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ABSTRACT 

The existence and uniqueness results on solutions of set stochastic differential equation were studied in [1]. In this paper, 
we present the stability criteria for solutions of stochastic set differential equation. 
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1. Introduction 

Recently, the field of stochastic differential equations 
(SDEs) has been studying in a very abstract method. In-
stead of considering the behaviours of one solution of 
(SDEs), one studies its set-valued solution. Instead of 
studying a (SDEs), some study stochastic differential in- 
clusion (SDIs) (see e.g. [2-4] and references therein), 
stochastic fuzzy differential equations (SFDEs), (see e.g. 
[5-6] and references therein) stochastic set differential 
equations (SSDEs) (see e.g. [7-10] and references therein), 
stochastic set differential equations with selector (see 
[11-13]). Latest, the existence and uniqueness of solu-
tions to the stochastic set differential equations were stu-
died in [1]. We remark that the problems of properties of 
stochastic set solution are still open. 

We organize this paper as follows: In Section 2, we 
recall some basic concepts and notations which are use- 
ful in next sections. In Section 3, we study some kinds of 
stability properties such as stable, asymptotically stable, 
exponentially stable by Lyapunov and some other stabil- 
ity criterion. In Section 4, we give the examples and fur- 
ther research of this paper.  

2. Preliminaries 

We recall some notations and concepts presented in de-
tail in recent series works of V. Lakshmikantham et al 
(see [14]). Let  n

CCK R



 denote the collection of all 
nonempty compact convex subsets of . Given nR

, n
CCA B K R , the Hausdorff distance between A and 

B is defined by  

   
    

, max supinf ,supinfH
a A b B b B a A

d A B a b b a
   

 

and  n —the zero points set in  n
CCK R . It is known  

that   ,n
CC HK R d  is a complete metric space and  

 CC
nK R  is a complete and separable with respect to 

Hd . We define the magnitude of a nonempty subset A  
as, 

   , sup ,n
Hd A A a a A     

The Hausdorff metric (2.1) satisfes the properties be-
low:  

1)    , ,H Hd A C B C d A B   and  

   , ,H Hd A B d B A ,  

2)    , ,H Hd A B d A B   ,  

3)      , ,H H Hd A B d A C d C B  , ,  

4)      , ,H Hd A A B B d A B d A B,H        

for all  , , , , n
CCA B C A B K R   and R  . 

If , R    and  , n
CCA B K R , then 

     , , 1A B A B A A A      A     
 Ω, , P

Given a 
complete probability space  with a filtration  

  [0, ]t t T
 satisfying the usual conditions. Let  

  , 0,tw t T  be an —adapted one dimensional Wie-  t

ner process defined on  and (Ω, , )P   d dtt w  t , 
with     is one-dimensional “white noise”, i.e., the 
time derivative of the Wiener process. In [1], authors 
considered the initial valued problem (IVP) for a set sto- 
chastic differential equation (SSDE) as follows 

    0d , d , d , (0)t t t tX F t X t G t X w X X      (2.2) 
    (2.1) 

where      , , 0,n
t CCX X t K R t T R     , Ω.  
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     : 0, n n
CC CCF T K R K R   

 , t F t X  is measurable multifunction and Aumann 
integrably bounded. 

     : 0, n n
CC CCG T K R K R   

 , tG t X   is measurable multifunction and ˆIto  inte-
grably bounded,  0 :Ω n

CCX K R  is an -measu- 
rable multifunction. 

0

Definition 2.1. (see [1]) Let a set-valued stochastic 
process    : 0, Ω n

CCX T K R 

  2, Ω, , ;X X t P  
 satisfy: 

1)  for every    n
t t K R


CC

Ω, 0,t T  ; 

2)      2: 0, Ω, , ; n
t CCX T P K R 

is continuous mapping with respect to the metric ; 2Δ
3) for every  0,t T : 

   0
0 0

, d , d .
t t

t s s s .,X X F s X s G s X w P a e      

where  0 :Ω n
CCX K R  is an 0 —measurable mul-

tifunction. Then 


tX  is solution of (2.2).  
Definition 2.2. Let set-valued stochastic processes 

  , : 0, Ω n
CC X Y T K R  , we have the following de- 

finitions:  
1) For every ,     , 0, Ωt    

 2 2  2Δ , ,n n
t H tX E d X  .     

2) For every ,    , 0, Ωt    
 2 2Δ X Y E d  2 , ,t t H t tX Y .     

