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ABSTRACT 

In this article, we discuss three difference schemes; for the numerical solution of singularity perturbed 1-D parabolic 

equations with singular coefficients using spline in compression. The proposed methods are of  accurate 

and applicable to problems in both cases singular and non-singular. Stability theory of a proposed method has been dis-
cussed and numerical examples have been given in support of the theoretical results. 
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1. Introduction 

Consider the following singularly perturbed one space 
dimensional parabolic equation 

     = , ,   0< <1, >0  xx t xu u a x u b x u + f x t x t    (1) 

where 0    and a  r 
some positive constant K, and  

  0,x K   
,

 0b x K   fo
f x t  are continuous 

bounded functions defined in the semi-infinite region 
  0t , 0 1,x t x    . 

The initial and boundary conditions associated with 
Equation (1) are given by 

   0,0 , 0 1u x a x x            (2) 

       0 10, , 1, , 0u t b t u t b t t        (3) 

We assume that the functions,   and  0 ,a x  0b t  1b t  
are sufficiently smooth and their required high-order de-
rivatives exist in the solution space . 

This class of problems arise in various fields of science 
and engineering, for instance, fluid mechanics, quantum 
mechanics, optical control, chemical-reactor theory, aero-
dynamics, geophysics etc. There are a wide variety of 
asymptotic expansion methods available for solving the 
problems of the above type. But there can be difficulties 
in applying these asymptotic expansions in the inner and 
outer regions, which are not routine exercises but require 
skill, insight and experimentations. In many applications 

Equation (1) represents boundary or interior layers and 
has been studied by many authors. Henrici [1] has de-
scribed the discrete variable methods for ordinary differ-
ential equations. Ahlberg et al. [2] and Greville [3] have 
worked on the theory of splines functions and their ap-
plications. An introduction to singular perturbations was 
given by Malley [4]. Abrahamsson et al. [5] have dis-
cussed the finite difference approximations for the sys-
tem of singularly perturbed ordinary differential equa-
tions. Further Prenter [6], Boor [7], and Hemker and 
Miller [8] have studied various splines and variational 
methods to solve differential equations. A uniformly ac-
curate difference method for a singular perturbation 
problem has been analyzed by Berger et al. [9]. Further, 
Kreiss and Kreiss [10] and Segal [11] have discussed 
stable numerical methods for singular perturbation prob-
lems. Later, Jain and Aziz [12] have derived an efficient 
numerical method for the solution of convection-diffu- 
sion equation using adaptive spline function approxima-
tion. Miller et al. [13] have used piecewise uniform meshes 
for upwind and central difference operators for solving 
singularly perturbed problems. Kadalbajoo and Patidar 
[14] have studied the spline in compression methods for 
the solution of a class of singularly perturbed two point 
boundary value problems. Later, Mohanty et al. [15] 
have extended the work discussed in [14] and solved 
singularly perturbed two point singular boundary value 
problems. In 2005, Khan and Aziz [16] have discussed *Corresponding author. 
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the tension spline method for the solution of second order 
singularly perturbed boundary value problems. Khan et 
al. [17] have made a survey on various parametric spline 
function approximations. However, the methods discussed 
in [17] are only applicable to problems in rectangular 
coordinates. In the past difficulties were experienced for 
the numerical solution of singularly perturbed one space 
dimensional parabolic problems in polar coordinates. The 
solution usually deteriorates in the vicinity of singularity. 
In recent past, Mohanty et al. [18] have derived new sta-
ble spline in tension methods for singularly perturbed 
one space dimensional parabolic equations with singular 
coefficients. In this paper, we have presented a new ap-
proach based on spline in compression to solve singu-
larly perturbed parabolic equations of type (1). We have 
refined our procedure in such a way that the solution 
retains its order and accuracy even in the vicinity of the 
singularity x = 0. It is well known that the most classical 
methods fail when   is small relative to the mesh length 
h > 0, that is used for discretization of the differential 
Equation (1) in the x-direction. Our aim is to show that 
compression splines can furnish accurate numerical ap-
proximations of Equation (1), when all or any of the co-
efficients   and   ,a x b x  ,f x t  contain singularity at 
x = 0 and when   is either small or large as compared 
with h. We consider three types of problems. In the first 
case, we analyze the problems in which the second de-
rivative term xxu x  and the function term  , t   ,u x t  are 
present, whereas the term containing the first term deriva-
tive x  is absent. The problems having the second 
derivative  term and first derivative term 

