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ABSTRACT 

Spatial variations in temperature may be ascribed to many variables. Among these, variables pertaining to topography 
are prominent. Thus various topographic variables were calculated from 50 m-resolution digital terrain models (DTMs) 
for three study areas in France and for Slovenia. The “classic” geomatic variables (altitude, aspect, gradient, etc.) are 
supplemented by the description of landforms (amplitude of humps and hollows). Special care is taken in managing 
collinearity among variables and building windows with different dimensions. Statistical processing involves linear 
regressions of daily temperatures taken as the response variables and six topographic variables (explanatory variables). 
Altitude accounts significantly for the spatial variation in temperatures in 90% of cases, except in the Gironde, a low- 
lying area (50%). The scale of landforms also appears to be highly correlated to the measured temperature. Variations in 
the frequency with which topographic descriptors account for temperatures are examined from several standpoints. Al- 
titude is less frequently taken as an explanatory variable for spatial variation of temperatures in winter (75%) than in 
spring (80%) and late summer (85%). Minimum temperatures are influenced on average much more by the amplitude of 
humps and hollows (56%) than maximum temperatures (38%) are. The frequency with which these two landforms ac- 
count for the spatial variation of temperature is reversed between the minima and maxima.  
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1. Introduction 

Knowledge on spatial distribution of air temperature 
measured at two metres height above ground is important 
in many applications. For example, temperature extremes 
during the growing season often result in reduced crop 
yields. High temperatures are responsible for higher 
cooling loads in summer and reduce electricity yields of 
photovoltaic power plants. Low temperatures in combi- 
nation with high humidity can cause fog resulting in 
problems for traffic. The monitoring of such extremes 
requires measurements at high temporal and also at high 
spatial resolutions, as local area influences can be large 
in the case of e.g. strong winds or rough topography. 
Such data are often lacking because the low density of 
the meteorological network and the installation of addi- 
tional meteorological stations is usually too expensive. 
Temperature monitoring is possible by parameterization 
of various variables, such as land surface temperature 
and normalized difference vegetation index observed by 
satellites [1-5]. The other possibility, if enough measured 
temperatures are available, is interpolation [6-11].  

In both cases it is necessary to understand the link 
between temperature and the possible explanatory vari- 
ables. The quality of the temperature estimation depends 
in particular on the spatial information fed into the 
models resulting from the analyses. It is pie-in-the-sky to 
hope to get good results from an analysis if it is not 
known which variables best explain the variation in the 
data to be interpolated. Let us illustrate this problem with 
an example. Minimum winter temperatures depend on 
many variables, including altitude, distance from the sea or 
ocean (occurrences of freezing temperature increase with 
distance from the coastline), urbanization (it is slightly 
warmer in city centres than on their outskirts), or topo- 
graphic position (cold air settles in valleys where the 
temperature is often lower than on the surrounding hill- 
tops). Large estimation errors may arise if any of these 
variables are omitted from the temperature models be- 
cause a non-negligible proportion of variance would be 
unaccounted for. Conversely, some variables which a 
priori might seem suitable for describing the spatial va- 
riation of the phenomenon to be interpolated may only 
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rarely be explanatory. It is therefore a waste of time 
processing such variables. 

The aim of this paper is to explain the temperature re- 
lation to terrain variables. In doing this we rely on data 
collected from France (three regions: Franche-Comté, 
Provence-Alpes-Côte d’Azur, and the department of the 
Gironde) and Slovenia. In the following we present how 
to construct a set of six topographic variables (altitude, 
gradient, roughness, theoretical global radiation, ampli- 
tude of humps and hollows) from the four 50-m resolu- 
tion digital terrain models (Section 2). The frequency 
with which each of the six topographic variables is sig- 
nificantly correlated with daily temperatures provides an 
indication of its suitability to be an explanatory variable. 
We end by discussing the effect analysis window size, 
residuals collinearity and solar radiation (Section 3). 

2. Data and Method 

Our case study involves four areas with very different 
geographical characters and for which we have the two 
sets of data needed for establishing the linear regressions 
on which our method of analysis will be based: the re- 
sponse variables (measured temperature) and the ex- 
planatory variables (topography variables). 