Using the properties of the Hausdorff distance one can 
formulate the following results 

Lemma 2.1.  
1) if      2, , Ω, , ; n

t CCX Y Z K R  
   2

2 2, Δ , .then Δ X Z Y Z X Y    

2) if 

  2
1 1, , , , , Ω, , ; ,n

n n t CCX X Y Y K R n N       

then  
2

2 2
1 1 2

1

Δ , Δ , .
n

n n k
k

 kX X Y Y n X Y


        

3) If  and  recon-   2, Ω, , ; n
t CCX Y K R    ,l k

stants, then    2 2
2 2Δ , Δ , .lX kY l k X Y   

Corollary 2.1. oc- 
esses 

 (see [7]) Let set-valued stochastic pr
 2, Ω, , ; n

t CCX Y P K R  




2 











 we have the fol- 
lowing confirms: 

1) ;  2 2

0 0

d , 2 d , d
t t

n n
H s s H sE d X w E X s 

   
    

    
 

2) ;  2

0 0 0

d , d 2 , d
t t t

H s s s s H s sE d X w Y w E d X Y s
   

   
    

  

3) ;  2 2

0 0

d , d , d
t t

n n
H s H sE d X s tE X s 

   
    

    
 

4) .  2 2

0 0 0

d , d d , d
t t t

H s s H s sE d X s Y s tE X Y s
   

    
    

  
Definition 2.3. A solution tX  to Equation (2.2) is 

unique if for every  0,t T :  

 2
2Δ , 0 . .t t .,X Y P a e  

where  is any solution to Equation (2.2). t

Assume that 
Y

     , : 0, n n
CC CCF G T K R K R   sati- 

sfy the following hypotheses: 

(H1) For every set  n
CCA K R  the mappings 

   , , ,F A G A  :    0, CCT K R n  are nonanticipating 
multifunctions. 

(H2) There exists a constant , such that 0L 

          
 

max , , , , , , ,

,

H H

H

d F t A F t A d G t A G t A

L d A A 
 

(H3) There exists a constant , such that 0C 

      
  

max , , , , ,

. 1 ,

n n
H H

n
H

d F t A d G t A

C d A

 

 
 

(H4) There exists a function , such that ( ) 0L t 

    
        

max , , , ,

, , , ,

H

H H

d F t A F t A

d G t A G t A L t d A A 
 

where  2
1

0

d
T

L t t K . 

(H5) There exists a function , such that ( ) 0C t 

      
   

max , , , , ,

1 ,

n n
H H

n
H

d F t A d G t A

C t d A

 

   

 

where .  2
2

0

d
T

C t t K
Corollary 2.2. (see [1], Theorem 7) Assume  

  2
0 Ω, , ; n

CCX P K  R  be an 0 —measurable mul- 
tifunction and F, G satisfy (H1)-(H3), then SSDE (2.2) 
has a unique solution and satisfies estimate  



 
    

2
2

2 2
2 0

Δ ,

3Δ , 6( 2) exp 6 2

n
t

n

X

2X T C T T C T



     
 

Corollary 2.3. Assume   2
0 Ω, , ; n

CCX P K  R   
be an 0 —measurable multifunction and F, G satisfy 
(H1), (H4)-(H5), then SSDE (2.2) has a unique solution 
and satisfies estimate 
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2
2

2
2 0 2 2

Δ ,

3Δ , 6 2 exp 6 2

n
t

n

X

X T K T T K



     
 

3. Main Results 

In this section, we study some kinds of stability proper- 
ties such as stable, asymptotically stable, exponentially 
stable by Lyapunov and some other stability criteria such 
as equi, uniform and equi-asymptotical stabilities for 
SSDE. 

Definition 3.1. The trivial stochastic set solution of 
SSDE Equation (2.2) is said to be 

(LS) Lyapunov stable, if for each 0   and  0 0t 

there exist a  0 ,t    , such that  02Δ ,tX2 n    

implies  2
2 0Δ , ,n

tX t t    . 
(ALS) Asymptotical Lyapunov stable, if it is (LS) and 

 2
2li 0m , n

t
n

X 


  . 