 , t
 ,xxu x

u x
t  , txu x  

but lacking the function term  are considered in 
the second case. Finally, the third case deals with the 
most general problems. In all cases, we use the continuity 
of first derivative of the spline function. The resulting 
spline difference methods are two-level implicit schemes 
(see Figure 1) and of  accurate and are tri- 
diagonal system of equations at each advanced time level, 
which can be solved by using a tri-diagonal solver. The 
main significance of our work is that the proposed com-
pression spline difference schemes are applicable to both 
singular and non-singular problems. In Section 2, we 

u x

 2 2O k h

, t



have discussed the derivation of the spline methods and 
their application to singular problems. In Section 3, we 
have discussed stability analysis of a method. In Section 
4, numerical results of three different singular problems 
have been given to demonstrate the utility of the proposed 
method. The numerical results confirmed that the pro-
posed compression spline methods produce an oscilla-
tion-free solution for 0 1   everywhere in the solu-
tion region 0 < x < 1, t > 0. 

2. Description of the Compression Spline 
Method 

The solution domain    0,1 0t   is divided into 
 1N J   mesh with the spatial step size  1 1h N   
in x-direction and the time step size k > 0 in t-direction 
respectively, where N and J are positive integers. The 
mesh ratio parameter is given by  2 0k h  


. 

Grid points are defined by   , ,l jx t lh j
J

k , l = 0(1) 
N + 1 and 0,1,2, ,j   . The notations j

lu  and j
lU  

are used for the discrete approximation and the exact 
solution of  ,u x t  at the grid point  ,l j x t , respec-
tively. 

Let    ,l l la a x b b x  l  and  l lf f x  

For  1,l lx x x , we denote 

    1 1 1
1 1ˆ ˆˆ , ,
2 2l l l l l l l l l la a a b b b f b b f f         1 l . 

We consider the following three cases: 
Case 1: First we consider the differential equation 

  
 

, ,

0 1, 0, 0

xx tu u b x u f x t

x t b x

   

   


,

         (4) 

which is a particular case of Equation (1) in which the 
first derivative term  ,u x tx

For the derivation of the method for the Equation (4), 
we follow the approaches given by Kadalbajoo and Pati-
dar [14], and Mohanty et al. [15]. 

 is absent. 

Now we consider the ordinary differential equation 

   
2

2

d
, 0 1

d

u
b x u f x x

x
             (5) 

 

h h k 

(l, j) (l + 1, j) 

(l, j + 1) 

(l – 1, j) 

(l – 1, j + 1) (l + 1, j + 1) 

jth - level 

(j + 1)th - level 

 

Figure 1. Schematic representation of two-level scheme. 
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The numerical solution of this equation is sought in the 

fo
Now using the approximations (12a)-(12c) in Equation 

(11) and neglecting high order terms we
pression spline scheme for the Equation
fo

rm of the spline function  S x , which on each inter-
val  1,l lx x , denoted by  lS x  satisfies the differen-
tial equation 

   ˆ ˆ
l l lS x b S x f     l           (6) 

The interpolating conditions: 

,        (7) 

and the continuity condition: 

            (8) 

Solving the Equation (6) and using
co

 1 1,l l lS x u   l l lS x u  

 S x   .l l l lS x  

 the interpolating 
nditions (7), we get 

      

  

1

1
S x A sin

sin

ˆ
                             sin

ˆ

l l l l
l

l
l l l

l

p x x
hp

f
B p x x

b

 

  

       (9) 

if 

 

 1,l lx x x  

where 1

ˆ ˆ ˆ
, ,

ˆ ˆ
l l

l l l l l

l l

lf f b
A u B u p

b b       

Equation (9) is known as spline in compression, Re-
placing l by l + 1 in Equation (9), we can obtain the 
spline function  1lS x  defined in  1,l lx x  . 

