantum Logic (PQL) 

In recent applications of the PAL2v equations there were 
the need of including restrictions in its algorithms (see 
[6,7]). The restrictions were necessary because under 
certain conditions the results obtained from the model 
changed through leaps or unexpected variations [7,8]. 
Later, it was seen in research based on PAL2v models 
that the application of its foundations offered results 
strongly connected to the ones found in modeling of 
phenomena studied in quantum mechanics (see [9,10]). 
With the same considerations used in the Paraconsistent 
logic (PAL2v) we can to define in the Lattice a Paraq- 
uantum logical state ψ. 

A Paraquantum logical state ψ is created on the lattice 
of the PQL as the tuple formed by the certainty degree DC 
and the contradiction degree Dct [4]. Both values de- 
pend on the measurements performed on the Observable 
Variables in the physical environment which are repre- 
sented by μ and λ [11,12]. Initially, we can express (2) 
and (3) in terms of μ and λ obtaining: 

( , )CD     

( , ) 1ctD

                 (9) 

                  (10)  

A Paraquantum function (P) is defined as the Paraq- 
uantum logical state : 

 ( ) ( ,  )  ( ,  ),  PQ C ctD D    

 ,  D D

         (11) 

For each measurement performed in the physical world of 
μ and λ, we obtain a unique duple ( , )  ( ,  )C ct     
which represents a unique Paraquantum logical state ψ 
which is a point of the lattice of the PQL [11]. 

On the vertical axis of contradictory degrees, the two 
extreme real Paraquantum logical states are: 

1) The contradictory extreme Paraquantum logical state 
which represents Inconsistency T: 

   (1,1)  (1,1)= ,  0,  1C ctD D T . 

2) The contradictory extreme Paraquantum logical 
state which represents Undetermination : 

   (0,0)  (0,0)= ,  0, 1C ctD D .  

On the horizontal axis of certainty degrees, the two 
extreme real Paraquantum logical states are: 

3) The real extreme Paraquantum logical state which 
represents Veracity t:    ,  1,0D D  (1,0)  (1,0)t C ct

4) The real extreme Paraquantum logical state which 
represents Falsity F: 

. 

    , 1,0D D   (0,1)  (0,1)F C ct

Inside of the Lattice each Paraquantum logical state, 
generated by

. 

 ,  D D( , )  ( ,  )C ct    , is related to a vector of 
state with the following characteristics: 

The Vector of State P(ψ) will have origin in one of the 
two vertexes that compose the horizontal axis of the cer- 
tainty degrees and its extremity will be in the point 
formed for the pair indicated by the Paraquantum func- 
tion:  ,  D D ( ) ( , )  ( ,  )PQ C ct   

If the Certainty Degree is negative (DC < 0), then the 
Vector of State P(ψ) will be on the lattice vertex which is 
the extreme Paraquantum logical state False: ψF = (–1, 0). 

. 

If the Certainty Degree is positive (DC > 0), then the 
Vector of State P(ψ) will be on the lattice vertex which is 
the extreme Paraquantum logical state True: ψt = (1, 0). 

If the certainty degree is nil (DC = 0), then there is an 
undefined Paraquantum logical state ψI = (0.0, 0.0).  

The Vector of State P(ψ) will always be the vector ad- 
dition of its two component vectors: 

CX  Vector with same direction as the axis of the cer- 
tainty degrees (horizontal) whose module is the comple- 

Copyright © 2012 SciRes.                                                                                 JMP 



J. I. DA SILVA FILHO 315

ment of the intensity of the certainty degree: 1 D X
Y

DY

cur

,  D D

CC

ct  Vector with same direction as the axis of the con- 
tradiction degrees (vertical) whose module is the contra- 
diction degree:  

 

ctct

Given a current Paraquantum logical state ψ  defined 
by the duple  ( , )  ( ,  )C ct    then we compute the 
module of a Vector of State P(ψ) as follows: 

   2 2
C ct1MP   D D

 1 MP 

         (12) 

where: DC = Certainty Degree computed by (9), Dct = 
Contradiction Degree computed by (10).  

Using (12) which is for computing the module of a 
Vector of State P(ψ), we have: 

1) For DC > 0 the real Certainty Degree is computed by:  

C RD                (13) 

Therefore:  

2 2)C ctD D 1 (1C RD           (14) 

where: DCψR = real Certainty Degree. 
2) For DC < 0, the real Certainty Degree is computed 

by: 

  1D MP C R              (15) 

Therefore: 

 2 21 1C ctD 

0D 

C RD D       (16) 

where: DCψR = real Certainty Degree; DC = Certainty De- 
gree computed by (9); Dct = Contradiction Degree com- 
puted by (10).  

3) For DC = 0, then the real Certainty Degree is nil: 
. C R

The intensity of the real Paraquantum logical state is 
computed by: 

1

2
C R

R

D 
 

                (17) 

The inclination angle  of the Vector of State which 
is the angle formed by the Vector of State P() and the 
x-axis of the certainty degrees is computed by:  

 
arct g

1
ct

C

D

D

 
 




  
         (18) 

The degree of intensity of the contradictory Paraquan-
tum logical state ψctrψ is computed by:  

1

2
ct

ctr

D 
                    (19) 

where: μctrψ = intensity degree of the contradictory Para- 
quantum logical state; Dct = Contradiction Degree com- 
puted by (10). 

3.1. The Propagation of the Paraquantum  
Logical State ψ 

There may be variations in the measurements performed 
on the observable variables in the physical environment 
which can dynamically change the values of the evidence 
degrees in such a way that the module of the Vector of 
State MP(ψ) tends to increase [11,12]. 

The propagation of the superposed Paraquantum logi- 
cal states sup through the lattice of the PQL happens due 
to the continuous measurements performed on the ob- 
servable variables in the physical world. Since the Para- 
quantum analysis deals with favorable and unfavorable 
evidence degrees  and  of the measurements per- 
formed on the physical world, these variations affect the 
behavior and propagation of the superposed Paraquantum 
logical states sup on the lattice of the PQL. When the 
module of the Vector of State MP(ψ) = 1, this vector will 
represent the maximal fundamental superposed Paraq- 
uantum logical states ψsupfmax which has real certainty 
degrees zero. The maximum Contradiction Degree for 
this condition is when the Vector of State P(ψ) forms an 
angle of 45˚ with the horizontal axis of certainty degrees. 
Therefore, given that the inclination angle of the Vector 
of State is α = 45˚ then the maximum Contradiction De- 
gree for this condition is computed by: 

max

1
1 cos 45

2
ctD      . 

When the Vector of State has inclination angle α = –45˚, 
or still, with origin in the extreme Vertex representative 
of the extreme False Paraquantum logical state this same 
condition is found. In that extreme contradictory situa- 
tion the module of the Vector of State MP(ψ) will have 
his maximum value of: ( ) 2MP   . The unbalanced 
contradictory Paraquantum logical state ψctru is the one 
located on the lattice of states of the PQL where there is a 
condition of opposite signs between the Certainty De- 
gree (DC) and the real Certainty Degree (DCψR). 

The Paraquantum logical states into limits of the Re- 
gion of Uncertainty are identified with Factors of maxi- 
mum limitation of transition [11]. These factors are: 

1) The factor of Paraquantum limitation False/incon- 
sistent—hQFT. 

( ) ψF
11 ; 1; 1
22

1 1
= 1 ,

2 2
PQ Qh

  
  
  

 
     
  
 

Τ  

2) The factor of Paraquantum limitation True/incon- 
sistent—hQtT. 

( ) ψt
11 1; 1; 
22

1 1
= 1 , 

2 2
PQ Qh

  
  
  

 
     
  
 

Τ  

3) The factor of Paraquantum limitation False/unde- 

Copyright © 2012 SciRes.                                                                                 JMP 



J. I. DA SILVA FILHO 316 

termined—hQF. 

( )

0; 1- 0; 1-

1 1
= 1 , 

2 2
PQ F

1 1

2 2

Qh  
  
     

   
     
   


  
     

 
 

 
 



 

4) The factor of Paraquantum limitation True/unde- 
termined—hQt. 

