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ABSTRACT

In this article, we discuss three difference schemes; for the numerical solution of singularity perturbed 1-D parabolic

equations with singular coefficients using spline in compression. The proposed methods are of O(k2 + hz) accurate

and applicable to problems in both cases singular and non-singular. Stability theory of a proposed method has been dis-
cussed and numerical examples have been given in support of the theoretical results.

Keywords: Spline in Compressions; Parabolic Equations; Two-Level Implicit Schemes; Singular Perturbation; Singular
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1. Introduction

Consider the following singularly perturbed one space
dimensional parabolic equation

euy= U —a(x)u, —b(x)u+ f(xt), 0<x<1,t>0 (1)

where0< ¢ <1 and a(x)>K >0, b(x)>K>0 for
some positive constant K, and f(x,t) are continuous
bounded functions defined in the semi-infinite region
Q={(xt)0<x<I, t>0}.

The initial and boundary conditions associated with
Equation (1) are given by

u(x,0)=a,(x), 0<x<1 )

u(0.t)=by (t).u(L)=b (1).t20 (3

We assume that the functions, a,(x), b, (t) and b (t)
are sufficiently smooth and their required high-order de-
rivatives exist in the solution space Q.

This class of problems arise in various fields of science
and engineering, for instance, fluid mechanics, quantum
mechanics, optical control, chemical-reactor theory, aero-
dynamics, geophysics etc. There are a wide variety of
asymptotic expansion methods available for solving the
problems of the above type. But there can be difficulties
in applying these asymptotic expansions in the inner and
outer regions, which are not routine exercises but require
skill, insight and experimentations. In many applications
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Equation (1) represents boundary or interior layers and
has been studied by many authors. Henrici [1] has de-
scribed the discrete variable methods for ordinary differ-
ential equations. Ahlberg et al. [2] and Greville [3] have
worked on the theory of splines functions and their ap-
plications. An introduction to singular perturbations was
given by Malley [4]. Abrahamsson et al. [5] have dis-
cussed the finite difference approximations for the sys-
tem of singularly perturbed ordinary differential equa-
tions. Further Prenter [6], Boor [7], and Hemker and
Miller [8] have studied various splines and variational
methods to solve differential equations. A uniformly ac-
curate difference method for a singular perturbation
problem has been analyzed by Berger et al. [9]. Further,
Kreiss and Kreiss [10] and Segal [11] have discussed
stable numerical methods for singular perturbation prob-
lems. Later, Jain and Aziz [12] have derived an efficient
numerical method for the solution of convection-diffu-
sion equation using adaptive spline function approxima-
tion. Miller et al. [13] have used piecewise uniform meshes
for upwind and central difference operators for solving
singularly perturbed problems. Kadalbajoo and Patidar
[14] have studied the spline in compression methods for
the solution of a class of singularly perturbed two point
boundary value problems. Later, Mohanty et al. [15]
have extended the work discussed in [14] and solved
singularly perturbed two point singular boundary value
problems. In 2005, Khan and Aziz [16] have discussed
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the tension spline method for the solution of second order
singularly perturbed boundary value problems. Khan et
al. [17] have made a survey on various parametric spline
function approximations. However, the methods discussed
in [17] are only applicable to problems in rectangular
coordinates. In the past difficulties were experienced for
the numerical solution of singularly perturbed one space
dimensional parabolic problems in polar coordinates. The
solution usually deteriorates in the vicinity of singularity.
In recent past, Mohanty et al. [18] have derived new sta-
ble spline in tension methods for singularly perturbed
one space dimensional parabolic equations with singular
coefficients. In this paper, we have presented a new ap-
proach based on spline in compression to solve singu-
larly perturbed parabolic equations of type (1). We have
refined our procedure in such a way that the solution
retains its order and accuracy even in the vicinity of the
singularity X = 0. It is well known that the most classical
methods fail when ¢ is small relative to the mesh length
h > 0, that is used for discretization of the differential
Equation (1) in the X-direction. Our aim is to show that
compression splines can furnish accurate numerical ap-
proximations of Equation (1), when all or any of the co-
efficients a(x), b(x) and f(x,t) contain singularity at
X =0 and when ¢ is either small or large as compared
with h. We consider three types of problems. In the first
case, we analyze the problems in which the second de-
rivative term Uy, (X,t) and the function term u(x,t) are
present, whereas the term containing the first term deriva-
tive U (Xt) isabsent. The problems having the second
derivative U, (X,t) term and first derivative term u, (X,t)

but lacking the function term u(Xx,t) are considered in
the second case. Finally, the third case deals with the
most general problems. In all cases, we use the continuity
of first derivative of the spline function. The resulting
spline difference methods are two-level implicit schemes
(see Figure 1) and of O(k2 + hz) accurate and are tri-
diagonal system of equations at each advanced time level,
which can be solved by using a tri-diagonal solver. The
main significance of our work is that the proposed com-
pression spline difference schemes are applicable to both
singular and non-singular problems. In Section 2, we