     

  

1 1 1
1

1
1 1 1

1

1

sin

ˆ
                                sin

ˆ

l l l l
l

l
l l l

l

A x
hp

sinS x p x

f
B p x x

b

  



  




  

  

(10) 

Differentiating Equation (9) with respect to “x” and 
using the continuity condition (8), we obtain the spline in 
compression scheme for the numerical solution of Equa-
tion (5) as: 

   

   

2

1 2
h

 
2

1 1 1 1

2 2

1 1 1 1

2
8 8

1 2 ,
8 4

                                                             1, 2, , .

l l l l l l l

l l l l l l

h
b b u b b b u

h h
b b u f f f

l N

 

 

   

   

  
       

   
 

      
 

 

 (11) 

Note that, the scheme (11) is of O(h2) accurate for the 
nu

      (12a) 

merical solution of (5), however, the scheme fails to 
compute at l = 1. We overcome this difficulty by using 
the following approximations: 

1l la a ha    2 ,xl O h  

 2
1 ,l l xlb b hb O h            (12b) 

 2
1 .l l xlf f hf O h             (12c) 

 obtain the com-
 (5) in compact 

rm: 

 
2 2

11 2 2
8 2l xl l l l

h h
b hb u b u

 

   
       

   

 

 

2 2

11 2 ,
8

                                              1 1

l xl l l

h h
b hb u f

l N

 

 
    
 



   (13) 

In order to obtain the compression spline sch

the parabolic Equation (4), we replace  by

eme for 

lu   11 ,
2

j j
l lu u   

1lu   by  1
1 1

1 j j
l lu u
  , and lf  by 

2  j j
tl lu f  [where 

 ,
2

j k
l l jf f x t  , and  1j j

obtain

j
tl lu k  ] in (13) and 

we  

lu u

 

 

 

 

2 2 2
1 1

1

2
1

1

2 2 2

1

2 2

1

1
 2 1

4

1
  2

2 16

1
2 1

2 16 4

1
  2 .

2 16

                     

2 16
j j

l xl l l l

j
l xl l

j j
l xl l l l

jj
l xl l l

h h
b h u b

k

h
b hb u

h h h
b hb u b u

k

h h
b hb u f

  



  

 

h
b u 










  
        

  
 

   
 



   
          

   
 

    
 

                      1 1 , 0,1,2,l N j  

(14) 

Case 2: In this case, we consider the differential equa-
tion of the form 

  
 

, ,    

This is a particular case of Equation (1), in which the 
function term

0 1, 0, 0.

xx t xu u a x u f x t

x t a x   
         (15) 

  ,u x t
vation 

 is absent. 
For the deri of the method, we follow the same 

id
]. 

eas given by Kadalbajoo and Patidar [14], and Mo-
hanty et al. [15

We consider the ordinary differential equation 

     , 0 1, 0,f x x a x
2

2

d du u
a x

dd xx
      (16) 

which is a steady-state case of Equation (15). As in case 
1, we seek S(x) as a solution of the above diffe
equation 

rential 

    ˆˆl l l lS x a S x f               (17) 

This satisfies the interpolating conditions (7) and the 
continuity condition (8). 

Solving the Equation (16) by the help of conditions (7), 
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we obtain 

   

 

1
1

l l l lL x L x
l l lS x u e u e

F

1
1

1

ˆ1
           

ˆ

ˆ ˆ1
           ,

ˆ ˆ

l l l l

l

l

L x L x l
l l

l l

L xl l
l l

l l l

f
x e x e

F a

1

f f
u u h e x

F a a

 





 

 
     

 

      (18) 

where 

 
 

 1,l lx x x , 
ˆ

,l
l

a
L


 and 1l l l lL x L

lF e e   . x

Similarly, replacing l by l + 1 in Equation (18), we can 
spline function  inget the valid 1lS x    1,l lx x  . 

   

 

1 1 1
1 1

1

1
l l l lL x L x

l l l
l

S x u e u e
F

   
 



 

1 1 1

1

1
1

1 1

1 1
1

1 1 1

ˆ1
             

ˆ

ˆ ˆ1
 .

