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ABSTRACT

This paper discusses the dynamic behaviors of a discrete predator-prey system with Beddington-DeAngelis function
response. We first show that under some suitable assumption, the system is permanent. Furthermore, by constructing a
suitable Lyapunov function, a sufficient condition which guarantee the global attractivity of positive solutions of the

system is established.
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1. Introduction

Since the end of the 19th century, many biological mod-
els have been established to illustrate the evolutionary of
species, among them, predator-prey models attracted more
and more attention of biologists and mathematicians.
There are many different kinds of predator-prey models
in the literature. In 1975, Beddington [1] and DeAngelis
[2] proposed the predator-prey system with the Bedding-
ton-DeAngelis functional response as follows

x’:x(a—bx——cy j
m, +m,X+m,y

(1.1)
y'= y[—d +

fx j
m, +m,X+m,y

Recently, Li and Takeuchi [3] proposed the following
model with both Beddington-DeAngelis functional re-
sponse and density dependent predator

C
X'= x[a—bx——y),
m, +m,X+m,y

(1.2)
y'= y[—d —ey+

fx
m, +mx+myy )’

and discussed the dynamic behaviors of the model.

On the other hand, when the size of the population is
rarely small or the population has non-overlaping gen-
eration, the discrete time models are more appropriate
than the continuous ones. Discrete time models can also
provide efficient computational models of continuous
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models for numerical simulations.
In [4], Qin and Liu studied the dynamic behavior of
the following discrete time competitive system

x(n+1)
=x(n)exp{a(n)—b(“)x(”)"%
y(n+1)

=y(n)exp{—d(n)—e(“)y(”) +

o)

1+x(n)

In [5], Wu and Li considered the following discrete
time predator-prey system with hassell-varley type func-
tional response

x(n+1)
= x(n)exp{a(n)—b(n)x(n)—
y(n+1)

_y(mexp) —d (n) 4 —()X(0)
o) p{ ) m<n)yf(n>+x(n>}’

some sufficient conditions for the permanence and global
attractivity of system (1.4) are obtained. For more work
on this direction, one could refer to [6-14].

Based on the above discussion, in this paper, we con-
sider the discrete analogous of (1.2), one can easily de-
rive the discrete analogue of system (1.2), which takes
the form of
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n+1 exp{a
y n+1 exp{ d(n
In this paper, we always assume that {a(n)}, {b(n)},

fem} {dm} fe(m {f(m}, {m ()}, {m;(n)},
{m3 (n)} are all positive bounded sequences and
0<a'<a(n)<a’, 0<b' <b(n)<b’,
0<c'<c(n)<c’, 0<d'<d(n)=<d",
0<e'<e(n)<e’, 0<f'<f(n)<fy,
O<m <m(n)<m’, i=123.
Here, for any bounded sequence {f (n)},
f'=sup,, f(n), f'=inf_, f(n).

From the view point of biology, we will focus our dis-
cussion on the positive solutions of system (1.4). So it is
assumed that the initial conditions of (1.4) are of the

form
x(0)>0, y(0)>0

It is easily to see that the solutions of (1.4) with the in-
itial condition (1.5) are defined and remain positive for
all keN.

(1.6)

2. Permanence

DEFINITION 2.1. System (1.5) is said to be permanent,
if there are positive constants r,r,, R;,R, such that
each positive solution (x(n),y(n)) of system (1.5) sa-
tisfies

r <liminf x(n)<limsupx(n)<R,,

n—ow n—ow

r, <liminf y(n)<limsupy(n)<R,.

n—o

x(n+1)= x(n)exp{a(n)—b(n)x(n)—

(1.5)

LEMMA 2.1. [6] Assume that {x(n)} satisfies
x(n)>0 and

x(n+1)<x(n)exp{a(n)-b(n)x(n)}

for all n>n,, where {a(n)}, {b(n)} are positive se-
quences. Then

Iimsupx(n)gm.

nN—o bl

LEMMA 2.2. [6] Assume that {x(n)} satisfies
x(n+1)=x(n)exp{a(n)-b(n)x(n)},n=n,
limsupx(n)<D and x(n,)>0,

where {a(n)}, {b(n)} are positive sequences. Then

a'exp(a' —b'D
liminf x(n)>¥.
|
LEMMA 2.3. Assume that f—u—du >0 holds, then
m2
for any positive solution (x(n),y(n)) of system (1.4),
one has
exp(a“ -1
limsupx(n) <G, =¥
and
. 1 v
limsu n)<G,=—exp| —-d -1].
limsupy(n)<G, = p(m.z j
Proof. Let (x(n),y(n)) be any positive solution of
system (1.5), from the first equation of (1.5), it follows
that

¢(n)y(n) }
m, (n)+m, (n)x(n)+m, (n)y(n)

<x(n)exp{(a(n)—-b(n)x(n)}.