(I=1,j+1) Lj+1

have discussed the derivation of the spline methods and
their application to singular problems. In Section 3, we
have discussed stability analysis of a method. In Section
4, numerical results of three different singular problems
have been given to demonstrate the utility of the proposed
method. The numerical results confirmed that the pro-
posed compression spline methods produce an oscilla-
tion-free solution for 0 <& <« 1 everywhere in the solu-
tion region 0 <X<1,t>0.

2. Description of the Compression Spline
M ethod

The solution domain [0,1] X [t > 0] is divided into
(N +1)x J mesh with the spatial step size h=1/(N+1)
in X-direction and the time step size k > 0 in t-direction
respectively, where N and J are positive integers. The
mesh ratio parameter is givenby A= (k/ hz) >0.

Grid points are defined by ()q e ) =(Ih, jk), I = 0(1)
N+ 1and j=0,1,2,---,J . The notations u' and U/
are used for the discrete approximation and the exact
solution of U(X,t) at the grid point ()q,tj), respec-
tively.

Let g =a(x).h=b(x) and f =1(x)
For xe[x_;,% ], we denote

a=1(a,+a).f=L(b,+b). =, +b(f,+1).

We consider the following three cases:
Case 1. First we consider the differential equation
euy =U —b(x)u+ f (xt),

4)
0<x<1, t>0, b(x)>0,

which is a particular case of Equation (1) in which the
first derivative term U, (X,t) is absent.

For the derivation of the method for the Equation (4),
we follow the approaches given by Kadalbajoo and Pati-
dar [14], and Mohanty et al. [15].

Now we consider the ordinary differential equation

2

g%+b(x)u= f(x), 0<x<l %)
X

(I+Lj+1)

O O

@)

( + Dth - level

jth - level

O O
(I_laj) (LJ)

O

I+ 1,j))

Figure 1. Schematic representation of two-level scheme.

Copyright © 2012 SciRes.
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The numerical solution of this equation is sought in the
form of the spline function S(x), which on each inter-
val [X_,%], denoted by §(x) satisfies the differen-
tial equation

A

£§'(x)+BS (x)= 1, ©)
The interpolating conditions:
S(XI—I)ZUI—I’ S()ﬁ):uw @)
and the continuity condition:
S'(x)=5(x) ®)

Solving the Equation (6) and using the interpolating
conditions (7), we get

-1 .
300 a9 (05 ) o
. f
+B sm( P (X=X ))J+E
if xe[x_,%]

A A

f f h
where A=Uu--, B=uU, -, P :\/E
b b £
Equation (9) is known as spline in compression, Re-

placing | by | + 1 in Equation (9), we can obtain the
spline function §,,(x) definedin [X,X,,].

-1 .
S.1(x) ZW[AH Sm( P (% - X))
(10)

>

+B., Sin( P (X_ X 41 )):"" L
h +1

Differentiating Equation (9) with respect to “X” and
using the continuity condition (8), we obtain the spline in
compression scheme for the numerical solution of Equa-
tion (5) as:

{1.,.5@ +h1):|ull -{—2+g(h1 +2b +b )}ul

2

h* h
‘{“‘g(h +h+1):|ul+l :E( fio+2f + 1), (1)

=12

LEad] b

N.

Note that, the scheme (11) is of O(h’) accurate for the
numerical solution of (5), however, the scheme fails to
compute at | = 1. We overcome this difficulty by using
the following approximations:

3., =4 tha, +O(I"), (12a)
b., =b +hb, +O(h*), (12b)
fio = f £hf, +O(h2)- (12¢)

Copyright © 2012 SciRes.