( )
1 1

1 ;0 1 ;
2 2

1 1
= 1 ,

2 2  0

PQ Q th  
    

           


   
    

    
  





 
 

 

All the Superposed Paraquantum logical states sup to 
these and that they will have variation of the inclination 
angle until null degree delimit the Region of Uncertainty 
of the Lattice of PQL. 

3.2. The Paraquantum Factor of Quantization hψ 

When the superposed Paraquantum logical state sup 
propagates on the lattice of the PQL a value of quantize- 
tion for each equilibrium point is established. This point 
is the value of the contradiction degree of the Paraquan- 
tum logical state of quantization h [11] such that:  

2 1h                   (20) 

where: h is the Paraquantum Factor of quantization. 
The factor h quantifies the levels of energy through 

the equilibrium points where the Paraquantum logical 
state of quantization h, defined by the limits of propa- 
gation throughout the uncertainty of the PQL, is located. 
In a process of propagation of Paraquantum logical state 
, we have that in the instant that the superposed Paraq- 
uantum logical state sup reaches the representative 
points of the limiting factors of the uncertainty region of 
the PQL, the Certainty Degree (DC) remains zero but the 
real Certainty Degree (DCR) will be increased or de- 
creased from zero and this difference corresponds to the 
effect called of the Paraquantum Leap [11,12]. So, on the 
point where the logical state of Paraquantum quantization 
h is located, we observe that in the instant of the arri- 
val of the superposed logical states, the Certainty Degree 
(DC) will be zero but the real Certainty Degree (DCR) 

will be increased corresponding to the Paraquantum Leap. 
In the same way, in the beginning of the propagation, 
therefore, at the instant that the superposed Paraquantum 
logical state sup leaves the point where the logical state 
of Paraquantum quantization h is located, the Certainty 
Degree (DC) will be zero but the real Certainty Degree 
(DCR) will be decreased according to the Paraquantum 
Leap. We observe that with respect to the point of In- 
definition which is equidistant from the vertices of the 
PQL, therefore around the Paraquantum logical state of 
pure Indefinition IP, the variation of values inside the 

limits can be expressed by [11,12]: 

 2 11

2 2
d


                 (21) 

These logical states establish connection in the point 
where the logical Paraquantum state of quantization h 

is situated. At the instant that the superposed Paraquan- 
tum logical states sup visit the Paraquantum logical state 
of quantization h, the real Certainty Degree will have 
variations of the form: 

 21 1  C Rt C RD D h              (22) 

When the Paraquantum logical states sup visit the 
Paraquantum state of quantization h established by the 
Paraquantum Factor of quantization h, the Paraquantum 
Leap happens. The Equation (21) that relates the Paraq- 
uantum Logical states indicates that the Uncertainty Re- 
gion of PQL is dependent of the level of transition fre- 
quency N that acts in the Paraquantum Factor of Quanti- 
zation hψ, such that: 

 1

2 2

N

IP

h
  



leapth h h  

                (23) 

N = integer positive ≥ 1 where: ΔψIP = variation around 
the Paraquantum logical state of Indefinition pure. 

N = level of contraction frequency, or number of times 
of application of hψ. 

Figure 2 shows the interconnections between the fac- 
tors and its characteristics, in which they delimit the Re- 
gion of Uncertainty in the Lattice of PQL and the Paraq- 
uantum Leap in the propagation of the Paraquantum logical 
state . 

3.3. Action of the Paraquantum Factor of  
Quantization in the Fundamental Lattice  
of the PQL 

The contraction of the Fundamental Lattice points out 
that the a Paraquantum Logical state ψ is an infinitely 
contracted Fundamental Lattice and has, through the 
Paraquantum Factor of Quantization hψ, all features of 
the PQL Fundamental Lattice. Since the propagation of 
the Superposed Paraquantum Logical states always oc- 
curs through the Paraquantum Logical state of Quantiza- 
tion ψhψ, given any point of the PQL Fundamental Lattice, 
this point will be the Paraquantum Logical state of Quan- 
tization ψhψ of the contracted Local Lattice. In order to 
completely express it, we have to take into account the 
factor related to the Paraquantum Leaps which will be 
added to or subtracted from the Paraquantum Factor of 
quantization [11] such that: 

              (24)  
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Figure 2. The paraquantum factor of quantization on the paraquantum logical state of quantization h  due to paraquan- 
tum leap. 
 

 21 1h h  where from (22): Leap 
Concerning the action of the Factor of Paraquantum 

Quantization hψ on the PQL Fundamental Lattice, we must 
also consider the effect of the Paraquantum Leap that 
produces quantities that will be either added or sub- 
tracted. So, the Factor of Paraquantum Quantization in its 
complete or total form which acts on the quantities is: 

. well as the implications that come up with the transfor- 
mations to the International System of units (SI) (see 
[13]). The deductions of the second Newton’s Law indi- 
cate that if a resultant of forces acts on a body, this body 
receives an acceleration which is proportional to the 
force (F) and inversely proportional to its mass (m) (see [13, 
14]). When it is mathematically expressed, this statement 
depends on a value that adjusts or establishes this propor- 
tionality between the quantities such that:  21 1h th h             (25) 

Being: th h  21 1h     the total Factor of 
Paraquantum Quantization at the time of arrival of the 
Superposed Paraquantum Logical state ψsup at the point 
where the Paraquantum Logical state of Quantization ψhψ 
is located. 

 21 1h h h   ψt    is the total Paraquantum 
Factor of Quantization at the departure of the Superposed 
Paraquantum Logical state ψsup at the point where the 
Paraquantum Logical state of Quantization ψhψ is located. 

3.4. Newton Gamma Factor 

In order to apply the Paraquantum Logics PQL in physi- 
cal systems, it is important to study the Newton’s laws 
which relate the involved physical quantities (force, mass 
and acceleration) with the British System of units, as 

a k F m   
or 

1
F m a

k
               (26)  

a is the acceleration or the ratio in which the body’s 
velocity changes through time. 

F is the resultant of all forces which act on the body. 
m is the body’s mass. 
k is a proportionality adjustment factor. 
When we compare values between the quantities, we 

observe that for the International System of units (SI) to 
express the value of force F in a unit of Newton, an ad- 
justment on the value of mass is necessary. Doing such 
comparisons and analogies between the unit Systems we 
obtain a unitary proportionality factor k of Equation (26) 
which expresses Newton’s second law, in the International 
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System of units (SI). In order to adapt this framework to 
the PQL concepts, we have to multiply the proportional- 
ity adjustment factor kbr of the British System of units by 
10 and divide the proportionality adjustment factor kSI  

of the International System of units (SI) by 10 (see [12]). 
Therefore: 

1.38 0.7233013951254952 kbr SIk  and  . 
We can adapt the proportionality factors k obtained for 

the Paraquantum Logical model as follows: 
1.3brk 8254952 2   and 0.7233013951 1 2k  

k
SI

Given the importance of the Factor br , which will be 
largely used in the equations of the PQL, its value is 
called Newton Gamma Factor whose symbol is

. 

N . 
Therefore, in order to apply classical logics in the Paraq- 
uantum Logical model, the Newton Gamma Factor is 

2N  . 

3.5. Paraquantum Gamma Factor γpψ 

When we consider the Equation (23) just in the obtaining 
of favorable Evidence degree, it can be mathematically 
expressed through the multiplications between inversed 
values of the Newton Gamma Factor. For an expansion 
process where we consider quantizations based in con- 
secutive applications of inversed values of the Newton 
Gamma Factor we can identify the Lorentz Factor γ in 
the infinite Power Series of the binomial expansion 
[13,14] related to the series obtained from consecutively 
applying the Newton Gamma Factor γN. In the paraquan- 
tum analysis we define a correlation value called Paraq- 
uantum Gamma Factor γpψ [12] such that: 

1
N

  
 
P               (27) 

where: N is the Newton Gamma Factor: 2N   

 is the Lorentz factor which is: 
2

1 1
v

c
    
 

  

Using the Paraquantum Gamma Factor P  allows 
the computations, which correlate values of Observable 
Variables to the values related to quantization through 
the Paraquantum Quantization Factor hψ [11,12]. 