By Lemma 2.1, we obtain
!i_r)gsupx(n)sGl =(exp(a“ —1))/b' .

Similarly, from the second equation of (1.5), it follows
that

<y(rpornl 10 () (n) < vinjoce| o' <o)
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|
f—u—du >0, by Lemma 2.1,
m2

Under the assumption
we obtain

limsupy(n)<G, =i|exp[—|—d' —1] .
n—owo e m2
This completes the proof of Lemma 2.3.
LEMMA 2.4. Assume that h >0, h,>0. Then for
any positive solution (x(n), y(n)) of system (1.5), one
has

liminf x(n)>g,, limsupy(n)>g,,

n—oo

x(n+1)= x(n)exp{a(n)—b(n)x(n)—

where
h=a-c'/mj,
h, =—d" + f'gl/(mf + MG, + MG, ),

hlexp<hl—b“Gl) h, exp(h2 —e“GZ)
gl = b| 1 gl = u .
e
Proof. Let (x(n),y(n)) be any positive solution of

system (1.5), from the first equation of (1.5), it follows
that

21(n)epa(n) L0 -b{a) ()| (o)esp{ !~ -bru(m)]

= x(n)exp{h1 —b”x(n)}.

Under the assumption h, >0, By Lemma 2.2 and Lemma 2.3, we obtain

liminf x(n)>g,

n—o

_hexp(h,—b'G,)

bU

Similarly, from the second equation of (1.5) and Lemma 2.3, it follows that

y(n+1) = y(n)exp{—d (n)—e(n)y(n)+

f (n)x(n) }

m, (n)-+m, (n)x(n)+m; (n)y(n)

> y(n)exp{—du —e“y(n)+<

By Lemma 2.2 and Lemma 2.3, we have

h exp(h, —e'G
Iiminfy(n)zglz—2 p( Zu 2).
n—w e
From Lemma 2.3 and Lemma 2.4, we obtain the fol-
lowing theorem.
THEOREM 2.1. Assume that

~d"+f'/my >0, a'-c'/m,>0 (2.1)
|
r, d">0

u u u - (22)
m, +m,G, + m,G,

hold, then system (1.5) is permanent.

u u u
m' +m,G, + m;G,

3. Global Attractivity

This section devotes to study the global attractivity of the
positive solution of system (1.5).

DEFINITION 3.1. A positive solution (x"(n),y"(n))
of system (1.5) is said to be globally attractive if each

other positive solution (x(n),y(n)) of (1.5) satisfies
Iim|x(n)—x*(n)|=0, Iim|y(n)—y*(n)|:0.

n—oo n—owo

THEOREM 3.1. In addition to (2.1) and (2.2), assume
further that there exist positive constants «, B and
6 such that

pre(m)” pree(m)”

3
ac'GZ? (my
amin{b',é—b”}— 2 ( 2)

1

and

Copyright © 2012 SciRes.

o(mmg,) " g* 9(mimg,g,)” 9(mimg, )" g2’

>0 (3.1)
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prci(m)”

ac' (ml“ )1/3

ac'G? (m‘z‘ )1/3

ﬂmin{e',é—e“}

Then the positive solution of system (1.5)is globally

o(mimig, )" g 9(m'2mé9192)2/3

9(mlg,)” g¥°

(3.2)

Proof. From (3.1) and (3.2), there exists an enough

attractive. small positive constant & <min{g,/2,9,/2} such that
u 23 ( u\¥3 U u\Y3
amin{b',—— u}— = (Gz+8) /2/3(m2) v al (ml) 2/3
G +e& g[ml'm;(gl—g)] (9,-¢) Q[m'zmg(gl—g)(gz—g)} 3
ﬂfu(G2+8)2/3<m;)1/3 .
B [l 23 1/3 >0
Q[mlmz(gl—g)] (9,—¢)
and
pmi {' } P (G o) (mt)” e (m )"
min<e’, —e" - 7 - — 7
G+ o[mim (g,-¢)]” (g,-¢)"* 9[mimi(g,~)(g,~¢)] -
23 1/3 '
_ac (G1+g)/ (mz) s
o m (g ~#)]" (6 -¢)"
For any positive solutions (x,(k),y,(k)) and _
(%, (k). y,(k)) of system (1.(4),(it)foll(£w2;)from Lemma g -e <% (k)<G+e _ (3.6)
2.3 and Lemma 2.4 that 9,—¢<Y;(k)<G,+e (i=12)
!minfx,(k) g, Let
liminf y, (k) > g, 5 k) =[Inx, (k)=Inx, (k)|,
fimsupx, (k) <G, A= (K)+m, (K)x, (K)+m, (k) ¥, (k).
rI1i%r701csupyi(k)sG2(|:1,2).
B=m (k)+m,(k)x (k)+m;(k)y, (k).
In view of (3.5), for above &, there exists an integer
k, >0 such that, forall k >k, From the first equation of system (1.5), we have
AV, (k) =V, (k+1) =V, (k) =[In %, (k +1) = Inx, (k+1)| = [Inx, (k) = In x, (k)|
, (k) (k k)—x,(k
< inx (K) = Inx, (k) ~b (K)[x, (k) ~ %, (k)] =[In %, (k) ~In x, (K)| +c(k)|m( Jh( )[Axé( )75 )]I
k)|ml(k)[y1(k)—yz(k)}|+c(k)|m2( )Xi(k)[VZ(k)_yl(k)]|
| AB | | AB |
By the mean value theorem, we have
%, ()=, (k) =exp[Inx, (k) ]-exp[Inx, (k) ]= & (k) [In %, (k) = Inx, (k)] (37)
where & (k) lies between x (k) and x (k). It follows from (3.7) that
1|1 e(k)m? (k) v ()|, (k) =% (K)
AV, k) <- k k)- 2/3 m2/3 3 3 3
=gy g2 s e
c(k)my® (k)[y ( )= v (k) , SO mE® ()X ()|, () — vs (k)|
om; (k) mg? (k) (k)x6” (k) v (k) yz° (k) - om” (k)xg® (k) i (k )vz“( )
Copyright © 2012 SciRes. AM
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and so, for k >k, From the second equation of system (1.5), we have