ˆ ˆ

l l l l

l

L x L x l
l l

l l

L xl l
l l

l l l

f
x e x e

F a

f f
u u h e x

F a a

  



  


 

 


  

 

 
     

 

 (19) 

Differentiating Equation (18) with respect to “x” and 
using the continuity condition (8), we may obtain the 
spline in compression method for the approximate solu-
tion of Equation (16) as: 

 

1
1  1 1 1

2 2 2
l l l

1
1

2

1 1

  1
2

2 ,
4

l l

l
l

l l l

p
u

h
f f f






 

   
   
 

  

   (20) 

where . Note that, the scheme (20) is of O(h2) 
accurate erical solution of (16), however, the 
scheme (20) fails to compute at l = 1. We overcome this 

ty by us

p p p
u u



                
  

l lp hL
for the num

difficul ing the approximations defined by (12) 
and we obtain 

 

 

 

2

11 2 ,
4

                                              1 1 .

l xl l l

h h
a ha u f

l N

 

 

      


 (21) 

In order to obtain the compression spline meth
the parabolic Equation (15), we replace  by 

2

11 2 2
4 2l xl l xl l

h h
a ha u a u

 

        

od for 

lu

 11 ,
2

j j
l lu u  1lu   by    1

1 1 ,
2 l lu u   and l
1 j j f  by  j j

tl lu f  

[where  ,j
l l j

kf f x t  , and 
2  1j j j

tl lu u u l

 

 

 

 

2 2
1

1

1

2 8
1

1
1

2 2

1

2

1

2 1
4

1
   2

2 8

1
2 1

2 8 4

1
  2 .

2 8

                             

j j
l xl xl l

j
l xl l

l

j j
l xl l xl l

jj
l xl l l

h h h
a ha u a u

k

h
a ha u

h h h
a ha u a u

k

h h
a ha u f





  

 










  
  

     

             

      

              1 1 , 0,1,2,l N j  

(22) 

Case 3: Finally we consider the most general problem 
(1), where both

 



     

  ,xu x t
ation of th

 and  are present. 
For the deriv e m we now follow the 

te
5]. 

 ,u x t
ethod, 

chniques given by Kadalbajoo and Patidar [14], and 
Mohanty et al. [1

For this purpose, we consider the ordinary differential 
equation 

     2

d d
,

d

u u
a x b x u f x

x
   

2

   
d

0 1, 0, 0

x

x a x b x   

      (23) 

which is a steady-state case of (1). In this ca
function 

se the spline 
 S x  satisfies 

     ˆ ˆˆl l l l l lS x a S x b S x f            (24) 

This al tisfies the cso sa onditions (7) and (8). Solving 
the Equation (24) with the help of interpo
tions (7), we obtain 

lating condi-

 

 
     

 

ˆ

   

l

l

c x

S x

e



1

1

ˆsin

ˆ ˆ  sin sin

ˆ
  ,                                            ,

ˆ

l

l l l l l l

l
l l

l

h hd

G h d x x H h d x x

f
x x x

b







     

 

 

(25) 

where 

1ˆ ˆ
1

2

ˆ ˆ
, ,

ˆ ˆ

ˆ 1ˆ ˆˆ ˆ, 4 ,
2 2

l l l lc x c xl l
l l l l

l l

l
l l l l

f f
G u e H u e

b b

a
c d a b

 




   
         
   

  

 

Replacing l by l + 1 in Equation (25), we can obtain 
the spline function 

 k ] in 

(21) and we o taib n 
 1lS x  for the Equation (24) in the 

interval  1,l lx x  . 
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 

 
     

 

1

1

ˆ

    

l

l

c x

S x

e

1

1 1 1 1 1

1
1

1

ˆsin

ˆ ˆ   sin sin

ˆ
                                                           ,

ˆ

l

l l l l l l

l
l l

l

h hd

G h d x x H h d x x

f
x x x

b



    








    

 

 

(26) 

Using the continuity condition (8), from Equation (25) 
we obtain the difference scheme based on spline in com-
pression for the approximate solution of Equation (23











and (28) are of  2 2O k h  accurate for the numerical 
solution of singularly perturbed parabolic partial differ-
ential Equations (4), (15) and (1), respectively and free 
from the terms  11 lx  , hence very easily computed for 

 1 1 ,l N  0,1,2,j   , in the solution region  . 