(ELS) Exponent Lyapunov stable, if there exist  
, 0   , such that: 

     
0

2 2
2 2Δ , Δ , expn n

t t 0X X t         t  

Definition 3.2. The trivial stochastic set solution of 
SSDE Equation (2.2) is said to be: 

(S1) Equi-stable, if for each 0  , and  there  0 0t 

exists  0 ,t     such that  02Δ , n
tX2    implies  

that  Δ ,X2 n
2 t   , ; 0t t 

(S2) Uniformly stable, if   in (S1) is independent of 
; 0t
(S3) Quasi-equi-asymptotically stable, if for each 

00, 0t   , there exists  0 ,T T t   and  0 0t   

such that  02 0Δ , n
tX2    implies 2Δ ,tX n2   , for 

all ; 0 0

(S4) Quasi-uniformly-asymptotically stable, if 
t t T t  

0  
and  in (S3) are independent of ; T 0

(S5) Equi-asymptotically stable, if (S1) and (S3) hold 
simultaneously; 

t

(S6) Uniformly asymptotically stable, if (S2) and (S4) 
hold simultaneously; 

(S7) Exponent-asymptotically stable, if exist , 0    
such that    0

2 2
2 2Δ , Δ , expn n

t t  0X X t  t   
.t

 
for all  0

Lemma 3.1. According to the Definitions 3.1 and De-
finition 3.2, we can say that  

t 

1) The stochastic set solution of SSDE E (2.2) is (S1) 
if and only if it is (LS) that means (S1)  (LS). 

2) (S6)  (ALS). 
3) (S7)  (ELS). 
4) (S6) or (ALS)  (S6). 
5) (S6)  (S4).  
Thus we have to prove (S1), (S6) and (S7). 

Next, we present some results about (S1)-(S6) of solu-
tion with using the Lyapunov-like functions. 

Theorem 3.1. Suppose that the positive Lyapunov-like 
function       0, , n

t CCV t X C t T K R R  ,  satisfies the 
following conditions: 

1)      2
2, , Δ ,t t tV t X V t X L X X   t , 

where  is Lipschitz constant, for all 0L  tX ,  

  2 Ω, , ; n
t t CCX P K  R , 0,t T ; 

2) The Dini derivative 

 

       
    

0

,

1
, , ,

, , ,

limsup

t

t t t

t

h

t

D V t X

V t h X h F t X G t X t
h

V t X g t V t X




 

   

 

 

where  , 0 0g t  , 2 ,g C R R    ; 

If  00, ,t tX X t t X  is any solution of SSDE Equation  

(2.2) Such that  00 t k,V t X 0 , then we have 

     0 0 0, , , , ,tV t X l t t k t t T   ,  

where  0 0, ,l t t k  is a maximal solution of ordinary dif- 
ferential equation (ODE)  

    0 0

d
, ,

d

l
g t k t k t k

t
0.          (3.1) 

Proof. Let  , ,t 00 tX X t t X  be any solution of 
SSDE Equation (2.2) existing on  0 ,t T . We define the  

function    , tm t V t X  so that .    00 0 , tm t V t X k  0

Now for small , by our assumption it follows that 0h 

       
 

       
         

       
         

2
2

, ,

,

, , ,

, , , ,

Δ , , ,

, , , ,

t h t

t h

t t t

t t t

t h t t t

t t t

m t h m t V t h X V t X

V t h X

V t h X h F t X G t X t

V t h X h F t X G t X t V t X

L X X h F t X G t X t

V t h X h F t X G t X t V t X















    

 

   

    

   

    

,

,

t

t

 

by using the Lipschitz condition give (1). Thus 

       

       
0

2
2

0

1
lim sup ,

1
suplim Δ , , ,

t
h

t h t t t
h

D m t m t h m t D V t X
h

L X X h F t X G t X
h







 






     

    t

 

Since 

      

     

2
2

2
2

1
Δ , ( , ,

Δ , , ,

t h t t t

t h t
t t ,

X X h F t X G t X t
h

X X
F t X G t X t

h
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and tX  is any solution of SSDE Equation (2.1), we find 
that 

      
    

2
2

0

2
2

1
lim sup Δ , , ,

Δ , , , 0.

t h t t t
h

t t t t

X X hF t X G t X t
h

dX F t X dt G t X dw


 


 

  
 

We therefore have the scalar differential inequality 
 which yields, as be- 

fore, the estimate 0 0  where 
      0 0, ,D m t g t m t m t k 

   , ,m t l t t
,

 ,k  0 0, ,l t t k  
is a maximal solution of ODE (3.1). This proof is com- 
plete. 