2.1. Study Areas 

Franche-Comté (Figure 1(A)) covers some 16,000 km2 
and is an administrative region in eastern France. It is 
squeezed between two upland areas: the Jura (rising to 
1750 m at its highest point) to the south and east and the 
Vosges (1247 m) to the north. Between these two ranges 
lie plateaux (500 - 600 m) incised by valleys which barely  

exceed 200 m in altitude to the west. The semi-con- 
tinental influences are marked: in the lowlands the 
summers are hot and stormy while the winters alternate 
between freezing spells and milder phases. Provence- 
Alpes-Côte d’Azur (PACA) covers 31,400 km2 and lies 
in south-eastern France (Figure 1(B)). It encompasses 
the Alps and the southern alpine foreland (Préalpes du 
Sud) and is bounded to the west by the Rhône Valley and 
to the south by the Mediterranean. The contrasts in relief 
are stark, with deep valleys separating blocks whose 
altitudes, invariably more than 2000 m, may sometimes 
exceed 4000 m (Barre des Écrins). The climate is plainly 
Mediterranean, even if altitude attenuates the summer 
heat and means heavy snowfall in winter. The Gironde is 
an administrative department of south-western France 
(Figure 1(C)). The rivers Garonne and Dordogne flow 
between its low rolling hills. Barely 5% of the department 
stands above 100 m in altitude. It is bounded to the north 
by the estuary of the Gironde and to the west by the 
Atlantic Ocean. It has a mild oceanic climate. Slovenia is 
a central European country (Figure 1(D)) lying between 
Austria, Italy, Croatia and Hungary. It has a narrow 
outlet to the Adriatic Sea in the west. In the east it 
spreads into Pannonian plain. The Alps cover a good part 
of the north-west of the country where altitudes attain 
2864 m. The centre and east of the country is made up of 
lowlands and low plateaux. The climate is Mediterranean 
in the west and continental in the east.  

2.2. Temperature 

Temperatures are taken as the response variable. We ana- 
lysed minimum and maximum daily temperatures (in  

 

Figure 1. Study areas location with geographical coordinates; A = Franche-Comté, B = PACA, C = Gironde, D = Slovenia.   
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France) or temperatures recorded at set times (7 am, 2 pm 
in Slovenia). The data relate to variable numbers of days 
depending on the areas in question. For Franche-Comté 
(FC-2006) and PACA daily maxima and minima for the 
year 2006 are available (Table 1). In Franche-Comté 
(FC-cold), we have 99 minima for spells of extreme cold 
(average of the region’s 74 weather stations less than 
–10˚C) between 1990 and 2007. For Gironde, three years 
(2003-2005) of records (maxima and minima) are avail- 
able. For Slovenian temperature measurements at 7 am 
(close to the daily minimum) and 2 pm (close to the daily 
maximum) are available for year 2006.  

2.3. Topographic Variables 

The topographic variables shall be introduced into the 
regressions as explanatory variables of temperature. They 
are all taken from a single data source: the 50-m resolution 
DTM for each of the four study areas. Two types of to- 
pographic variable are built: “classic variables” and va- 
riables related to landforms.  

By “classic” variables, we mean that set of topographic 
variables that is generally used in most GIS software 
packages. There are four such variables:  
 Altitude [alt] corresponds to the value of pixels read on 

the DTM. Altitude is not windowed because earlier 
works have shown that its values vary little from one 
window to another: altitude is a “non-scalar” [12].  

 Slope [slope], and the next four variables are calcu- 
lated for the eight windows. Slope is the value of in- 
clination from the horizontal (0˚), of the plane of re- 
gression obtained from the first-degree polynomial 
applied to altitudes in each window. Values range in 
theory from 0 to 90; however, slopes of more than 50˚ 
are extremely rare. 

 Roughness [rough] indicates the unevenness of the 
relief (it may be zero on a flat or on a perfectly straight 
incline). It is given by the standard deviation of alti- 
tudes relative to the plane of regression. 