4. Paraquantum Logical Model Applied in 
Calculations of Quantization of Values of 
Physical Quantities 

The quantitative analysis on the PQL Lattice defines a 
quantitative value QValor of any physical quantity, which 
can be represented on the horizontal axis of the certainty 
degrees and on the vertical axis of the contradiction de- 
grees of the PQL Lattice. Since the maximum value is 
normalized on the PQL Fundamental Lattice [11], con- 
sidering the Paraquantum Factor of quantization only, we 
can write: .  1 1h h   

 ValuemaxFund ValuemaxFund ValuemaxFund1Q h Q h Q   

Q

Doing so, the unitary value of the quantization is 
equivalent to a paraquantum quantization represented in 
the Paraquantum Logical state ψhψ added to the value of 
its complement. We have: 

 (28) 

where: ValuemaxFund  is the value of the total amount rep- 
resented on the unitary axis of the PQL Fundamental Lat- 
tice. 

Equation (28) shows that the maximum amount of any 
quantity in the physical environment is composed by two 
quantized fractions where: one is determined on the 
Paraquantum Logical state of Quantization ψhψ by the 
Paraquantum Factor of Quantization hψ and the other is 
determined by its complement (1 – hψ). When the Paraq- 
uantum Gamma Factor P  is applied on the paraquan- 
tum quantities, besides correlating the paraquantum val- 
ues to the physical environment, it also works as a factor 
of expansion or contraction of the PQL Lattice. 

4.1. Representation of Levels of Energy 

Consecutive applications of the Paraquantum Factor of 
Quantization hψ will produce Superposed Local Funda- 
mental Lattices that will be related to the values of quan- 
tities in the physical environment [11,12]. When the val- 
ues of quantities of the Equation (28) are related to en- 
ergy, we can establish levels of energizing, creating 
Paraquantum models which act as mirrors of the systems 
in the physical environment. Figure 3 shows a Paraq- 
uantum Logical model where the Superposed Paraquan- 
tum Lattices are related in both the physical and Paraq- 
uantum environments and produce levels of energy which 
will be used to analyze the Hydrogen atom. 

We observe that on Figure 3, the radius of the hori- 
zontal propagation of the Paraquantum logical states on 
the Fundamental Lattice can be computed. Since it is a 
value related to the Paraquantum Logical Model, this 
radius is determined through a Paraquantum quantity 
computed by:  1 Value max 2 2pn NR Q  

 1 Value max 1pn NR Q h  

 Totaψ maxFund maxFund1E h E h E   

 

         (29) 

4.2. Obtaining the Quantified Values in the  
Levels of Energy 

By representing the involved Energy in the Paraconsis- 
tent Logical Model as being the energy amount repre- 
sented on the vertical axis of contradiction, we can ini- 
tially make an analogy with Equation (28) which defines 
the amount on the Fundamental Lattice in its static form. 
So, for the Energy, the equation is:  

     (30) 

When related to the physical environment, we have: 
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Figure 3. Model of the superposed local fundamental lattices where we can represent systems of energizing levels through the 
fundamental lattice. 
 

Copyright © 2012 SciRes.    

 

Physical Totaψ

1
           1

P

E E

h E


 



 

 

maxFund

maxFund

1 1

P P

h E
 

 

Since that in the newtonian universe the value of ve- 
locity v related to the velocity of light c in the vacuum is 
too low, then the Factor of Lorentz is unitary: 

2

2
1 1 1

v

c
    and on Equation (27), the Paraquan- 

tum Gamma Factor computed with the Newton Factor 

2N   is: 
1 1

1 1
2 2

P     . In these condi- 

tions, the Paraquantum Gamma Factor P is identical to 

the inverse value of the Newton Gamma Factor N . 

 
Physical Totaψ

maxFund          2 1h E h   maxFund

2

2

E E

E




  (31) 

Being the total Energy: TotalTransf Totaψ 2E E  
Then, doing: maxFund max2 NE E

 Trans max max1

  
We can define the equation of the energy levels such 

that:  

fN N NE h E h E         (32) 

where: TransfN  is the total Energy which can be trans- 
formed through propagation.  

E

max NE

 TotalPropag max max1

 is the maximum Energy on level N of the tran- 
sition frequency. 

N is the transition frequency or number of times of ap- 
plication of the Paraquantum Factor of Quantization.  

We verify that, in the same way for quantities, the en- 
ergy is quantized through the equilibrium point estab- 
lished by the Paraquantum Logical state of Quantization 
ψPψ [11,12]. 

4.3. The Quantified Values of the Levels of  
Energy in the Bohr Model 

Based on Equation (32) the equation of the quantities of 
Energy, for the Bohr’s model on the Hydrogen atom 
[14,15], can be written as follows: 

N NE h E h E           (33)  

where: 
hψ is the Paraquantum Factor of quantization 

2 1h .  
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TotalPropag  is the total Energy that can be transformed 
through propagation, therefore through the orbit of the 
electron in the Hydrogen atom. 

E

max NE

g maxN NE h E

E

 is the maximum energy on the level N of tran- 
sition frequency or in the current state of excitation of the 
electron. 

N is the transition frequency or number of times of ap- 
plication of the Paraquantum Factor of Quantization. 

We observe that on Bohr’s model, the value of N coin- 
cides with the excitation state of the electron.  

In the physical system composed by the atom, the first 
term of the Equation (33) is the quantity of energy of 
propagation that was transformed so that the electron 
reaches the equilibrium point its fundamental state. So, 
the value of the quantity of Energy of Propagation quan- 
tized, when considered in its static form, therefore, with- 
out considering the effect of the Paraquantum Leap, is 
computed by:  

Propa             (34) 

where: hψ is the Paraquantum Factor of Quantization.   

Propag is the Energy transformed in the propagation of 
the Paraquantum Logical state of the extreme Vertex 
False until it reaches the point where the Paraquantum 
Logical state of Quantization ψhψ is located. 

max NE is the maximum Energy on the level N of the 
transition frequency or on the current state of excitation 
of the electron.  

Since the process of transformation of energy is dy- 
namical, we must consider the effects of Paraquantum 
Leaps on the Paraquantum Logical Model. So, the total 
energy transformed, that will constitute the Superposed 
Fundamental Lattice for the next level which will reach 
the electron, will be obtained with adding the Inertial or 
Irradiating Energy Eirr that appears due to the effects of 
Paraquantum Leaps.  

Being the Factor of Quantization on the Paraquantum 
Leap defined on Equations (24) and (25), the Inertial or 
Irradiating Energy is expressed by:  

maxirrN NE E   21 1h 

transfTotal PropagN N irrNE E E

         (35) 

If Bohr’s Model [15] is used in the Paraquantum 
analysis, the electron will be considered a Paraquantum 
Logical state ψ–e that propagates orbiting the logical state 
proton ψ+Z located on the Paraquantum Logical state 
Undefined ψI. So, the positive or negative sign of the 
Equation (35) indicates if the analysis is at the arrival or 
at the departure of the electron at the equilibrium point 
where the Paraquantum Logical state of Quantization ψhψ 
is located. Since the electron, in the Model of Hydrogen 
Atom, reaches the excitation level at the arrival at the 
equilibrium point, then the sign will positive at the in- 
stant of the analysis, only. So, the total energy transformed 

at the equilibrium point of the Lattice of the PQL is com- 
puted by: 

          (36)  

or: 

  2
transfTotal max max 1 1N N NE h E E h    

 TotalPropag transfTotal max1

   (37) 

So, Equation (33) is rewritten as follows:  

NE E h E       (38)  

or as follows: 

   TotalPropag Propag max1irr NE E E h E      (39) 

Or, in a more complete way, as follows:  

    
TotalPropag

2
max max max1 1 1N N N

E

h E E h h E  
       
 

 Restmax max1

 

(40) 
The second term of Equation (40) is the complemented 

value which represents the remaining maximum energy, 
therefore, it is that amount of energy capable of still be- 
ing transformed in order to increase the excitation level 
of the electron. So, for each new excitation level of the 
electron, the remaining energy (ERestmax) is the one which 
outcomes the value which will be represented on the ver- 
tical and horizontal axis of the Lattice of the PQL.  