Now using the approximations (12a)-(12c) in Equation
(11) and neglecting high order terms we obtain the com-
pression spline scheme for the Equation (5) in compact
form:

{Hh—z(zq —hb,, )} u, +{—2 +h—2h }ul
8¢ 2¢
+{l+g(2h +hb, ):|u|+l :h;zfl, (13)
I=1(1)N
In order to obtain the compression spline scheme for

+u,j),

the parabolic Equation (4), we replace U, by %(u,j+1
1 .+ . J _—
u, by E(uljﬂ1 +u/, ) ,and f by (uﬂ‘ + ) [where

fi= f(x',tj +§), and T =(u|j+1 -u/ )/k] in (13) and

we obtain
1 n i h? h |
—+ Y (2n —hby) Ul 4| —14 g - |
[2+165( " X')} - J{ Y4l gk} !
(1R 1.
+| =+—(2h +hb, ) |u
_2 168(h xl)_ 1+1
'1 h? ) 2 2 )
=—|—+——(24 —hb, ) |u}, —| ~1+—b +— |u/ (14
_2 16€(h xl)_ 1-1 |: 4gh gk:||( )
—_l+h—2(2h+hb )_uj +h—2?j
_2 16& X | 1+1 £ I
I=1(1)N, j=0,1,2,-

Case 2: In this case, we consider the differential equa-
tion of the form

euy, =u —a(x)u, + f(xt),

15
0<x<l1, t>0, a(x)>0. (15)

This is a particular case of Equation (1), in which the
function term u(x,t) is absent.

For the derivation of the method, we follow the same
ideas given by Kadalbajoo and Patidar [14], and Mo-
hanty et al. [15].

We consider the ordinary differential equation

2
g%m(x)%: f(x), 0<x<1, a(x)>0, (16)

which is a steady-state case of Equation (15). As in case
1, we seek §X) as a solution of the above differential
equation

eS'(x)+4S'(x)=f (17)

This satisfies the interpolating conditions (7) and the
continuity condition (8).

Solving the Equation (16) by the help of conditions (7),
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we obtain

S (x) :Fi(ule_L'XH —u_ e )

—h>

+%()<He’LIX| —xe ) (18)
|

|

+i(u,_1 —u + hije‘“x +LX,
R g g

where xe[x_,%], L :i, and F =g —g¥ |
e

Similarly, replacing | by | + 1 in Equation (18), we can
get the spline function S,,(x) validin [x,x,,].

SH (X) = FL(que’LIHXl _ ul e*'—|+lxi+| )

1+1

fl+]

(19)

+FL<X| @ b _ )(Hle*'—mxi )

1+1

o

+1

JFL{UI —u,, + h@} g X +@x.
a‘|+1
Differentiating Equation (18) with respect to “X” and
using the continuity condition (8), we may obtain the
spline in compression method for the approximate solu-
tion of Equation (16) as:

)

+(1+ p'z” jum (20)

2

h
=E[ fio+2f + 1,

1+1 +1

where p = hL, . Note that, the scheme (20) is of O(h%)
accurate for the numerical solution of (16), however, the
scheme (20) fails to compute at | = 1. We overcome this
difficulty by using the approximations defined by (12)
and we obtain

I—L(Za1 -ha,) (u_, - 2+h—2aX U
4e ( 1-1 ¢ { |
2

h h
J{HE(ZQ +ha, )}um :?fl, @0
I =1()N.

In order to obtain the compression spline method for
the parabolic Equation (15), we replace U, by

%(Ulj+1 +y ), Uy by %(UH; +Ul, )’ and f, by (Unj + f_|1)
[where f! = f()q,tj +%), and T/ :(ul”l—ulj )/k] in

(21) and we obtain

Copyright © 2012 SciRes.

1 h i h? | o
[E_g(zal —ha, ):|uljll _|:1+Ea)d +E}U|J 1

1 h .
+ [5 + g(Za1 +ha,, )} ul!

h2 2 .
a, ——} U (22)
&

1 h i
=_[———(2a1 —ha, )}u|'1+{1+4— o

2 8¢

iy

1 h -
—|:5+§(Za1 +haxl )}uljﬂ +? fl .

I =1(1)N, j =0,1,2,--

Case 3: Finally we consider the most general problem
(1), where both u, (x,t) and u(x.t) are present.

For the derivation of the method, we now follow the
techniques given by Kadalbajoo and Patidar [14], and
Mohanty et al. [15].