 Theoretical global radiation [rglob] is calculated for 
the equinox, as the midday position, between the sol- 
stices. It allows for the gradient and aspect of the hill- 
slopes as well as the azimuth and the direction of the 
Sun. It is calculated hourly and then the 24 values are  

Table 1. Number of weather stations and type of tempera- 
ture data for the four study areas. 

 Nbr Stations t min t max 7 h 14 h

FC-2006 80 1 year 1 year   

FC-cold 74 99 days    

PACA (2006) 103 1 year 1 year   

Gironde (2003-2005) 68 36 months 36 months   

Slovenia (2006) 20   1 year 1 year

summed to give the daily value. The effect of cast 
shading is limited to 2 km.  

It has been suggested that landforms play an essential 
part in the spatial structuring of temperature [13,14]. At 
the end of the night and especially in winter, cold air tends 
to slide downslope and accumulate in the valley bottoms 
(catabatic wind) while the hilltops and upper slopes ex- 
perience milder temperatures. Conversely, in the middle 
of the day especially if it is warm, warm air is further 
heated by contact with the ground and tends to rise along 
hillslopes exposed to the sun (anabatic wind). These th- 
ermal effects (slope breezes) influence the temperature 
well beyond the hillslopes where they are generated. Al- 
lowance for such effects has guided the construction of the 
two topographic variables related to landform: the am- 
plitude of humps [hmp] and of hollows [hllw].  

Hump amplitude and hollow amplitude are meant to 
evaluate the height or depth of a positive or a negative 
relief relative to a topographic reference point. To calcu- 
late these two variables, we proceed in three stages: 
 By locating ridgelines and thalwegs and identified in a 

similar way to with the Peuker-Douglas [15] algorithm. 
These two linear forms (Figure 2) describe the to- 
pographic structure of each study area at different 
scales. 

 By constructing two fictitious topographic surfaces: 
the “ceiling” passes through all the ridgelines to en- 
compass all of the emerging relief, while the “floor” 
joins up all the thalwegs (Figure 3). Between the two  

 

ridgeline 

Figure 2. Landforms extracted from a DTM for four dif- 
ferent windows (from 5 × 5 pixels to 51 × 51 pixels). 
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surfaces, the distance varies locally with the altitudinal 
position of the ridgelines relative to the thalwegs. In 
Figure 3(a), the relief is depicted at high resolution. 
The main two emergent reliefs are covered by a num- 
ber of micro-reliefs that give rise to the same number 
of micro-ridgelines and thalwegs. The ceiling and 
floor hug the general profile of the topography. The 
volume enclosed by the two surfaces is small. In Fig- 
ure 3(b) the relief is shown at lower resolution and so 
all traces of micro-relief have disappeared, leaving 
only the major relief. Only the most prominent ridge- 
lines and thalwegs are detected. They are few in num- 
ber and depict surfaces with a long radius of action, 
often separated by great distances.  

 By calculating the amplitude of forms for any pixel p 
in the study area. The ridgeline amplitude is obtained 
by the difference between the altitude of the floor ver- 
tically below pixel p and the altitude of pixel p read on 
the DTM. The depth of the hollows is obtained simply 
from the difference between the altitude of the ceiling 
vertically above pixel p and the altitude of pixel p read 
on the DTM. 

Topographic variables are usually estimated from a sin- 
gle DTM pixel or from its nearest four neighbour pixels. 
The other possibility is to consider larger vicinity through 
windows of different sizes. Eight concentric circular win- 
dows of increasing diameter are calculated for the “classic 
variables”: 150 m (3 × 3 pixels), 250 m (5 × 5), 550 m (11 
× 11), 1050 m (21 × 21), 1750 m (35 × 35), 2500 m (51 × 
51), 3750 m (75 × 75) and 5050 m (101 × 101). For tech- 
nical reasons, the window 3 × 3 is not available for the 
variables related to landforms (hmp and hllw). This ap- 
proach allows us to approximate the spatial variation of 
temperature on different scales, from the smallest (win- 
dows 1 or 2 describing the finest topographic variations) 
to the broadest (windows 7 or 8, which allows for the 
coarsest tendencies only). 