Corollary 3.1. If the Lyapunov-like function  
 satisfies conditions 

in Theorem 3.1 then we have the estimate: 
     , 0, ,n

t CCV t X C T K R R  

0   00 0, , ,t tV t X V t X t t    

Next, putting 

 

     
0

2 2
2 0Ω, , ; :Δ , .n

t t CC t

X

X P K R X X



  



 
 

Theorem 3.2. Assume that for SSDE Equation (2.2) 
exists the Lyapunov like function  which satis- 
fies the conditions of Theorem 3.1. 

 , tV t X 

a) If there exist the positive functions  are 
strictly increasing such that: 

( , ),  ( )a b  

1)    0; , :n
t CCt T X K R    

     2 2
2 2Δ , ( , ) ,Δ ,n n

t tb X V t X a t X   t   

and   , , tg t V t X  0 , then (S1) holds. 
Futhermore, there exists 1 0   such that  
2) If    1, , tg t V t X  

 
, then (S3) holds. 

3) If   1t, ,g t V t X   , then (S5) holds.  

b) If there exist the positive functions  are 
strictly increasing and 

( , ),  ( )a b  
0   such that: 

1)    00; , :tt T X S X      

       2 2
2 2Δ , , ,Δ ,n n

t tb X V t X a t X   t

0

 

and , then (S2) holds.    , , tg t V t X 
Futhermore, there exists 0   such that.  

2) If    , , ,t tg t V t X V t X  , then (S4) holds.  

3) If    , , ,t tg t V t X V t X   then (S6) holds.  

Proof. Let 0 


 and  be given, choosing  

0

0t
 ,t    such that    0 , ba t    with this we 

have (S1). 
If this is not true, there would exists a stochastic set 

solution tX  of SSDE Equation (2.2) and  such 
that  

0t t

   0

2 2
2 2Δ , and Δ ,n n

t tX X      

with   . By using Corollary 3.1 and a/1, we have  

   00, , ,t tV t X V t X t t0 0     and condition 

   0 ,a t b   as result, yield: 

      

        
0 0

2
2

2
0 0 2 0

Δ , ,

, ,Δ , ,

n
t t

n
t t

b b X V t X

V t X a t X a t b

 

  

 

   
 

This contradiction proves that (S1) holds. 
Next, we have to prove that:  00, 0,t T  

 , 0t t  
 there  

exists a  and number  such that:  0B  1 0

 1

2
2Δ ,tX n  implies  2

2Δ , n
tX B 

0
 for 

0 1 0 0t t t t    . Let   t t and . 0 1 0t  
Choosing  ,B B t   such that    ,a t b B   

with this we have (S3). If this is not true, there would 
exists a stochastic set solution tX  of SSDE Equation  

(2.2) such that,  2Δ ,tX2 n    and  2Δ ,t
2 nX B  , 

where B  , for 0 0.t t t    
By using assumption (a/2) of this theorem shows that 
   , ,t tV t X V t X  , 0 0t t t     and yields: 

      
     

2
2

1

Δ , ,

, ,

n
t t

t

b B b X V t X

V t X a t b B



 

 

     .
 

This contradiction proves that (S3) holds. 
The affirmation for (S5) is proved analogous to the 

proof of the affirmations for (S1), (S3). 
Next, we have to prove that (S2) holds: 

0  implies    00, ,t tV t X V t X   By   , , tg t V t X

and 0t t  ,    02 0
n

t t   , , ,V t X V t X 2Δb X  t . 

  0

2
0 2,Δ , n

ta t X   

Thus for all ( )p
tX S   and  0 0,t  T  the affir-

mation for (S1) holds, that means the affirmation for (S2) 
holds. 

Next, we have to prove that (S4) holds. According to 
assumption b) of Theorem 3.2  

1)        2 2
2 2Δ , , ,Δ ,n n

t tb X V t X a t X   t  

2)     , , ,t tD V g t V t X V t X      

For all  0 0,t  T , we have 

     

    
0

0

0 0

2
0 2 0 0

, , exp

,Δ , exp ,

t t

n
t

V t X V t X t t

a t X t t t t



 

    

      
 

As a result, 

       
0

2 2
2 0 2

0

Δ , ,Δ , expn n
t tb X a t X t t

t t

    



 


 0 ,
 

and (S4) holds. 
The affirmation for (S6) is proved analogous to the 

proof of the affirmations for (S2), (S4). 
Corollary 3.2. Assume that for SSDE Equation (2.2) 
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exists the Lyapunov like function  which satis-
fies the conditions of Theorem 3.1, and exist the positive 
numbers  such that 

 , tV t X 

,a b    0; :n
Ct T K R 

 2 2n n

, t CX   

   2Δ , , Δ ,t tb X V t X a X2 t     . 