3. Stability Analysis 

Now we discuss the stability analysis for the scheme 
(14). 

In this case the exact solution j
lU  satisfies 

) as 
0

1 1

2

1 1

   

( ) ,

l l l

l l l

r u r u r u

h
q f q q f q f

 

2

 

where 

   
 

 

     
     (27) 

 

 

   

2

2
1 1

1
1

0 2 2
1 1

1

2
1 , 2

4 2 4

2
1 , 2

4 2 4

1
2 ,

4 2

1
.

2

l l
l l xl

l

l l
l l

l

l l l l
l

l

t p h
r p a

p

t p h
r p

p

r p p t t q
p

q
p







  





 





  
       
  

       

      





, 
1

,

xl

ha

a ha

Note that the compression spline scheme (27) is of 
for the approximate solution of the Equation 

However, this scheme fails when the coefficients 

 

 

 

   

2 2
1 1

1

2
1

1

2 2

1

2 2
2 2 4

1

1
2 1

2 16 4

1
 2

2 16

1
2 1

2 16 4

1
2

2 16

j j
l xl l l l

j
l xl l

2

2
j j

l xl l l l

jj
l xl l l

h h
b hb U b U

k

h
b hb U

h h
b hb U b U

k

h h
b hb U f O k h h

 



 

 

h

h





 









  
       

  

 
   
 

  
         

  

 
      
 









(29) 

we assume that there exists an error j j
l l u  j

le U  at 
each grid point (xl, tj), then subtracting (14) from (29), 
we obtain the error equation 

 

 

 

   

2 2
1 1

1

2
1

1

2 2

1

2
2 2 4

1

1
2 1

2 16 4

1
2

2 16

1
2 1

2 16 4

1
2

2 16

2

2

j j
l xl l l l

j
l xl l

j j
l xl l l

j
l xl l

h h
b hb e b e

k

h
b hb e

h h
b hb e b e

k

h
b hb e O k h h

 



 



l

h

h





 









  
       

  

 
   
 





   
          

   

 
     
 

(30) 
 2O h  

(23). 
 a x ,  b x  and  f x  contain singularities and the 

 is to be determined at l = 1. We overcome this 
difficulty by modifying the scheme (27) in such a manner 

he ion reta s order and accuracy even in the 
vicinity of the singularity x = 0. 

As discussed in case 1 and case 2, using the approxi-
mations (12) and neglecting high order terms, we obtain 
the following compression spline

solution

that t  solut ins it

 scheme for the solution 
of

To establish stability for the scheme (14), it is neces-
sary to assume that the solution of the homogeneous part 
of the error Equation (30) is of the form ,j j i l

le e   
where   is in general complex, 1i   ,   is real 
and we obtain the amplification factor 

 parabolic Equation (1) in compact form: see (28). 
Note that the compression spline schemes (14), (22) 

 

    
2

21
   4

  

     

2 2
1 2 1

1 2

2
2 1

12

2 2 2
2 2

12 2

1 4
16

1
   4

2 4 32

1
4 1 4

2 4 32 16

 

j
22 4 32

j
l l xl l l

jl
l xl l l

l
l xl l

j jl
l xl l l l xl l l

h h
u a a b u

k

ha h
a a b u

ha h h h
a a b u a a b u

k


ha h

a a b 

 


 

 
  











 
     
 

 
     
 

   
             

   

 
    

 

    
2 2

2
12

1
 4  + ,           1 1 , 0,1, 2, .

2 4 32

jjl
l xl l l l

ha h h
a a b u f l N j

  

 
       
 



          (28) 
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2 2 32

2

2 2 32
2

2 1 sin sin
22 4 8

2 1 sin sin
22 4 8

l l xl

l l xl

h b h b h bh
i

k

h b h b h bh
i

k

 
   


 

   

            
    

           
    

 

(31) 
For stability it is required that 1  . Since 

20 sin 1
2
   

 
 and h  , it is easy to verify from 

(31) that 1  for all variable angle  . Hence the 
heme (14) is unconditionally stable. 