2.4. Method 

The Bravais-Pearson correlation coefficients are calcu- 
lated for the 4481 series of temperature readings (response 
variables) and the 39 topographic variables (1 + 8 × 3 + 2  

 

Figure 3. Variation of the ceiling and floor on two different 
scales. 

× 7) created in the data base (explanatory variables). The 
correlation coefficients are subjected to Student’s t tests 
(at risk  = 5%) to identify which topographic variables 
significantly accounted for the spatial variability of tem- 
perature. The hierarchy of variables is then established on 
the basis of the frequency with which they are signifi- 
cantly correlated with temperatures. 

The results might be skewed by any collinear variables 
[16]. If two variables have a high common variance, it is 
likely they will be correlated in the same proportions with 
the various temperature series. Imagine that steep slopes 
are all at high altitudes and gentle slopes in the lower lying 
parts of a given area. In this event, slope and altitude co- 
vary to a large extent. If altitude, which is known to in- 
fluence the spatial variation of temperatures, is frequently 
correlated with temperature, then the same will be true for 
slope. Now, if slope influences temperature less than 
altitude does, the high frequency of slopes as an ex- 
planatory variable would be largely due to the collinearity 
of this variable with altitude. Collinear variables must 
therefore be reduced to have the clearest possible vision of 
the variables that best account for the spatial variation of 
temperatures. There are many sources of collinearity. The 
example just given (collinearity between altitude and 
slope) is one. Another source is windowing which induces 
strong spatial autocorrelation (Table 2). It is inevitable 
that the values computed for adjacent windows are close 
since the overlap between windows is high; window 2 (5 
× 5 pixels) has 36% of pixels in common with window 1 
(3 × 3). However, this collinearity diminishes with in- 
creasing difference in window size. 

The threshold beyond which the effects induced by 
collinearity may be detrimental is difficult to determine 
[17]. Schroeder et al. [18] assert that there are no statis- 
tical tests for determining whether or not multi-collin- 
earity. The occurrence of collinearity is evaluated here by 
the correlation coefficient, which is more intuitive than 
the “condition index” normally used [19]. In this study, 
we set it at 0.4 (16% of common variance between pairs of 
collinear variables).  

The main pairings with comparatively high collinearity 
are a) roughness and slope (r = 0.73), and b) roughness 
and hump amplitude (0.54) (Table 3). Collinearity is  

Table 2. Matrix of correlations among the eight windows of 
the “slope” variable: with PACA as an example. 

 w5 w11 w21 w51 w101 

w3 0.97 0.85 0.71 0.56 0.46 

 w5 0.91 0.75 0.58 0.51 

  w11 0.90 0.70 0.60 

   w21 0.80 0.62 

    w51 0.84 

(a) 

(b) 
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(23%) and roughness (18%). Slope is the variable selected 
least often (10%). 

extremely difficult to handle all around since all of the 
variables entail some degree of collinearity with the others. 
After the residuals from these two regressions have re- 
placed the initial values, collinearity in our case study is 
close to zero (Table 4).  

As a result of this processing, most of the other vari- 
ables are orthogonal or close to it. The collinearity be- 
tween hump amplitude and roughness has been corrected 
in part by the “de-correlation” of roughness by altitude: 
this means that the common variance between these two 
variables is due in part to the collinearity linking both of 
them to altitude. The same is true for the collinearity that 
linked slope to altitude. Let us notice that as to avoid 
collinearity because of windowing, only the window with 
the highest r value is selected. 

