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ABSTRACT 

This paper is devoted to the analysis of the two-layer shallow-water equations representing gravity currents. A similar-
ity technique which is the characteristic function method is applied for this study. The application of the characteristic 
function method makes it possible to obtain the similarity forms depending on a group of infinitesimal transformations. 
Thus, the number of independent variables is reduced by one and the governing partial differential equations with the 
auxiliary conditions reduce to a system of ordinary differential equations with the appropriate auxiliary conditions. 
Numeric solutions are presented and discussed. 
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1. Introduction 

The present study focuses on a two-layer shallow-water 
system of incompressible, immiscible and inviscid fluids 
with a free surface. When two fluids of differing densi-
ties interact in such a way that a vertical interface exists 
between the fluids, the resulting motion consists of the 
heavier fluid flowing horizontally beneath the lighter 
fluid. Such a flow is said to form gravity current, an 
overall view of many of the phenomena associated with 
the gravity currents is presented by Simpson [1]. Various 
numerical methods have been employed to solve these 
model equations such as finite difference, finite element 
and spectral methods [2]. Leveque use MacCromick’s 
method [3] and Godunov’s method used by Godlewski et 
al. [4] which gives numerical standard schemes to solve 
the systems of conservation laws. Jin et al. [5] have pre-
sented finite difference methods, called relaxation schemes. 
Thereby, Montogomery et al. [6] have used these relaxa-
tion schemes for systems of conservation laws associated 
with the gravity currents for a two-layer model. D’Alesio 
et al. [7]. Gravity currents considering Lie symmetry 
groups has been investigated by Glaister [8]. He did ap-
ply Lie symmetry groups of two-dimensional shal-
low-water equations with cylindrical symmetry numeri-
cally in conjunction with the Rankine_Hugoniot shock 
relations. Velan et al. [9] studied Lie symmetries and 
found the invariant solutions of the dispersive shal-
low-water equation which is in the single equation form. 
Özer [10,11]. Also there are several solution techniques 
to deal with the determining equations in the Lie group 

analysis of differential equations [12,13]. The main pur-
pose of this paper is to find similarity solutions of two- 
layer shallow-water equations representing gravity cur-
rents by using the characteristic function method. As the 
characteristic function method is not based on linear op-
erators, it is applicable to both linear and nonlinear dif-
ferential models [14-16]. 

2. Mathematical Formulation of the 
Problem 

In this study, we consider a two-layer shallow water 
resting on a horizontal surface with respective densities 
ρ1, ρ2. We neglect the friction between the fluids and the 
bottom and we also assume that the effect of viscosity is 
negligible. According to the shallow-water theory, we 
shall assume that the length of the current is much larger 
than its depth. By using this assumption we neglect the 
vertical accelerations and we can say that the pressure is 
hydrostatic. Assuming that the depth of an ambient fluid 
is much larger than the thickness of the current. The ho-
rizontal velocities u1 in the upper layer and u2 in the 
lower layer are independent of height and pressure field 
by using the assumption that the pressure is hydrostatic 
[17]. We also assume that Reynolds number of the flow 
is sufficiently high so that viscous forces are negligible, 
as well as the surface tension. We also assume that there 
is no mixing between layers. By employing these as- 
sumptions and using the kinematics and dynamic bound- 
ary conditions at the interface, the two-layer shallow- 
water equations are modeled as follows [18]. 
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This model is illustrated in Figure 1, where  ,x t  
represents the displacement of the upper layer,  ,h x t  
is the thickness of the lower layer, H is the mean total 
depth, x is an coordinate system with the x-axis along the 
bottom. , (i = 1, 2), denotes the horizontal veloc-
ity components for the upper and the lower layer, t is the 
time and 

 ,iu x t 

 g g  , g


is the combined gravity de-
fined by  2 1 2g g     , g is the gravity. 

We study the system under the following conditions; 
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2.1. Invariance Analysis 

The infinitesimal transformation of the system variables 
(t, x; u1, u2, h, τ) is defined as follows; 
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Figure 1. Two-layer shallow-water representation. 

The transformation of 1 , , h and τ derivatives p’s, 
q’s, r’s and s’s are defined as; 
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where the subscript i and j stand for derivative with re-
spect to t, x. 

A, B, M’s, P’s, Q’s, S’s and S’s are the infinitesimal 
prolongations. According to these Definitions (1)-(4) 
reduce to; 

1 1 1 2 2 0G p u p s                     (9) 

2 1 1 2 1 2 2 2 1 2 0G r s h p u r H p p u s            

(10) 

 3 1 2 2 2 21G q u q r s 0              (11) 

4 1 2 2 2 0G r h q u r                   (12) 

the system of differential Equations (1)-(4) of the form Gi 
= 0, (i = 1 - 4), will be invariant if DGi = 0, Where the 
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total operator D is written as: 
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The applications of the total operator D to Equations 
(7)-(10) gives: 
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2.2. Evaluation of Infinitesimals 

Here we will find the explicit solutions of the infinitesi-
mal functions A, B and M’s, by solving the Equations 
(14)-(17). “The power-series solution form” is one of the 
most effective techniques for finding the solutions of 
determining equations in the symmetry group analysis of 
differential equations [14,19]. So we consider the fol-
lowing power-series forms for the infinitesimal func-
tions: 
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where Aij, Bij and Mij i, j = 1, 2 are constant coefficients. 
Then substituting the power-series forms (18)-(23) into 
the determining Equations (14)-(17) we equate powers of 
the variables x, t, u1, u2, h and τ and calculate the constant 
coefficients of the power-series forms by equating each 
coefficient of various powers to zero, which gives the 
general characteristic function of two-layer shallow-wa- 
ter equations. After the straightforward calculations for 
any finite integer order of power-series forms, we find 
that: 
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2.3. Reduction to Ordinary Differential 
Equations 