For a static analysis, we have:  

N NE h E 

Restmax max maxN N NE E h E

        (41) 

or 

        (42)  

Restmax 1 max transfTotal

Therefore, the remaining maximum Energy in the 
atom model depends on the excitation level of the elec- 
tron. When the analysis process is considered dynamical, 
we must take the effect of the Paraquantum Leap into 
account and determine the Remaining maximum Energy 
adding the Inertial or Irradiating Energy. Then: 

N N NE E E         (43)  

 Restmax 1 max Propagor N N N irrNE E E E     

So, Equation (42) in its complete form is:  

  2
Restmax 1 max max max 1 1N N N NE E h E E h      

max 1 maxni nf N NE E E 

(44)  

For variation of Energy between two levels: 

               (45) 

From Equation (28) we can compute the radius of 
horizontal propagation of the Paraquantum logical states 
on the Fundamental Lattice related to the values of 
amounts of the involved Energy [14]. So, the Horizontal 
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Propagation Radius of Paraquantum propagation is com- 
puted by:  

 max 1N h  p NR E           (46) 

As it was done for the Paraquantum values, this value 
obtained from the radius pR  can be related to the 
physical universe applying the Paraquantum Gamma 
Factor, that in the Newtonian universe is the inverse 
value of Newton Factor such that: 

 max 1NE h n p N P PR R      

 max 1N h 
1

n
P

R E 


            (47) 

If the value of the radius n is known, we can deter- 
mine the maximum value of energy on the level, such 
that: 

R

 max NE 
1

n

P

R

h 

transfTotal

              (48) 

The energy transformed value between the Funda- 
mental level n = 1 and the level n = N is: 

transfTotal 1 transfTotal 1N n N n NE E      N nE   (49) 

5. The Paraquantum Logic (PQL) Applied in 
the Atom of Hydrogen 

For the application of the Paraquantum Logics PQL in the 
Hydrogen Atom we use, as a reference of values, the 
Bohr’s Model which describes an atom which has only 
an electron and one proton [14,15]. 

The idea in Bohr’s Model is the electrostatic attraction 
between the proton and the electron attracts the electron 
to the inner part of the atom and this force is compen- 
sated by the acceleration due to the circular movement of 
the electron [14]. About Bohr’s Model:  

1) The force responsible for the cohesion of the atom 
is the Coulombian interaction between the electron and 
the core.  

2) The core can be considered a fixed point. 
3) The orbits of the electrons are circular.  
4) The emission and absorption of radiation occur ac- 

cording to the Einstein’s assumption, that is, by the emis- 
sion or absorption of a photon. 

5.1. Conditions of Analyses of the Hydrogen 
Atom in Lattice of the PQL 

Following the application methods of the PQL we will 
make a study that represents the Hydrogen atom on the 
Lattice of the PQL considering the results of the postu- 
lates of Bohr with the correlation features of the effects 
of propagation of the Paraquantum Logical states ψ and 
the bounding Factors of the Uncertainty Region of the 

PQL. So, the electron is considered a Superposed Paraq- 
uantum Logical state ψsup represented by ψ–el that propa- 
gates through the Fundamental Lattice of the PQL from 
the Vertex which represents the extreme Paraquantum 
Logical State False. 

The propagation of the Paraquantum Logical state 
which represents the electron ψ–el is done around the 
Paraquantum Logical state Undefined ψI located on the 
equidistant point from the Vertices of the Fundamental 
Lattice where the Paraquantum Logical state of the pro- 
ton represented by ψ+Z is located. So, according to the 
Paraquantum Logical model of the Hydrogen atom, the 
electron is a small Local Fundamental Lattice that pro- 
pagates as a Paraquantum Logical state ψ-el and the pro- 
ton is a minuscule fixed Local Fundamental Lattice rep- 
resented at the equidistant point with the Paraquantum 
Logical state of Indefinition ψ+Z around which the elec- 
tron orbits. Figure 4 shows the Lattice of PQL where the 
Hydrogen Atom is represented with the electron as a 
Paraquantum Logical state at the extreme Vertex of Fal- 
sity and the proton at the state of Pure Undefinition. 

For constituting the Paraquantum Logical model based 
on Bohr’s model, the following assumptions are made for 
the Hydrogen atom that will be represented on the Fun- 
damental Lattice of the PQL. 

1) The electron that has charge –e will be represented 
by a Paraquantum logical state ψ–el. 

2) The core composed by the Proton that has charge 
+Ze and will be represented by a Paraquantum logical 
state (ψ+Z) as a fixed point located equidistantly from the 
four vertices of the Lattice. 

The orbit of the electron –e around the core +Ze in the 
atom that happens in the physical world is represented in 
the Paraquantum world through the propagation of the 
Paraquantum Logical state ψ–el. The electron orbiting the 
core in the physical world with its negative charge meets 
in its course electric and magnetic forces letting it in 
equilibrium in a certain level or state which can be the 
fundamental state or the n excited states. 

Considering the initial condition where the Paraquan- 
tum Logical state ψ–el representing the electron is at the 
point located at the extreme Vertex False, its horizontal 
propagation represents the orbit of the electron in the 
physical world in the Fundamental state of Bohr’s model. 
So, on the Fundamental Lattice of the PQL, the Paraq- 
uantum logical state ψ–el will propagate crossing the ver- 
tical axis of the contradiction degrees at the Paraquantum 
Logical state of Quantization ψhψ. The propagation will 
be expressed through energy quantization determined by 
the Factor of Paraquantum Quantization hψ considering 
the Paraquantum Leaps through the variations on the 
value of the Real Certainty Degree that identifies the 
appearing of inertial or irradiating energy. 

In the physical world, the insertion of energy into the 
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Figure 4. Representation of the hydrogen atom with the electron as a Paraquantum logical state at the extreme vertex of fal-
sity and the proton at the state of pure undefinition. 
 
atom causes disequilibrium and, if this disequilibrium is 
enough, it causes the electron to leave its fundamental 
state n = 1 and it makes the electron to reach another state 
of excitation. On the Fundamental Lattice of the PQL that 
represents the Hydrogen Atom, the Paraquantum logical 
state ψ–erel of the electron when propagating will trans- 
form the energy represented on the axis of the Certainty 
and Contradiction degrees and, for this, moves diago-
nally to one of the extreme Vertices of contradiction. 
When the Electron receives energy enough to reach an- 
other exciting state for n = 2, it means that the potential 
energy represented on the horizontal axis of the certainty 
degrees (EnDC) of the initial conditions is transformed in 
kinetic energy represented on the horizontal axis of the 
certainty degrees (EnDct) and reached enough to take it up, 
through two transitions to the excited level at the point 
where the Paraquantum Logical state of Quantization ψhψ 
is located. Figure 5 shows the propagation of the elec- 
tron around the proton on the fundamental state n = 1. 

This change of the electron from a state to another is 
done on the Paraquantum Logical model through the 
characteristics of the correlation that implies in consid- 
ering the effects in the physical environment reflected on 
the Paraquantum world. So, all the equations we have 
studied about the Paraquantum effects are valid and cor- 
related through the Paraquantum Factor of Quantization 

hψ for a Paraquantum model of the Hydrogen atom based 
on Bohr’s theories [15].  

5.2. Comparative Study in the Application of the 
Paraquantum Logic (PQL) in the Hydrogen 
Atom 

The correlation characteristics of the Relativistic Paraq- 
uantum Lattice and the transience property of the Super- 
posed Paraquantum Logical states ψsup which propagate 
on the Fundamental Lattice of the PQL provide us with 
several conditions to make a comparative study of the 
Hydrogen atom using Bohr’s model. This study can be 
made directly with the energy levels of the Paraquantum 
correlation states through the equation that deals with 
quantities. So, each time that there is an increase of En- 
ergy defined by the Paraquantum Factor of Quantization 
hψ, there will be two transitions of the electron that will 
make it perform an orbit of a level of excited state in the 
Hydrogen atom. At the end of these two transitions of the 
electron, represented by the Paraquantum Logical state 
ψ–el, it will be on the equilibrium point of the Paraquan- 
tum Logical state of Quantization ψhψ. The energy on this 
point is determined by the addition of the energy trans- 
formed in the propagation Etporp with the Inertial of Irra- 
diant Eirr which appears due to the Paraquantum Leaps. 
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Figure 5. First propagation of the Paraquantum logical state ψ–el which represents the electron at the fundamental state n = 1 
passes by the Paraquantum logical state of quantization ψhψ with the energy being quantized by the Paraquantum factor of 
quantization hψ. 
 