3. Results 

Altitude is the variable that significantly explains the 
spatial variation of temperatures in the greatest number of 
cases (80%) (Table 5). Statistics clearly show the physical 
model relating temperature and pressure. Hump amplitude 
(49%) and hollow amplitude (46%) follow: landforms are 
involved in nearly half the instances in the spatial varia- 
tion of temperatures. Behind them lag global radiation  

Table 3. Matrix of correlations among the six explanatory 
variables; with PACA as an example. 

 rough slope rglob hmp hllw 

alt 0.41 0.44 0.11 0.21 0.33 

 rough 0.73 0.29 0.54 –0.04 

  slope 0.43 0.39 0.01 

   rglob –0.08 0.08 

    hmp –0.31 

Table 4. Matrix of correlations among the six explanatory 
variables after de-correlation; with PACA as an example. 

 rough slope rglob hmp hllw 

alt 0 0.23 0.11 0.21 0.33 

 rough 0 0.26 0.25 0.30 

  slope 0.32 0.19 0.05 

   rglob –0.08 0.08 

    hmp –0.31 

Table 5. Frequency (%) with which the six variables sig- 
nificantly account for the minima and maxima. 

 alt rough slope rglob hmp hllw

minima 79 17 10 14 49 65 

maxima 81 19 10 32 49 27 

average 80 18 10 23 49 46 

3.1. Variation by Minima and Maxima 

The physical processes as highlighted by statistics govern 
the spatial variation of minima and maxima in very dif- 
ferent ways. The largest deviation is for the depth of hol- 
lows, which significantly accounts for 65% of the minima 
and just 27% of the maxima (Table 5). The build-up of 
cold air in topographic depressions is very marked at the 
end of the night whereas in the course of the day mecha- 
nisms (especially radiation) kick-in to limit its influence. 
Another important difference between minima and maxi- 
ma statistics can be observed in the case of global radia- 
tion which explains the maxima twice as often as the 
minima. The other variables (altitude, hump amplitude, 
roughness and slope) influence the spatial structure of 
minima and maxima with similar frequencies. 

3.2. Variation by Study Area  

In Table 6, excess frequencies compared to the average 
[see Table 5] appear in smaller font and deficit frequen- 
cies are in bold print. Temperature variations in PACA, a 
region of high mountains, depend above all on altitude 
(significant in 93% of cases) and landforms. Franche- 
Comté fits in with this pattern for the days of extreme cold 
(FC-cold), where the influence of landforms is even more 
decisive. Conversely, the spatial structure of temperatures 
for 2006 (FC-2006) stands apart, except for altitudes, 
which remain a powerful explanatory variable. 

In Slovenia, a mountainous country, altitude while 
predominant, is more discreet as a variable than in PACA 
and Franche-Comté. However, the influence of landforms 
is significant, especially hump amplitude. The role of 
global radiation in Slovenia is notable, as in Franche- 
Comté. The Gironde, a low-lying area, stands apart. Al- 
titude, as expected, is only significant one day in two 
whereas the influence of the amplitude of hollows (58%) 
and the influence of slopes is high. 

3.3. Seasonal Variation 

Seasonal variations occur in the frequency with which  

Table 6. Frequency (%) with which the six variables sig- 
nificantly account for the minima in the different study 
areas (red print = excess compared to the average; blue print 
= deficit compared to the average). 

 alt rough slope rglob hmp hllw 

PACA 93 16 7 16 66 58 

FC-2006 94 3 11 33 38 30 

FC-cold 90 10 7 29 88 69 

Slovenia 82 34 1 32 65 35 

Gironde 49 19 19 12 25 58 
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some topographic variables significantly explain the spa- 
tial variations of temperature. We have chosen to present 
the four variables that most clearly oppose summer to 
winter. 
 Altitude (Figure 4) is less frequently taken as an ex- 

planatory variable for spatial variation of minimum 
and maximum temperatures in winter (74% - 75%) than 
in spring (78% - 80%) and late summer (85% - 86%). 
This suggests that in winter heat inversions counter the 
adiabatic decline in temperature. 

 Global radiation (Figure 5) accounts for the spatial 
variation of maximum temperatures (32%) twice as 
much as for minimum temperatures (14%). For maxi- 
ma, its influence rises steadily from January (23%) to 
June (45%). Then it diminishes until October, from 
when onwards it levels off at 26%. This variation is 
consistent with the energy received at the ground sur- 
face, which is greater in the afternoons (maxima) than 
in the mornings (minima). This hypothesis will be 
discussed later in Section 3.3. 