For this purpose, we consider the ordinary differential
equation

dx ’ (23)
0<x<1, a(x)>0, b(x)>0

which is a steady-state case of (1). In this case the spline
function S(x) satisfies

¢S (x)+45 (x)+bS (x) = f, (24)

This also satisfies the conditions (7) and (8). Solving
the Equation (24) with the help of interpolating condi-
tions (7), we obtain

S (%)

—sinh(hdl)

'[G| sin h(&, (%, —x))+ H, sin h(dI (x=% ))}

+_ﬁl’ xe %% ]
(25)
where
f . f ) .

Q _[ul - lil] CIX', HI :(ul—l - lil ]e‘:ﬁﬁla

. a4 - 1 [

= d=—18&-4

G 207 ' 2e 4 4.

Replacing | by | + 1 in Equation (25), we can obtain
the spline function §,,(X) for the Equation (24) in the
interval [X,X,,].
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S. (%)
B e—f‘mx
—sin h(hdm)
'|:G|+1 Sinh(am ()ﬁ _X))+ H|+1 Sinh(am (X_ )ﬁ+1)ﬂ
+;'11 xe[%.%,]
(26)

Using the continuity condition (8), from Equation (25)
we obtain the difference scheme based on spline in com-
pression for the approximate solution of Equation (23) as

ru, +rlu +riy,
h? - . . 27
:Z[q f,+(@ +q")f +q fl+1:|’

where

= l—i 2°P
4 ) 2+p

t’, ) 2+p h
A I D E2 B | bl w E2' =—(2 h
r ( 4 j(z—pmj’ P 45( 3 +ha,) ’

h
], P =E(2e\ —ha,)

1 _ 1
r0:_2+(p|_p|71)_z(t|2+t|2+1)a q :2_p| ,
+1
L
R P

Note that the compression spline scheme (27) is of
O(h2 ) for the approximate solution of the Equation
(23). However, this scheme fails when the coefficients
a(x), b(x) and f(x) contain singularities and the
solution is to be determined at | = 1. We overcome this
difficulty by modifying the scheme (27) in such a manner
that the solution retains its order and accuracy even in the
vicinity of the singularity X = 0.

As discussed in case 1 and case 2, using the approxi-
mations (12) and neglecting high order terms, we obtain
the following compression spline scheme for the solution
of parabolic Equation (1) in compact form: see (28).

Note that the compression spline schemes (14), (22)

R. K. MOHANTY ET AL

and (28) are of O(k2 +h*) accurate for the numerical
solution of singularly perturbed parabolic partial differ-
ential Equations (4), (15) and (1), respectively and free
from the terms (1/X.,), hence very easily computed for
I=1(1)N, j=0,1,2,---, in the solution region .

3. Stability Analysis

Now we discuss the stability analysis for the scheme

(14). _
In this case the exact solution U,' satisfies
1 K - h’ h* |
—+—(2h —hb, ) U +| -1+—B —— |U/"!
[2 16,9(h *')} - { 450 gk} '
1 -
+| =+—(2 +hb, ) |U !
e tan ) o
2 2 2 (29)
1 h i h h -
=—|—+—(2h -hb, ) U, | -1+—h +— |U}
{2 16; 0 X')} - { 45" gk} '
1 h2 i h2 e 212 4
_{T@(zq +hb,, )}U|L1+?f| +O(K’h* +ht)

we assume that there exists an error g =U/—u’ at
each grid point (X, t;), then subtracting (14) from (29),
we obtain the error equation

1 K : '  h].
I 2 —hb j+1 _1 o h j+1
{2+165( o =hby )}q" J{ Yasd gJe
1w 1.,
+ 5+_g(2h +hb, ) €}
: 2 : 2 2 (30)
1 h - h h? | .
——|=+—(2b -hb,) |e", | -1+—h +— €’
_2+16g(h X')_q*l { +4gh+gk}1‘
—_l+h—2(21q+hb )_qj +O(k’h” +h')
_2 16& x| +1

To establish stability for the scheme (14), it is neces-
sary to assume that the solution of the homogeneous part
of the error Equation (30) is of the form qj =gle?,
where & is in general complex, i=+—1 , [ 1is real
and we obtain the amplification factor