5.3. The Spectrum of Radiation 

Atomic spectra—which is the characteristic radiation 
emitted by the atoms of elements when they are heated, 
or submitted to electrical discharges—were studied at the 
end of the XIX century [14]. When observed with a 
spectroscopy, the radiation shows as a series of lines with 
different wave lengths, not always on a visible spectrum. 
Among many scientists that studied the atomic spectra, 
J.R. Rydberg and W. Ritz determined an empirical ex- 
pression capable of compute the sequence of these lines. 
This expression is known as the Rydberg-Ritz formula 
and is given by [15]: 

2 2

1 1 1
 

MN

R
m n

   
 

 for n > m     (50) 

where: m and n are integers and R is the Rydberg con- 
stant, with result expressed in meters. 

For Hydrogen, the value of R is 1.096776 × 107 m–1 
approaching a limit value of 1.097373 × 107 m–1 for 
heavy elements [14]. This empirical expression can pre-
view lines that are out of the range of the visible spec-
trum and have not been observed yet. According to the 

Bohr’s Postulate, the angular momentum of the electron 
is quantized and it is an integer number (n): 2πn h . 
Comparing to its corresponding in the classical mechan-
ics (L = mrv), we can find and define the value of r in 
function of n. So, we have: 

2
( ) 0nr n a Z               (51) 

with 
2

0 2
0.529A

e

h
a

m Ke
 


 

where: a0 is the constant called radius of Bohr. 
By determining the expression of rn, we can find the 

expression of total Energy (En of the electron). 
The equation of total Energy is expressed by: 

2

( ) 02n

Z
E E

n
               (52) 

with 
2 4

0 22
em K e

E 


. 

We verify in this equation that En appears with a mul- 
tiple of E0, whose value can be found and corresponds to 
2.18 × 10–18 J or 13.6 eV.  
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According to Bohr’s postulate, the energy for an elec- 
tronic transition, according to the set of allowed energies 
Em from position ni to position nf, is defined by: 

2
( ) 0i fm n nE E E E Z   

2 2

1 1

i f

hc

n n

 
   

  
   (53) 

This value is the inverse of the wave length and Bohr 
compared it with the Rydberg-Ritz Formula, obtaining 
the theoretical value of the Rydberg’s constant which is 

equal to: 
2 4

0
34π

eE m K e

hc c
 





1 13.6 eV 

Propag 1 max 1N NE h E

R . This results a value of R 

according to the experimental value. 
Generally, the equations on Bohr’s model are featured 

with an integer number n which identifies the allowed 
orbits of the electron such that the electron can have or- 
bits whose radiuses are 1, 4, 9, 16,  times the Bohr’s 
radius a0. On each allowed orbit, the electron is on a state 
with an energy which is constant and well defined with 
the following values:  

Fundamental state n =1.  
En(1) = –13.6 eV orbit with minimum radius r = ao, 
Excited state n = 2  En(2) = –3.4 eV,  
Em(2) = –10.2 eV orbit of radius r = 4ao, 
Excited state n = 3  En(3) = –1.51 eV, 
Em(3) = –12.09 eV  orbit of radius r = 9ao, 
Excited state n = 4  En(4) = –0.85 eV,  
Em(4) = –12.75 eV  orbit of radius r = 16ao, 
Excited state n = 5  En(5) = –0.544 eV,  
Em(5) = –13.06 eV  orbit of radius r = 25ao, 
Excited state n = 6  En(6) = –0.3777 eV, 
Em(6) = –13.23 eV  orbit of radius r = 36ao, 
Excited state n = 7  En(7) = –0.27755 eV, 
Em(7) = –13.32 eV  orbit of radius r = 49ao. 

5.4. Numerical Essay of the Levels of Energy 
through the Paraquantum Equations 

Through the Paraquantum equations and the interpreta- 
tion on the Lattice of the PQL, from where we obtain the 
energy levels with consecutive applications of the corre- 
lation factors, we can compute the values found on 
Bohr’s model for the Hydrogen atom. In this essay, we 
use the equations of the PQL for computing the values of 
energy quantities on excitation levels of the electron the 
Hydrogen atom. 
● For the fundamental state n = 1. 
Initially, we have, on the fundamental state, the value 

that generates the Fundamental Lattice of the PQL for the 
Paraquantum Logical Model as being the value of En- 
ergy obtained by the Bohr’s equations.  

Using the value of the Energy obtained by the Bohr’s 
Equation (52), such that the Total Energy of the electron 
is: . max NE 

Through Paraquantum Equation (34) we can compute 
the Propagation Energy of the electron when it propa- 
gates through the Fundamental state. 

→    Propag 2 1 13.6 eVE   

Propag 1 5.633304448 eVNE 

 

  → 

According to the Paraquantum Logical Model, the 
propagation of the electron is done on the edges of the 
Uncertainty Region of the Lattice of the PQL, so when it 
crosses the Vertical axis of the contradiction degrees on 
the point where the Paraquantum Logical state of Quan- 
tization ψhψ is located, we have the Inertial or Irradiant 
Energy caused by the Paraquantum Leap.  

The Inertial or Irradiant Energy for the Fundamental 
level is computed by Equation (35) such that: 

  2
1 max 1 1 1irrN NE E h      

→  2

1 13.6 1 2 1 1irrNE 

  
         

1 1.120533924 eVirrNE 

 

→  

transfTotal 1 Propag 1 1N N irrNE E E

 

With Equation (36), the total transformed Energy for 
the Fundamental level is computed by: 

     

   transfTotal 5.633304448 eV 1.120533924 eVE    

transfTotal 1 6.753838372 eVNE 

 

  

Through Equation (44) for the Fundamental level of 
excitation n = 1, we have the Remaining Energy to be 
transformed and it is computed by: 

  
Restmax 2 max 1

2
max 1 max 1               1 1

N N

N N

E E

h E E h 

 

 



     
 

Restmax 2 max 1 transfTotal 1N N NE E E

 

     

   Restmax 2 13.6 eV 6.753838372 eVNE     

Restmax 2 6.846161628 eVNE 

 

→   

The Remaining Energy will be the Total Energy of the 
electron that will constitute the second Lattice of the PQL 
for the representation of the propagation of the electron 
at the excitation level n = 2. 

The value of the relation between the Total Energy of 
the electron of the Fundamental level n = 1 with the total 
transformed Energy of the same excitation state of the 
electron n = 1, is computed by: 

max 1
1

transfTotal 1

13.6 eV
2.013669746

6.753838372 eV
N

N

E
n

E





  


 

Equation (46) allows us to compute the Paraquantum 
absolute value of the Horizontal Propagation Radius for 
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this level such that:   1 max 1p N h  R E

 1 mR E ax 1 2 2p N   →  1 13.6 2 2  eVpR    

966695552 

 

→  1 7.pR  

Using Equation (47), we compute the absolute value of 
the radius of Horizontal Propagation referring to the 
physical environment: 

 max 1n N h 
1

P

R E 


 

→ 1n P pR R     as 
1 1

2N

 
P  

→ 1

1
7.966695552

2
nR    = 5.633304448

 

 

Equation (48) allows us to compute the maximum value 
of energy of the Fundamental level n = 1, such that: 

1

1
n

P

R

h


 max 1NE    

    max 1

5.633304448 5.63330444
1 2 11 2 1
2

NE   
 

8
13.6 eV

6161628 eV

1 max 2N NE  

46161628 eV

3838372 eV

max 2N Nh E 

 

● For the excited state n = 2 the Total Energy of the 
electron is: . max 2 Restmax 2

And the variation of energy is computed by Equation 
(45): 

6.84N NE E  

maxni nfE E   

  1 2 13.6 eV 6.8n nE       

→ . 1 2 6.75n nE   
By Equation (34) we have the Propagation Energy at 

the second excitation state of the electron n = 2 computed 
by:  Propag 2E

 Propag 2 2 1 6.8461NE     61628  eV

35772996 eV

 

→ . Propag 2 2.8NE   

With Equation (35) the Inertial or Irradiant Energy for 
the level of the second excitement state of the electron n 
= 2 computed by: 

2 max 2irrN NE E    21 1h   

 2

2 1 1
  

      
6407032 eV

g 2 2N irrNE 

2 6.846161628 1irrNE      

→ . 2 0.5irrNE   

By Equation (36) the total transformed Energy to the 
level of the second excitement state of the electron n = 2 
is computed by: transfTotal 2 PropaNE E  

 07032 eV

transfTotal 2 3.399843316 eVNE 

 

 transfTotal 2 2.835772996 eV 0.564NE       

→  

Restmax 3 max 2 transfTotal 2N N NE E E

. 