In this section, we will obtain the reduced forms of the 
two-layer shallow-water equations by using infinitesimal 
group transformations obtained in the previous section. 
Here we will try to reduce for each sub algebra in the 
optimal system to obtain the reduced forms of the system 
(1)-(4). For this purpose, we need to write the character-
istic equation in the following form: 
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Solving Equation (31) yields the similarity variable, 
xt e                   (32) 

And the similarity forms are obtained by the integra- 
tion of equations in the characteristic Equation (31) giv- 
ing 
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with the reduced boundary conditions  

   1 10 20 , 0 20F F F F              (65) 
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3. Numerical Results and Discussion 

As the analytic solution of systems of ordinary differen-
tial Equations (37)-(40), (49)-(52) and (61)-(64), we solve 
these systems of ordinary differential equations numeri-
cally by using fourth order-Runge-Kutta method coupled 
with the shooting method by employing the correspond-
ing boundary conditions in terms of the similarity vari-
ables given above, the results are illustrated in the fol-
lowing figures. 

Figure 2 shows the behavior of the dimensionless ve-
locities of the two layers  1F   and  2F  , where 

 2F   increases with respect to the similarity variable 
similar to log-shape, at the same time  1F   increases 
up to 0.03   after that the velocity is nearly constant. 
On the other hand Figure 3 shows the behavior of the 
height of the lower layer  3F   and the free surface of  20F F F F               (53) 
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Figure 2. Singular wave solutions for the flow velocities 
F1(η), F2(η) corresponding to Case (1) for large value of η 
and γ = 1.0, where F1(η) refer to u1(x,t) and F2(η) refer to 
u2(x,t). 
 

 

Figure 3. Singular wave solutions of the height of the lower 
layer F3(η) and the free surface of the upper layer F4(η) of 
Case (I) for large value of η and γ = 1.0, where F3(η) refer to 
h(x,t) and F4(η) refer to τ(x,t). 
 
the upper layer  4F   they increase until 0.03   
after that  4F   decrease with low rate, at the same time 

 3F   decrease with high rate similar to exponential- 
shape. 

In Figures 4-7, there is a similarity in the shape be-
tween the two velocities  1F   and  2F   from one 
hand, and between the profile depth of the lower layer 

 3F   against the free displacement of the upper layer 
 4F   from another hand, because we have paid the 

two fluids in the same direction and velocities close to 
each other. These velocities and the profile depth of the 
lower layer and the free displacement of the upper layer 
increase abruptly up to 0.025  , after this value, the 
velocities  4F   and 2  F   and the profile depth of 
the lower layer 3 F   and the free displacement of the 
upper layer 4 F   linearly increase in a low rate with 
respect to the value of η. 

According to Figures 8 and 9, under a specific condi-
tion there are disturbances on the dimensionless veloci-  

 

Figure 4. Plot of similarity solutions for the flow velocities 
F1(η), F2(η) Corresponding to Case (2) for constants: F10 = 
–15, F20 = –10, F30 = 25, F40 = 10, and γ = 1.0, where F1(η) 
refer to u1(x,t) and F2(η) refer to u2(x,t). 
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Figure 5. Plot of similarity solutions for the height and the 
free surface F3(η), F4(η) respectively corresponding to Case 
(2) for constants: F10 = –15, F20 = –10, F30 = 25, F40 = 10, 
and γ = 1.0, where F3(η) refer to h(x,t) and F4(η) refer to 
τ(x,t). 
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Figure 6. Plot of similarity solutions for the flow velocities 
F1(η), F2(η) corresponding to Case (2) for constants: F10 = 5, 
F20 = –5, F30 = 5, F40 = –5, and γ = 1.0, where F1(η), refer to 
u1(x,t) and F2(η) refer to u2(x,t). 
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Figure 7. Plot of similarity solutions for the height and the 
free surface, F3(η), F4(η) respectively corresponding to Case 
(2) for constants: F10 = 5, F20 = –5, F30 = 5, F40 = –5, and γ = 
1.0, where F3(η) refer to h(x,t) and F4(η) refer to τ(x,t). 
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Figure 8. Singular wave solutions for the flow velocities 
F1(η), F2(η) corresponding to Case (3) for large value of η 
and γ = 1.0, where F1(η) refer to u1(x,t) and F2(η) refer to 
u2(x,t). 
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Figure 9. Singular wave solutions of the height of the lower 
layer F3(η) and the free surface of the upper layer F4(η) of 
Case (3) for large value of η and γ = 1.0, where F3(η) refer 
to h(x,t) and F4(η) refer to τ(x,t). 

ties profiles of the two layers up to 0.01  , these dis-
turbances occurring at the same time which hydraulic 
jump occurs in the dimensionless depth of the lower 
layer and the displacement of the upper layer, after this 
value the two layers velocities profiles increase with re-
spect to the similarity variable η similar to log-shape, at 
the same time  3F   and  4F   decreases with low rate. 

4. Conclusion 

The present analysis employed the characteristic function 
method to solve the equations representing the two-layer 
shallow-water equations. Different reduction forms were 
obtained, illustrated and discussed. Although the analytic 
solutions of the reduced forms were not available, the 
obtained numeric solution well presented the behavior of 
the two layers of the problems. For specific values of the 
group parameters, the solutions were obtained and pre-
sented and it’s also available to obtain and present the 
solutions for other cases. In our analysis a new similarity 
variable was obtained in Case (2), also other new simi-
larity variables were obtained in Cases (1) and (3) giving 
critical singular wave solutions which have not been re-
ported in [12]. 
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