4. Experimental Results 

Numerical results presented in this section are concerned 
with the application of the proposed spline in compres-
sion methods to singular perturbation parabolic equat  
We ngular bed
gu gion 0 , t > 0 for 

a fixed value 

sc

ions.
 sin-have solved the following si ly pertur

lar parabolic equations in the re  < x < 1

of 
2

1.6  . The right-hand-side k
h



s fu a
a test proce- 

dure. In all cases, we have used Gauss-elimination me- 
thod (see Saad [19], Hageman and Young [20]) and a tri- 
diagonal solver to solve the problems. All computations 
were carried out using double length arithmetic. 

Example 1: 

homogeneou nctions, initial and bound ry conditions 
may be obtained using the exact solutions as 

 1 , , 0 1, 0xx tu u u f x t x t
x

         (32) 

The exact solution is given by 
The root mean square (RMS) errors at 
lated in Table 1 for various values of

Example 2: 

 , sintu x t e hx . 
t = 0.5 are tabu-

  0 1   . 

 , , 0 1, 0xx t xu u u f x t x t
x
        (33) 

The exact solution is given by  , cos htu x t e x . 
For 1   and

 perturbed
 2, the equation above represents singu-

bolic equation in cy-
pectively. Th

Table 2 for different 

larly  linear singular para
d spherical symmetry, res

 = 1.0 are tabulated in 
va

lindrical an
errors at t

e RMS 

lues of  0 1    and for 1   a  
Example 3: 

nd 2, respectively.

   21
xx t xu u u

x
1 , , 0 1, 0x u f x t x t         (34) 

Table 1. The root mean square errors for example 1. 
 

h 
1

2
   

1

8
   

1

16
   

1

32
   

1

64
   

1

128
   

1/8 0.1167E–02 0.1716E–02 0.1808E–02 0.1863E–02 0.1902E–02 0.1930E–02 

1/16 0.2924E–03 0.4454E–03 0.47

1/32 0.7286E–04 0.1129E–03 0.12

77E

39E

0.1814E–04 6E 3984E–04 E–04 

1/128 0.4524E–05 0.7091E–05 0.7987E–05 –04 0.4743E–04 0.9120E–04 

2E–05 0.2844E–05 0.1821E–04 0.5283E–04 

–03 0.5054E–03 0.5344E–03 0.5615E–03 

–03 0.1410E–03 0.1869E–03 0.3134E–03 

–04 0. 0.9429 0.1684E–03 1/64 0.2835E–04 0.316

 0.1088E

1/256 0.1129E–05 0.1771E–05 0.200

 
Table 2. The root mean square errors for example 2. 

1   

1

2
   

1

8
   

1

16
   

1

32
   

1

64
   

1

128
   

1

256
   

1

51
h 

2
   

1/8 0.4688E –03 0. 03 0 0.1029E 1152E–02 0. –02 2–03 0.7354E 8359E– .9250E–03 –02 0. 1262E 0.1338E–0
1/16 0.1144E 9E–03 03 0.222 – E–03 
1/32 0.2822E 6E–04 04 0.530 – E–04 
1/64 0.7004E 7E–04 04 0.130 – E–04 
1/128 0.1744E 3E–05 05 0.324 – E–05 
1/256 0.4352E 4E–06 06 0.808 – E–06 
1/512 0.1087E 1E–06 06 0.202 – E–06 

–03 0.176  0.1976E– 0.2114E–03 6E–03 0.2361E 03 0.2571 0.2852E–03
–04 0.434  0.4832E– 0.5126E–04 6E–04 0.5446E 04 0.5614 0.5893E–04
–05 0.107  0.1196E– 0.1266E–04 5E–04 0.1328E 04 0.1345 0.1366E–04
–05 0.268  0.2978E– 0.3151E–05 3E–05 0.3292E 05 0.3321 0.3343E–05
–06 0.669  0.7431E– 0.7860E–06 9E–06 0.8207E 06 0.8269 0.8305E–06
–06 0.167  0.1856E– 0.1963E–06

2
0E–06 0.2049E 06 0.2064 0.2072E–06

  

1

2
   

1

8
   h 

1

16
   

1

32
   

1

64
   

1

128
  1

256
   

1

512
    

1/8 0.5611E–03 0.7434E–03 0.8094E–03 0.8790E– 0.9554E–03 0.1022E–02 0.1068E–02 0.1095E–0203
1/16 0.1368E– 0.1776E–03 0.1887E– 3 0.1974E– 3 0.2072E– 3 0.2210E–03 0.2382E–03 0.2539E–03
1/32 0.3372E 0.4354E 4594E– 0.4740E– 0.4851E– 0.4976E– 5171E–  0.5490E–