Through Equation (43) for the second level of excita- 
tion n = 3, we have the Remaining Energy to be trans- 
formed and it is computed by: 

     

   Restmax 3 6.846161628 eV 3.399843316 eVNE     

Restmax 3 3.446318312 eVNE 

  

→   

We can find the relation between the Total Energy of 
the electron of the Fundamental level n = 1 and the total 
transformed Energy of the level of the second excitement 
state of the electron n = 2 by doing:  

max 1
2

transfTotal 2

13.6 eV
4.000184343

3.399843316 eV
N

N

E
n

E





  


 

By Equation (46) we can compute the Paraquantum 
absolute value of the Horizontal Propagation Radius for 
this level such that: 

 2 6.846161628 2 2pR    2 4.010388632pR  →  

By Equation (47) we compute the absolute value of the 
Horizontal Propagation radius that refers to the physical 
environment: 

2

1
4.010388632 =2.835772997

2
nR    

We can find the relation between the absolute value of 
the Horizontal Propagation radius that refers to the level 
of the second excitement state n = 2 and the Fundamental 
level n = 1:  

1

2

5.633304448
 = 1.986514595

2.835772997
n

n

R
N

R




 

 

 

Equation (48) allows us to compute the maximum en- 
ergy value of the level of the second excitement state of 
the electron N = 2, such that: 

2
max 2

1
n

N

P

R
E

h


 
 

 

    max 2

2.835772997 2.835772997
1 2 11 2 1
2

           6.846161629 eV

NE   
 



transfTotal 1 2 transfTotal 1 transfTotal 2N N N NE E E

 

By Equation (49) we compute the energy transformed 
value between the Fundamental level n = 1 and the level 
of the second excitement state of the electron n = 2, such 
that:       

   transfTotal 1 2 6.753838372 eV 3.399843316 eVN NE       

transfTotal 1 2 10.15368169 eVN NE   

 

 

max 3 Restmax 3 3.446318312 eVN NE E 

 

● For the excited state n = 3 the Total Energy of the 
electron is:   . 
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And the variation of energy is computed by Equation 
(45):  maxni nfE E  2 max 3N NE  

 46318312 eV

843316 eV

3 max 3N Nh E 

 2 3 6.846161628 eV 3.4n nE       

→  2 3 3.399n nE   

By Equation (34) we have:  PropagE

→  Propag 3 2 1 3.446NE     318312  eV

7511785 eV

 

Propag 3 1.42NE     

With Equation (35) the Inertial or Irradiant Energy for 
the level of the third excitement state of the electron n = 
3 computed by:  

i 3 max 3rrN NE E    21 1h   

 2

2 1 1
  

      

3949748 eV

g 3 3N N irrNE  

 3949748 eV

1461534 eV

transfTotal 3NE

i 3 3.446318312 1rrNE      

→  3 0.28irrNE   

By Equation (36) the total transformed Energy to the 
level of the third excitement state of the electron n = 3 is 
computed by:  transfTotal 3 PropaE E

 transfTotal 3 1.427511785 eV 0.28NE       

→  transfTotal 3 1.71NE   

Through Equation (43) for the third level of excitation 
n = 3, we have the Remaining Energy to be transformed 
and it is computed by: Restmax 4 max 3N NE E  

 461534 eV

856778 eV

   

 Rest max 4 3.446318312 eV 1.711NE       

→  Restmax 4 1.734NE   

We can find the relation between the Total Energy of 
the electron of the Fundamental level n = 1 and the total 
transformed Energy of the level of the third excitement 
state of the electron n = 3 by doing: 

max 1
3

transfTotal 3

13.6 eV

1.711461534 eV
N

N

E
n

E





 


7.946424579  

By Equation (46) we can compute the Paraquantum 
absolute value of the Horizontal Propagation Radius for 
this level such that:  ax 3 2 2p N  3 mR E  

 3 3.4463183pR    12 2 2  

2.018806527

 ax 3 1  N h   

 

→  3pR  

By Equation (47) we compute the absolute value of the 
Horizontal Propagation radius that refers to the physical 
environment:  3 mn PR E

→ 3

1
2.018806527 = 1.427511785

2
nR    

We can find the relation between the absolute value of 
the Horizontal Propagation radius that refers to the level 

of the third excitement state n = 3 and the Fundamental 
level n = 1:  

1

3

5.633304448
= 3.946240239

1.427511785
n

n

R
N

R




 

 

 

Equation (48) allows us to compute the maximum en-
ergy value of the level of the third excitement state of the 
electron n = 3, such that: 

3
max 3

1
n

N

P

R
E

h


 
 

 

    max 3

1.427511785 1.427511785
1 2 11 2 1
2

           3.446318312 eV

NE   
 



transfTotal 1 3 transfTotal 1 transfTotal 2 transfTotal 3N N N N NE E E E

  

By Equation (49) we compute the energy transformed 
value between the Fundamental level n = 1 and the level 
of the third excitement state of the electron n = 3, such 
that: 

       

   
 

transfTotal 1 3

6.753838372 eV 3.399843316 eV

  1.711461534 eV

N NE   

   

 

transfTotal 1 3 11.86514322 eVN NE   

 

 

 

1.734856778 eVE E

 

● For the excited state n = 4 the Total Energy of the 
electron is: max 4 Rest max 4N N  .   

max 3 max 4ni nf N NE E E  

And the variation of energy is computed by Equation 
(45):    

   3 4 3.446318312 eV 1.734856778 eVn nE     

3 4 1.711461534 eVn nE 

 

→   . 

By Equation (34) we have the Propagation Energy at 
the fourth excitation state of the electron n = 4 computed 
by:   Propag 4 2 1 1.734856778 eVNE    

Propag 4 0.718601206 eVNE 

  

→  . 

By Equation (35) the Inertial or Irradiant Energy for 
the level of the fourth excitement state of the electron n = 
4 computed by: 

 2

4 1.734856778 1 2 1 1irrNE 

  
         

4 0.142938667 eVirrNE 

 

 

transfTotal 4 Propag 4 4N N irrNE E E

. 

The Total transformed energy to the level of the fourth 
Excitement state of the electron n = 4 is computed by:  

     

   transfTotal 4 0.718601206 eV 0.142938667 eVNE     

transfTotal 4 0.861539873 eVNE 

 

→  . 
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Through Equation (43) for the fourth level of excita- 
tion n = 4, we have the Remaining Energy to be trans- 
formed and it is computed by: 

Rest max 4 max 4N NE E   transfTotal 4NE 

 39873 eV

3316905 eV

 

 Restmax 5 1.734856778 eV 0.8615NE       

→ . Restmax 5 0.87NE   

We can find the relation between the Total Energy of 
the electron of the Fundamental level n = 1 and the total 
transformed Energy of the level of the fourth excitement 
state of the electron n = 4 by doing:  

max 1
4

transfTotal 4

13.6 eV

0.861539873 eV
N

N

E
n

E





 


15.78568842  

By Equation (46) we can compute the Paraquantum 
absolute value of the Horizontal Propagation Radius for 
this level such that: 

 ax 4 2 2p N  4 mR E  

 4 1.7348567pR  78 2 2  4 1.016255572pR   → . 