1 ha R h? R .
{E—E+3282 (312 +4¢(ay +tq))}u,_1 {ng? (312 +4¢(a, —N ))+E}U|J |
1 h h? i+
J{EJF%JF 3267 (8% +42(2, +h ))}“Ilﬂl
1 ha R, j o, . 9
=-— E_E+3252 (a1 +4s(ay +lq)) u, + 1+1652 (a1 +4s(ay _h))_E U
1 ha R . h— :
{EJFE+3282 (a®+4z(a, +q))} ul, +?f| , I =1(1)N, j=0,1,2,-.
Copyright © 2012 SciRes. OJDM
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2 2 2 3
_ﬂ_i+2 1+ﬂ sinz(ﬁj+ihbxlsinﬂ
2¢ ke 4g 2 8s
= 2 2 2 3
ﬂ_i_z 1+m sinz(ﬂ}rihbx'sinﬁ
2¢ ke 4g 2 8s

€2y
For stability it is required that |<§| <1. Since

0 < sin’ (gjﬁl and goch, it is easy to verify from

(31) that |§|£1for all variable angle £ . Hence the
scheme (14) is unconditionally stable.

4. Experimental Results

Numerical results presented in this section are concerned
with the application of the proposed spline in compres-

sion methods to singular perturbation parabolic equations.

We have solved the following singularly perturbed sin-
gular parabolic equations in the region 0 <x <1, t> 0 for

K _16. The right-hand-side

a fixed value of A=—=
h2

homogeneous functions, initial and boundary conditions
may be obtained using the exact solutions as a test proce-

75

dure. In all cases, we have used Gauss-elimination me-

thod (see Saad [19], Hageman and Young [20]) and a tri-

diagonal solver to solve the problems. All computations

were carried out using double length arithmetic.
Example 1:

guxxzut—iwrf(x,t), 0<x<l, t>0 (32)

The exact solution is given by u(xt)=e"sinhx.
The root mean square (RMS) errors at t = 0.5 are tabu-
lated in Table 1 for various values of 8(0 <ex 1) .

Example 2:

el =y =T U+ f(Xt), 0<x<I, t>0 (33)

The exact solution is given by u(X,t):e_t coshx.
For o =1 and 2, the equation above represents singu-
larly perturbed linear singular parabolic equation in cy-
lindrical and spherical symmetry, respectively. The RMS
errors at t = 1.0 are tabulated in Table 2 for different
values of £(0< ¢ < 1) and for & =1 and 2, respectively.

Example 3:

£l =u[—%ux—(l+x2)u+ f(xt),0<x<1, t>0(34)

Table 1. Theroot mean squareerrorsfor example 1.

1

1 1 1

h £=— == £=— £=— £=— E=—o0
2 8 16 32 64 128
1/8 0.1167E-02 0.1716E-02 0.1808E-02 0.1863E-02 0.1902E-02 0.1930E-02
1/16 0.2924E-03 0.4454E-03 0.4777E-03 0.5054E-03 0.5344E-03 0.5615E-03
1/32 0.7286E-04 0.1129E-03 0.1239E-03 0.1410E-03 0.1869E-03 0.3134E-03
1/64 0.1814E-04 0.2835E-04 0.3166E-04 0.3984E-04 0.9429E-04 0.1684E-03
1/128 0.4524E-05 0.7091E-05 0.7987E-05 0.1088E-04 0.4743E-04 0.9120E-04
1/256 0.1129E-05 0.1771E-05 0.2002E-05 0.2844E-05 0.1821E-04 0.5283E-04
Table 2. Theroot mean square errorsfor example 2.
a=1
1 1 1 1 1 1 1 1
h E=— E=— E=— E=— E=— E=—o0 E=—o E=—r0
2 8 16 32 64 128 256 512
1/8 0.4688E-03 0.7354E-03 0.8359E-03 0.9250E-03 0.1029E-02 0.1152E-02 0.1262E-02 0.1338E-02
1/16 0.1144E-03 0.1769E-03 0.1976E-03 0.2114E-03 0.2226E-03 0.2361E-03 0.2571E-03 0.2852E-03
1/32 0.2822E-04 0.4346E-04 0.4832E-04 0.5126E-04 0.5306E-04 0.5446E-04 0.5614E-04 0.5893E-04
1/64 0.7004E-05 0.1077E-04 0.1196E-04 0.1266E-04 0.1305E-04 0.1328E-04 0.1345E-04 0.1366E-04
1/128 0.1744E-05 0.2683E-05 0.2978E-05 0.3151E-05 0.3243E-05 0.3292E-05 0.3321E-05 0.3343E-05
1/256 0.4352E-06 0.6694E-06 0.7431E-06 0.7860E-06 0.8089E-06 0.8207E-06 0.8269E-06 0.8305E-06
1/512 0.1087E-06 0.1671E-06 0.1856E-06 0.1963E-06 0.2020E-06 0.2049E-06 0.2064E-06 0.2072E-06
a=2
1 1 1 1 1 1 1 1
h E=— £=— E=— e=— £=— E=—o0 E=—o E=—r0
2 8 16 32 64 128 256 512
1/8 0.5611E-03 0.7434E-03 0.8094E-03 0.8790E-03 0.9554E-03 0.1022E-02 0.1068E-02 0.1095E-02
1/16 0.1368E-03 0.1776E-03 0.1887E-03 0.1974E-03 0.2072E-03 0.2210E-03 0.2382E-03 0.2539E-03
1/32 0.3372E-04 0.4354E-04 0.4594E-04 0.4740E-04 0.4851E-04 0.4976E-04 0.5171E-04 0.5490E-04
1/64 0.8367E-05 0.1079E-04 0.1136E-04 0.1168E-04 0.1187E-04 0.1200E-04 0.1216E-04 0.1241E-04
1/128 0.2083E-05 0.2686E-05 0.2827E-05 0.2904E-05 0.2945E-05 0.2969E-05 0.2986E-05 0.3006E-05
1/256 0.5199E-06 0.6702E-06 0.7054E-06 0.7244E-06 0.7343E-06 0.7395E-06 0.7424E-06 0.7446E-06
1/512 0.1298E-06 0.1674E-06 0.1761E-06 0.1809E-06 0.1833E-06 0.1846E-06 0.1852E-06 0.1856E-06
Copyright © 2012 SciRes. OJDM
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Table 3. Theroot mean squareerrorsfor example 3.