If , then (S7) holds. 1 , tD V V t X   
Proof. The proof for (S7) is proved analogous to the 

proof of the affirmations for (S4). 

4. Some Applications of Stochastic Set 
Differential Equations 

For example, in a finance market we consider some stock 
price at time  denoted by tt X  which is a random va-
riable defined on the probability space . Ow-
ing to the quick fluctuation of the stock price from time 
to time or to the existence of missing data, we may not 
precisely know the price 

 , , P 

 tX  . A possible model for 
this situation would be to give the upper and the lower 
prices (i.e. a margin for the error in the observation). 
Then we obtain an nterval      UX X X,L

t t t      , 
which is a special kind of a set-valued random variable, 
ontains not only randomness but also impreciseness, and 
we assume  tX   is certainly in this interval. 

For example different, in environmental of the insur- 
ance premium, the risks is considered a main material of 
this industry. Beside that, the risks are random factors 
and associating with premiums, so insurance premiums 
should be built on the basis of risks to price insurance 
which could compensate and balance the damage occurs 
to their business costs. Otherwise, the risks are some 
kinds different and levels of influence are different, so 
they could influence to levels of price of the insurance 
premium.  

Hence, we may not precisely know the price of the in-
surance premium such that be beneficial to company of 
the insurance and customers. Then, in special the case we 
assume  tX   is certainly in this interval which ad-
missible prices. 

Example 4.1. (Stock prices) Let tX  denote the price 
of a stock at time , where Ct  t CX K R  (i.e. inter- 
val-valued). We can model the evolution of tX  and the 
relative change of price, evolves according to the SSDE 
under the form 

  0 0 0

d ,

0

d d

, ,

t t t

L U

tX X X

X X X

t

X

w 
 

 

  
        (4.1) 

for all  0,t T , for certain constants , 0   , called 
the drift and the volatility of the stock. 

Since coefficients in Equation (4.1) satisfy the condi- 
tions in Corollary 2.2, there is a unique solution of Equa- 
tion (4.1). This means that for  0,t T SSDE (4.1) sat- 
isfies the following interval-valued stochastic differential 
equation 

  0 0 0

d , d , d

0 , ,

L U L U
t t t t t t

L U

X X X t X X w

X X X X

          


    

,
  (4.2) 

for all  0,t T . That is, 

0 0
0 0

, , d ,
t t

L U L U L U
t s s s d .s sX X X X X s X X w                

Since ,  0   , L
tX  and U

tX  are the solutions of 
the following stochastic differential system 

0
0 0

d d
t t

L L L L
t s .s sX X X Xs     w

.s s

        (4.3) 

0
0 0

d d
t t

U U U U
t sX X X Xs     w        (4.4) 

We can slove Equation (4.3) and Equation (4.4) by 
classic methods. Thus, the solutions of Equation (4.3) 
and Equation (4.4) respecttively are  

2

0 exp
2

L L
t tX X t

 
  

        
w  

and 

2

0 exp
2

U U
t tX X t

 
  

        
w . 

Its graphical representation can be seen in Figure 1. 
From here it is easily verifiable stability criteria of so- 

lution to Equation (4.1). 

5. Further Research 

In the future, we will concentrate all our efforts on other 
properties of this kind of equation discussed in our paper, 
such as on the existence of extremal solutions for SSDEs 
(2.2). Beside that, set-valued stochastic differential equa- 
tions and their solutions seem to be a starting point for  
 

0    0.1  0.2   0.3  0.4   0.5   0.6  0.7   0.8   0.9   1

18

16

14

12

10

8

6

4

2

0
 

Figure 1. Solution of Example 4.1 in case μ = 2, δ = 1. 
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further development in the theory of control for SSDEs. 
Below we present the main idea, we consider the set- 
valued stochastic control differential equations (SSCDEs) 
under the form  

   
  0

d , , d , ,

0 ,

t t t t t d tX F t X U t G t X U w

X X

  



      (4.5) 

 0, .t T   

where        , : 0, n d
CC CC CC

nF G T K R K R K R    

are continuous multifunctions, state set 
   0, n

CCX t X K R  and  is different 
controls, inclusion: admissible control, feedback control 
and contraction control. The problems of the existence 
and properties of solutions to SSCDEs Equation (4.5) is 
still open. 

 d
t CCU K R 
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