03 
–04 

0
04

0
04

0
04–04 0. 04 0. 04 04

1/64 0.8367E–05 0.1079E–04 0.1136E–04 0.1168E–04 0.1187E–04 0.1200E–04 0.1216E–04 0.1241E–04
1/128 0.2083E–05 0.2686E–05 0.2827E–05 0.2904E–05 0.2945E–05 0.2969E–05 0.2986E–05 0.3006E–05
1/256 
1/512 

0.5199E–06 
0.1298E–06 

0.6702E–06 
0.1674E–06 

0.7054E–06
0.1761E–06

0.7244E–06
0.1809E–06

0.7343E–06
0.1833E–06

0.7395E–06 
0.1846E–06 

0.7424E–06 
0.1852E–06 

0.7446E–06
0.1856E–06
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Table  m er mp 3. The root ean square rors for exa le 3. 

h 
1   
2

1   
8

1   
16

1   
32

1   
64

1   
128

1   
256

1   
512

1/8 0.8469E–02 0.2220E–01 0.2845E–01 0.3433E 1 0.4128E–01 0.4933E–01 0.5637E–01 0.6117E–01–0
1/16 0.2034E 02 0.5155E 02 0.6372E–02 0.7214E–02 0.7924E– 2 0.8823E– 1020E– 0.1197E– 1
1/32 0.4992E 03 0.1254E 02 0.1535E 2 0.1706E 2 0.1811E 2 0.1899E–  0.2013E–  0.2204E–

 
 
 
 

–
–

–
–

0
–0

02 0.
02

01 
02

0
02–0 –0

1/64 0.1237E–03 0.3103E–03 0.3789E–03 0.4189E–03 0.4404E–03 0.4534E–03 0.4644E–03 0.4787E–03
1/128 0.3080E–04 0.7724E–04 0.9422E–04 0.1040E–03 0.1091E–03 0.1118E–03 0.1134E–03 0.1148E–03
1/256 0.7686E–05 0.1926E–04 0.2350E–04 0.2594E–04 0.2719E–04 0.2783E–04 0.2816E–04 0.2836E–04
1/512 0.1919E–05 0.4812E–05 0.5869E–05 0.6479E–05 0.6790E–05 0.6946E–05 0.7025E–05 0.7067E–05

 
T ct  g

The RMS errors at t = 1.0 are ta
different values of . 

5. Fi  Disc

The t onal  a  O
+ h2)  som if  h la
perturbed singu ic nd pro
lems ugh c u us
to yi ble c  s od

he exa solution is iven by u  in π, stx t e x . 
bulated in Table 3 for 

 0 1  

nal ussion 

raditi  lower order methods of ccuracy of (k2 
have e inherent d ficulties to andle singu rly 

lar parabol  initial bou ary value b-
, altho  some corre tion techniq es may be ed 
eld sta ompression pline meth s for 0 1 

ethod has 
e method is 

. 
The sta
b

bility analysis of a compression spline m
e hat th

the efficiency of the p

en discussed and it has been shown t
unconditionally stable. Some text problems have been 
solved to demonstrate roposed method 
when 0   is either small or large as comp

 h > 0 and k > 0. In Ta
rors for the example 1 

ared to the 
ble 1, we 
using the 

ra

corresponding mesh sizes
have reported the RMS er
method discussed in case 1. In Table 2, we have given 
the RMS errors for the singularly perturbed parabolic 
Equation (33) in cylindrical and spherical polar coordi-
nates using the method discussed in case 2. In Table 3, 
we have tabulated the RMS errors for the more gene l 
linear parabolic Equation (34) using the method dis-
cussed in case 3. All results confirmed that the proposed 
compression spline methods produce an oscillation-free 
solution for 0 1   everywhere in the solution re-
gion 0  1, t > 0. The technique used in this paper 
may be extended to derive other numerical methods, not 
necessarily limited to compression spline methods. 
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