By Equation (47) we compute the absolute value of the 
Horizontal Propagation radius that refers to the physical 
environment: 

4

1
1.016255572 = 

2
nR   0.718601206 . 

We can find the relation between the absolute value of 
the Horizontal Propagation radius that refers to the level 
of the fourth excitement state n = 4 and the Fundamental 
level n = 1:  

1

4

5.633304448

0.718601206
n

n

R
N

R




   = 7.839263838

 

. 

Equation (48) allows us to compute the maximum en- 
ergy value of the level of the fourth excitement state of 
the electron n = 4, such that: 

4

1
n

P

R

h


 max 4NE    

    max 4

0.718601206
1

1 2 1
2

            1.734856777 eV

NE   
 



0.718601206

2 1

transfTotal 2

transfTotal 4

N

N N

E

E E


 

 
 

9843316 eV

1539873 eV

transfTotalN 1 4 12.72668309 eVNE   

 

By Equation (49) we compute the energy transformed 
value between the Fundamental level n = 1 and the level of 
the fourth excitement state of the electron n = 4, such that: 

transfTotal 1 4 transfTotal 1

transfTotal 3                        
N N NE E    

 
 

 
 

transfTotal 1 4

6.753838372 eV 3.39

1.711461534 eV 0.86

N NE   

   

   

 

 

0.873316905 eVE E

 

● For the excited state n = 5 the Total Energy of the 
electron is: max 5 Rest max 5N N  .   

max 4 max 5ni nf N NE E E  

And the variation of energy is computed by Equation 
(45):    

   4 5 1.734856778 eV 0.873316905 eVn nE     

4 5 0.861539873 eVn nE 

 

→    

By Equation (34) we have the Propagation Energy at 
the fifth excitation state of the electron n = 5 computed by:  

  Propag 5 2 1 0.873316905 eVNE    

Propag 5 0.361739706 eVNE 

 

  → 

By Equation (35) the Inertial or Irradiant Energy for 
the level of the fifth excitement state of the electron n = 5 
computed by: 

 2

5 0.873316905 1 2 1 1irrNE 

  
         

5 0.071954501 eVirrNE 

 

 

transfTotal 5 Propag 5 5N N irrNE E E

 

The total transformed energy to the level of the fifth 
Excitement state of the electron n = 5 is computed by:  

     

   transfTotal 5 0.361739706 eV 0.071954501 eVNE     

transfTotal 5 0.433694207 eVNE 

  

→ 

Restmax 6 max 5 transfTotal 5N N NE E E   

 

Through Equation (43) for the fifth level of excitation 
n = 5, we have the Remaining Energy to be transformed 
and it is computed by:  

   Restmax 6 0.873316905 eV 0.433694207 eVNE     

Restmax 6 0.439622697 eVNE 

 

→   

We can find the relation between the Total Energy of 
the electron of the Fundamental level n = 1 and the total 
transformed Energy of the level of the fifth excitement 
state of the electron n = 5 by doing:  

max 1
5

transfTotal 5

13.6 eV
31.35850048

0.433694207 eV
N

N

E
n

E





  


 

By Equation (46) we can compute the Paraquantum 
absolute value of the Horizontal Propagation Radius for 
this level such that:  5 max 5 2 2p NR E     

 5 0.873316905 2 2pR    5 0.511577198pR  →  

By Equation (47) we compute the absolute value of the 
Horizontal Propagation radius that refers to the physical 
environment: 

5

1
0.511577198  = 0.361739705

2
nR    
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We can find the relation between the absolute value of 
the Horizontal Propagation radius that refers to the level 
of the fifth excitement state n = 5 and the Fundamental 
level n = 1:  

1

5

5.633304448
 = 

0.361739705
n

n

R
N

R




  15.57281208

 

 

Equation (48) allows us to compute the maximum en- 
ergy value of the level of the fifth excitement state of the 
electron n = 5, such that: 

5

1
n

P

R

h


 max 5NE    

    max 5

0.361739705
1

1 2 1
2

           0.873316901 eV

NE   
 



0.361739705

2 1

transfTotal 3NE 

 
 

9843316 eV

61539873 eV

.1603773 eV

9622697 eV

5 max 6N NE  

 39622697 eV

33694208 eV

 

By Equation (49) we compute the energy transformed 
value between the Fundamental level n = 1 and the level 
of the fifth excitement state of the electron n = 5, such 
that: 

transfTotal 1 5 transfTotal 1 transfTotal 2

transfTotal 4 transfTotal 5                        
N N N N

N N

E E E

E E
    

 

 

 
 

 
 
 

transfTotal 1 5 6.753838372 eV 3.39

                         1.711461534 eV 0.8

                         0.433694207 eV

N NE       

   

 

 

transfTotal 1 5 13N NE       

● For the excited state n = 6 the Total Energy of the 
electron is: . max 6 Restmax 6

And the variation of energy is computed by Equation 
(45):  

0.43N NE E  

maxni nfE E 

 5 6 0.873316905 eV 0.4n nE       

→  5 6 0.4n nE   

By Equation (34) we have the Propagation Energy at 
the sixth excitation state of the electron n = 6 computed 
by:  

 Propag 6 2 1 0.43NE     9622697 eV

82097683 eV

 

Propag 6 0.1NE     

By Equation (35) the Inertial or Irradiant Energy for 
the level of the sixth excitement state of the electron n = 
6 computed by: 

 2

2 1 1
  

      

0.036221481 eVE  

transfTotal 6 Propag 6 6N N irrNE E E

6 0.439622697 1irrNE      

6irrN   

The Total transformed energy to the level of the sixth 
Excitement state of the electron n = 6 is computed by:  

     

   transfTotal 6 0.182097683 eV 0.036221481 eVNE     

transfTotal 6 0.218319164 eVNE 

 

→  

Restmax 7 max 6 transfTotal 6N N NE E E

 

Through Equation (43) for the sixth level of excitation 
n = 6, we have the Remaining Energy to be transformed 
and it is computed by: 

     

   Restmax 7 0.439622697 eV 0.218319164 eVNE     

Restmax 7 0.221303532 eVNE 

 

→   

We can find the relation between the Total Energy of 
the electron of the Fundamental level n = 1 and the total 
transformed Energy of the level of the sixth excitement 
state of the electron n = 6 by doing:  

max 1
6

transfTotal 6

13.6 eV
62.29411908

0.218319164 eV
N

N

E
n

E





  


 

By Equation (46) we can compute the Paraquantum 
absolute value of the Horizontal Propagation Radius for 
this level such that:  6 max 6 2 2p NR E    

 6 0.439622697 2 2pR    6 0.257525013pR  →  

By Equation (47) we compute the absolute value of the 
Horizontal Propagation radius that refers to the physical 
environment:  

6

1
0.257525013 = 0.182097683 

2
nR  

 
We can find the relation between the absolute value of 

the Horizontal Propagation radius that refers to the level 
of the sixth excitement state n = 6 and the Fundamental 
level n = 1:  

1

6

5.633304448
= 30.93561848

0.182097683
n

n

R
N

R




 

 

 

Equation (48) allows us to compute the maximum en- 
ergy value of the level of the sixth excitement state of the 
electron n = 6, such that:  

6
max 6

1
n

N

P

R
E

h


 
 

 

    max 6

0.182097683 0.182097683
1 2 11 2 1
2

           0.439622696 eV

NE   
 



 

By Equation (49) we compute the energy transformed 
value between the Fundamental level n = 1 and the level 
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of the sixth excitement state of the electron n = 6, such 
that: 

transfTotal 1 6 transfTotal 1 transfTotal 2

transfTotal 4 transfTotal 5                         
N N N N

N N

E E E

E E
    

 

 

 
transfTotal 3

transfTotal 6

N

N

E

E







 

   
 
 

transfTotal 1 6 6.753838372 eV 3.3998

                        1.711461534 eV 0.86153

                        0.433694207 eV 0.21

N NE       

   

   

 
 