 Landforms influence the spatial variation of minima 
above all in summertime. Minimum temperatures are 
influenced on average much more by the amplitude of 
humps and hollows (56%) than maximum tempera- 
tures (38%) are. The frequency with which these two 
landforms account for the spatial variation of tem- 
perature is reversed between the minima and maxima 
(Figures 6 and 7). 

4. Discussion 

The results just described should be nuanced by several  

 

Figure 4. Annual variation of altitude as an explanatory va- 
riable for temperature (four study areas). 

 

Figure 5. Annual variation of the global radiation as an ex- 
planatory variable for temperatures (four study areas). 

remarks about windowing, collinearity and the influence 
of solar radiation on the spatial variation of temperatures. 

4.1. Windowing 

The windowing system allows to approximate the in- 
fluence on temperatures of the scales of the topographic 
variables involved. In some cases, all of the windows 
significantly explain the variation in temperature. In 
curve A of Figure 8, the maximum coefficient is in the 
21 × 21 window, indicating that it is hollows of a kilo- 
metre or so in size that explain most of the spatial 
variation of minima. In other cases, only one or a few 
windows exceed the selected level of significance (B). 
Often none of the windows exceed the threshold (C). But  

 

Figure 6. Annual variation in the amplitude of humps and 
hollows as explanatory variables for minimum temperatures 
(four study areas). 

 

Figure 7. Annual variation in the amplitude of humps and 
hollows as explanatory variables for maximum tempera- 
tures (four study areas). 

 
Figure 8. Variation of the correlation coefficient of the am- 
plitude of hollows (A), roughness (B) and global radiation (C) 
with minimum temperatures for 1 January 2006 in PACA.  
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regardless of however many windows may have a signi- 
ficant coefficient, the principle of counting occurrences 
does not allow for double or multiple counting since only 
the window with the highest r-value is selected. Exami- 
nation of the windows that are most frequently significant 
makes it possible to specify which topographic scales are 
most likely to influence the spatial variation of tempera- 
tures. The highest correlation coefficient is obtained by 
global radiation for the four broadest windows (35 × 35 
to 101 × 101) for both minimum (Table 7) and maximum 
(Table 8) temperatures. It seems that hillslopes have to 
be extensive if global radiation is to significantly in- 
fluence temperatures. The heat generated at the ground 
surface constitutes a micro-airmass large enough to affect 
the layer of air in the first few metres above the ground 
only if the receiving hillslope is at least 1750 m in extent. 
Similar conclusions on the expansion of vegetation cover 
[12] and extend of slopes [9] had already been made. A 
similar model affects roughness for maximum tempera- 
tures, although no process can be suggested to account 
for it. With maximum temperatures (Table 8), the ampli- 
tude of humps and hollows is most marked in the six 
broadest windows (from 11 × 11 to 101 × 101). In this 
case, the only forms that are most rarely selected as 
explanatory variables for the spatial variation in 
temperatures are the forms of small extent (less than 250 
m). The reverse occurs with the amplitude of hollows for 
minimum temperatures (Table 7). The most effective 
cold traps do not seem to be the largest ones. 

4.2. Residual Collinearity 

One way of measuring the bias introduced by collinearity 
is to compare the results obtained before and after “de-  

Table 7. Frequency (%) with which the windows two-by-two 
exhibit significant correlation coefficients; minimum tem- 
peratures. 

 rough slope rglob hmp hllw 

Win 1 + 2 25 51 5 18 43 

Win 3 + 4 13 18 8 35 33 

Win 5 + 6 22 25 16 24 20 

Win 7 + 8 40 5 70 23 4 

Table 8. Frequency (%) with which the windows two-by-two 
exhibit significant correlation coefficients; maximum tem- 
peratures. 

 rough slope rglob hmp hllw 

Win 1 + 2 10 11 4 9 5 

Win 3 + 4 5 16 3 29 39 

Win 5 + 6 31 70 29 24 20 

Win 7 + 8 54 2 63 38 21 

correlation”. Roughness, which displays 16% of common 
variance with altitude, shall serve as an example. The 
frequency with which altitude and roughness significantly 
explain the spatial variation in temperatures is 80% and 
43% respectively. After “de-correlation”, roughness ex- 
plains just 18% of cases (Table 5). The high frequency 
of “untransformed” roughness as a variable accounting 
for the spatial variation of temperature is therefore due to 
its collinearity with altitude; when the collinearity is neu- 
tralized, the frequency with which it explains tempera- 
tures strongly declines. 