1 1 1

1

1 1 1 1

h E=— £=— E=— E=— £=— E=—o0 E=—o E=—o

2 8 16 32 64 128 256 512
1/8 0.8469E-02 0.2220E-01 0.2845E-01 0.3433E-01 0.4128E-01 0.4933E-01 0.5637E-01 0.6117E-01
1/16 0.2034E-02  0.5155E-02  0.6372E-02  0.7214E-02  0.7924E-02  0.8823E-02  0.1020E-01 0.1197E-01
1/32 0.4992E-03 0.1254E-02  0.1535E-02  0.1706E-02  0.1811E-02  0.1899E-02  0.2013E-02  0.2204E-02
1/64 0.1237E-03 0.3103E-03 0.3789E-03 0.4189E-03 0.4404E-03 0.4534E-03 0.4644E-03 0.4787E-03
1/128 0.3080E-04  0.7724E-04  0.9422E-04  0.1040E-03 0.1091E-03 0.1118E-03 0.1134E-03 0.1148E-03
1/256 0.7686E-05 0.1926E-04  0.2350E-04  0.2594E-04  0.2719E-04  0.2783E-04  0.2816E-04  0.2836E-04
1/512 0.1919E-05 0.4812E-05 0.5869E-05 0.6479E-05 0.6790E-05 0.6946E-05  0.7025E-05 0.7067E-05

The exact solution is given by u(xt)=e"sinnx.
The RMS errors at t = 1.0 are tabulated in Table 3 for
different values of &(0<e<1).

5. Final Discussion

The traditional lower order methods of accuracy of O(K*
+ h?) have some inherent difficulties to handle singularly
perturbed singular parabolic initial boundary value prob-
lems, although some correction techniques may be used
to yield stable compression spline methods for 0<e<«1.
The stability analysis of a compression spline method has
been discussed and it has been shown that the method is
unconditionally stable. Some text problems have been
solved to demonstrate the efficiency of the proposed method
when ¢ >0 is either small or large as compared to the
corresponding mesh sizes h> 0 and k> 0. In Table 1, we
have reported the RMS errors for the example 1 using the
method discussed in case 1. In Table 2, we have given
the RMS errors for the singularly perturbed parabolic
Equation (33) in cylindrical and spherical polar coordi-
nates using the method discussed in case 2. In Table 3,
we have tabulated the RMS errors for the more general
linear parabolic Equation (34) using the method dis-
cussed in case 3. All results confirmed that the proposed
compression spline methods produce an oscillation-free
solution for 0 <& <1 everywhere in the solution re-
gion 0< X < 1, t > 0. The technique used in this paper
may be extended to derive other numerical methods, not
necessarily limited to compression spline methods.
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