el 2 ~ AV, (K) =V, (k+1)-V, (k)
(k)= {b’Gﬁg b}|X1(k) () =[Iny; (k+1)=Iny, ( k+1|—|lnyl )=Iny, (k)|

+c“(ms)”(ezw2/3|x1(k X (K)| <finy, ()=t y; (k) —e(k)[yaK) - v, ()]
9[(”‘1'”1;)(91_5)] (9.~ ) _|In ¥ (k)=Iny, (k )|
& (1) (k) () (38) e (iM% (L ()%, ()]
9[m my(9,-¢)(9, - )]2 (k)[ (k:B (k)] |
) @) )ik} A
1/3 '
- 9 1<gz—£>l (9.-2) y (k)m3<k>y1<k>[x1(k)—x2(k)]I_
k)=[Iny, (k)=Iny, (k). By the mean value theorem, we have
¥ (k) =y, (k) =exp(Iny, (k))—exp(Iny, (k)) =& (k)[Iny, (k)= Iny, (k)], (3.9)

where &, (k) lies between vy, (k) and y, (k). Itfollows from (3.9) that
-oto] [0+ b RO X
@(k) 1 om” (k)m 2/3( )XV3< )y (k) y2® (k )

MR-k TR KR -x (6)
B O A e )

e

1
(k)

sz(k)s{

and so, for k >k,

2/3

to(m)” (G, +e) |y2 —y,(K)|

o[ mimi(g,-¢)]" (g, - )"

)=, (k)|+

u\¥3 2/3 (3.10)
AL TR0 AU RS ACRAD
2/3 '
9 m 91 5 92—8)] 9[m1|m2(91_5):| (gz_ )1/3
Now we define a Lyapunov function as follows: Calculating the difference of V (K) along the solution
_ of system (1.5), for k >k, it follows from (3.8) and
V(k)—aVl(k)+ﬂV2(k). (3_10) that !
2 ac' (G, + 5)2/3 (m;J )1/3
AV (k) =aAV, (k)+ BAV, (k) <— ozmin{b',G —b“}— 7 7
e 9[(ml'm'3)(gl—g)] (9,-¢)
u u 1/3 u u 1/3
gt (my) B (G, +e)" (my)
- ' 23 I 2/3 13 |Xl(k)_xz(k)|
9|:mzm3(gl_5)(gz_‘9ﬂ g[mlmz(gl_g)] (9.-¢)
[, 2 . ,b’f“(G1+g)2/3(mg)l/3 otcl‘(ml“)l/3 ac”(Gl+g)2/3(m;‘)1/3
—| Amin.e, —€ - [ — V2B (a _ 3 Ty _ YA I — A\12B(y _ ~\Y3
G, +¢ o[mm, (g, — &)1 (9, — ¢) 9[m,m; (g, —&)(9, —¢&)] 9[m, (9, —&)]"" (9, —¢)

'|YZ(k)_ Y1(k)| .
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It follows from (3.3) and (3.4) that

AV (k) <=5 [ (k) =%, (k)| +]y, (k) = va ()] ]

Summating both sides of the above inequalities from
k, to k,we have

> AV (i) < -3 e ()%, () s ()~ ()]

i=ky i=ky

Which implies

3o (1) )¢ ()32 (] <06

Then

§[|X1(i)_xz(i)|+|y1(i)—yz(i)u<+oo.

Therefore,

lim [ [, (i) =%, (i)| +]y1 (i) - v (i)|]= 0.

X—0

That is

lim|x, (k) =, (k)| =0, lim|y, (k) -y, (k)| =0.

This completes the proof of Theorem 3.1.
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