43316 e V

9873 eV

8319164 eV

7869646 eV

21303532 eV

6 max 7N NE  

   303532 eV

 

transfTotal 1 6 13.3N NE       

● For the excited state n = 7 the Total Energy of the 
electron is:  

max 7 Rest max 7 0.2N NE E     

And the variation of energy is computed by Equation 
(45): 

maxni nfE E 

E 

 

6 7 0.439622697 eV 0.221n n   

6 7 0.218319165 eVn nE   

 

→  

By Equation (34) we have the Propagation Energy at 
the seventh excitation state of the electron n = 7 com- 
puted by: 

  2 1 0.221303532 eVE   

Propag 7 0.091666924 eVNE   

Propag 7N   

 

By Equation (35) the Inertial or Irradiant Energy for 
the level of the seventh excitement state of the electron n 
= 7 computed by: 

 2

2 1 1
  

      

7 0.018233684 eVirrNE   

transfTotal 7 Propag 7 7N N irrNE E E   

   0.091666924 eV 0.018233684 eV 

Restmax 8 max 7 transfTotal 7N N NE E E   

   1303532 eV 0.109900608 eV 

7 0.221303532 1irrNE      

 

The total transformed energy to the level of the sev- 
enth Excitement state of the electron n = 7 is computed by: 

 

transfTotal 7NE     

→  transfTotal 7 0.109900608 eVNE   

Through Equation (43) for the seventh level of excita- 
tion n = 7, we have the Remaining Energy to be trans- 
formed and it is computed by: 

 

Restmax 8 0.22NE     

→  Restmax 8 0.111402923 eVNE   

We can find the relation between the Total Energy of 
the electron of the Fundamental level n = 1 and the total 

transformed Energy of the level of the seventh excite- 
ment state of the electron n = 7 by doing:  

max 1
7

transfTotal 7

13.6 eV
123.748178

0.109900608 eV
N

N

E
n

E





  


 

By Equation (46) we can compute the Paraquantum 
absolute value of the Horizontal Propagation Radius for 
this level such that:  

 7 max 7 2 2p NR E    

 7 0.221303532 2 2pR    7 0.129636607pR  →  

By Equation (47) we compute the absolute value of the 
Horizontal Propagation radius that refers to the physical 
environment: 

7

1
0.129636607 = 0.091666924

2
nR    

We can find the relation between the absolute value of 
the Horizontal Propagation radius that refers to the level 
of the seventh excitement state n = 7 and the Fundamen- 
tal level n = 1:  

1

6

5.633304448
= 61.45405782

0.091666924
n

n

R
N

R




 

 

 

Equation (48) allows us to compute the maximum en- 
ergy value of the level of the seventh excitement state of 
the electron n = 7, such that: 

7
max 7

1
n

N

P

R
E

h


 
 

 

    max 7

0.091666924 0.091666924
1 2 11 2 1
2

           0.221303531 eV

NE   
 



transfTotal 1 7 transfTotal 1 transfTotal 2 transfTotal 3

transfTotal 4 transfTotal 5 transfTotal 6

transfTotal 7

                         

                          

N N N N N

N N N

N

E E E E

E E E

E

 

By Equation (49) we compute the energy transformed 
value between the Fundamental level n = 1 and the level 
of the seventh excitement state of the electron n = 7, such 
that: 

     

  



 

  



   
   
   
 

transfTotal 1 7

6.753838372 eV 3.399843316 eV

1.711461534 eV 0.861539873 eV

0.433694207 eV 0.218319164 eV

0.109900608 eV

N NE   

   

   

   

 

transfTotal 1 7 13.48859707 eVN NE   

 

 

  
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The values obtained through the Paraquantum equa- 
tions for the Hydrogen atom model in 7 energy levels are 
showed on the Lattice of the PQL according to Figure 6 
and Table 1. 

Copyright © 2012 SciRes.                                                                                 

5.5. Simplified Values 

With the simplified values and with the possible round- 
ing of the results, we can obtain the simplified equations 
used in the Bohr’s model.  

For Level n = 1: max 1
1

transfTotal 1

2.01N

N

E
n

E




  3669746 2  

→ transfTotal 1 max 1

1

2N NE E   1

1

1n

n

R
N

R




   

For Level n = 2: max 1
2

transfTotal 2

4.0N

N

E
n

E




  00184343 4  

→ transfTotal 2 max 1

1

4N NE E   1

2

1.986514595 2n

n

R
N

R




    

For Level n = 3: max 1
3

transfTotal 3

7.946424579 8N

N

E
n

E




    

→ transfTotal 3 max 1

1

8N NE E   1

3

3.946240239 4n

n

R
N

R




    

For Level n = 4: max 1
4

transfTotal 4

15.78568842 16N

N

E
n

E




    

→ transfTotal 4 max 1

1

16N NE E  1

4

7.839263838 8n

n

R
N

R




    

For Level n = 5: max 1
5

transfTotal 5

31.35850048 32N

N

E
n

E




    

→ transfTotal 5 max 1

1

32N NE E  1

5

15.57281208 16n

n

R
N

R




    

For Level n = 6: max 1
6

transfTotal 6

62.29411908 64N

N

E
n

E




    

→ transfTotal 6 max 1

1

64N NE E  1

6

30.93561848 32n

n

R
N

R




  

 

 

 

levels. Figure 6. Values obtained by the equations when applying PQL to the hydrogen atom for seven energy 
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Table 1. Comparative energy values between Paraquantum equations and Bohr’model. 

Equations on Bohr’s Model Paraquantum Logical Model 

Level n Equation (52) 
E(n) 

Equation (53) 
E(m) 

Equation (36) 
EtransTotalN = n 

Equation (49) 

EtransTotalN = 1  N = n 

2 –3.4 eV –10.2 eV –3.399843316 eV –10.15368169 eV 

3 –1.5 eV –12.09 eV –1.711461534 eV –11.86814322 eV 

4 –0.85 eV –12.75 eV –0.864539873 eV –12.72668309 eV 

5 –0.544 eV –13.06 eV –0.433694207 eV –13.1603773 eV 

6 –0.377 eV –13.23 eV –0.218319164 eV –13.37869646 eV 

7 –0.277 eV –13.32 eV –0.109900609 eV –13.48859707 eV 

 

 

Figure 7. Simplified values obtained by the Paraquantum equations to the hydrogen atom for seven energy levels. 
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Figure 8. Simplified values and correlation with amount of lattices and electrons in each layer. 

 

For Level n = 7: max 1
7

transfTotal 7

123N

N

E
n

E




  .748178 128  

→ transfTotal 7 max 1

1

128N NE E  1

7

61.45405782 64n

n

R
N

R




    

Figure 7 shows the results with simplified numeric 
values and Figure 8 shows the results with simplified 
values where the number of lattices in each level of en- 
ergy can be considered as the amount of electrons capa- 
ble of the atom to support in each layer. 

The results obtained with the simplified values follow 
2n

en  .  
e is the quantities of lattice or electrons and n is 

the atom level or energy layer. 

6. Conclusions 

In this paper we presented the main concepts of the PQL 
with applications on physical Systems. The equations and 
forms of dealing with representative values of physical 
systems considered on the lattice of the PQL allowed to 
obtain behavioral characteristics of Paraquantum logical 
states ψ which produce quantitative results affected by 
the measurements performed on the Observable Vari- 
ables in the physical environment. We presented the val- 
ues which correlate the measurements of the evidence 
degrees in the physical environment with the quantiza- 

the equation: 
where: n
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tion factors of the Paraquantum world. This correlation 
produced equations about physical quantities where 
through the Paraquantum equations we investigated the 
effects of energy balancing, quantization properties and 
transiences on the Paraquantum Logical Model in a 
comparative numerical study which deals with the PQL 
applied to the Bohr’s Model of the Hydrogen atom. The 
numerical results of the energy levels of the Hydrogen 
atom show that using the Paraquantum equations is a 
good option for modeling and solving questions related to 
the phenomena of physics. In the reference [16] we pre- 
sented the Paraquantum Logical Model used in the cal- 
culations of the spectral analysis of the Hydrogen atom. 
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