4.3. Variation of Global Radiation 

Radiation explains significantly more often the tempe- 
rature variation in summer (than in winter) and the maxi- 
mum temperatures variation (than the minimum one) 
(Figure 5). These facts have been explained by the varia- 
tion in energy received at the ground surface. This inter- 
pretation could be contradicted by the observation that 
radiative differences between north and south facing hill- 
slopes vary much more in winter than in summer: Hufty 
[20] reports that this difference between two 45 hill- 
slopes exposed one to the north and the other to the south 
is of 16 MJ/m2/day in winter as against just 6 MJ/m2/day 
in summer at Carpentras (southern France). It is true that 
large differences in radiation depending on location is a 
condition that promotes large temperature differences 
and therefore a high correlation between these two vari- 
ables. However, the relation between them is not straight- 
forward and is sometimes difficult to bring out. Accord- 
ingly, what is shown in Figure 5 could rather be ex- 
plained as the response from environments that tend to 
heat up more with high radiative energy. So the fre- 
quency of global radiation as an explanatory variable of 
the spatial variation of temperature is higher with maxi- 
mum temperatures and during summer. Global radiation 
rarely explains the spatial variation of minimum tem- 
peratures that ordinarily occur before the sun reaches the 
station. One should also consider that the theoritical 
global radiation is a variable that reflects indirectly the 
terrain aspects, i.e. South and North exposed slopes. 
Therefore, this variable could be selected as variable ex- 
plaining the spatial variation of temperature because of 
temperature differences due to wind effects (shelter/ex- 
posure of north and south exposed slopes) depending on 
the synoptic and the local circulation patterns. 

5. Conclusions 

Our analysis provides answers to the rank-ordering of 
variables accounting for the spatial variation of tempera- 
tures. First altitude is almost always a significant variable. 
The only case that does not fit into this model is as 
expected Gironde because of its moderate topography. 
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The frequency with which altitude is selected is higher 
when the study area is more mountainous. The amplitude 
of humps and hollows describes the structure of the 
topography. We felt their importance and the results we 
obtained have not disappointed us. It has been shown in 
many instances that the influence of these landforms on 
the temperature spatial distribution is often decisive. 
Their influence is exerted mostly on minimum tempera- 
tures, a situation that is strongly influenced by the size of 
hollows. These two variables are effective above all in 
PACA and in Franche-Comté during cold spells. As alti- 
tude, their introduction in interpolation process is often 
decisive. Works in progress not yet published show that 
the estimation errors of temperature and precipitation 
amount are reduced when they are introduced as explana- 
tory variables. These results more than justify the effort 
we made to create these variables describing the land- 
forms. Last point, it seems that thalwegs associated with 
the smallest windows are more explanatory than the 
thalwegs associated with the broadest windows. It is true 
that large but shallow valleys may accumulate less cold 
air that deep but narrow valleys. Also, our future work 
will focus on calculating the volume of air included in 
the hollow forms and test if this hypothesis is true or not. 

We have voluntarily limited the number of explanatory 
variables derived from the DTM to six. This has focused 
attention on a small number of topographic variables 
accounting for temperature. However, other variables 
could have been introduced into the analyses, such as the 
north-south (cosine) and east-west (sine) components of 
hillslope aspect, distance to the nearest ridgeline, dis- 
tance to the nearest thalwegs. Statistics show that these 
additional variables sometimes play a part in the spatial 
distribution of temperatures. But often it is not easy to 
derive any physical interpretation from them [9]. Their 
inclusion in this study would have clouded the results in 
many instances, although they can be usefully included 
in interpolation models where the aim is to exploit the 
maximum number of significant variables. 
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