
Journal of Geographic Information System, 2012, 4, 161-167
http://dx.doi.org/10.4236/jgis.2012.42021 Published Online April 2012 (http://www.SciRP.org/journal/jgis)

Considerations for Implementing OGC WMS and WFS
Specifications in a Desktop GIS

Christopher D. Michaelis, Daniel P. Ames
Department of Geosciences, Idaho State University, Idaho Falls, USA

Email: chris@chrismichaelis.com

Received December 29, 2011; revised February 5, 2012; accepted February 18, 2012

ABSTRACT

An implementation of the Open Geospatial Consortium Web Feature Service (WFS) and Web Map Service (WMS)
specifications in an open source desktop GIS is presented together with a discussion of considerations for improving the
use of web services data in desktop applications. In our implementation, WFS and WMS services are consumed by a
plug-in to MapWindow GIS [1], allowing the end user to view WFS, WMS and ArcIMS data, including data from the
ESRI Geography Network, in a transparent manner that can be configured for either data analysis and modeling, or data
visualization. This implementation in an open source GIS allows for others to view and use the code, improve it, and
otherwise implement the suggested considerations in other GIS platforms. Specific considerations proposed here in-
clude: pre-fetching through envelope optimization, tile display, and feature complexity reduction. These strategies im-
prove the speed and responsiveness with which data can be viewed and analyzed. Comparisons made with other web-
based data access implementations are used to evaluate whether these techniques provide performance benefits, and
under which circumstances.

Keywords: OGC; WFS; WMS; Geographic Information Systems; Open Source GIS

1. Introduction

Web-based geographic information system (GIS) tools
are increasingly used for basic mapping and data visu-
alization tasks (e.g. Google Maps, MapQuest.com, and
ArcIMS) and complex web mapping and data analysis
software tools continue to be developed. In spite of this
apparent migration of GIS to the web-platform, desktop
or client-side GIS tools are likely to continue to be needed
for a variety of use cases in the foreseeable future. The
primary standards issuing entity for the GIS community,
the Open Geospatial Consortium (OGC) has released
web-based GIS specifications which are arguably the
most widely adopted of its standards, and are used pri-
marily for web based GIS tools. OGC standards such as
the Web Map Service (WMS) and Web Feature Service
(WFS) have proven to be useful for normalizing and im-
proving the manner in which data is shared across the
Internet, and as such they are expected to grow in popu-
larity and usage. The purpose of this paper is to present a
case study with lessons learned from the implementation
of both WFS and WMS support in a client side desktop
GIS application.

The stated mission of the OGC is “to lead the global
development, promotion and harmonization of open
standards and architectures that enable the integration of
geospatial data and services into user applications” [2].

This is accomplished through the authoring of specifica-
tions which are created by “structured committee pro-
grams and consensus process” by which participants in a
wide range of scientific disciplines may contribute to the
specifications. A specific goal of the OGC is to address
the problem of data sharing—a problem that includes
both interoperability and communication—and ultimately
arrive at “a world in which everyone benefits from the
use of geospatial information and supporting technology”.
OGC has attempted to address some of the fundamental
problems of data sharing by specifying common formats
for wide-scale understandability in distribution, for facil-
itating geoprocessing, and for interoperability between
disjoint software products.

Web based GIS systems are not suitable for every GIS
task because they can be slow and unresponsive due to
large data sizes and in many cases do not provide access
to raw data sources. For example, the US Geological Sur-
vey Seamless Data Server [3] is a useful web based GIS
system but which is often ineffective to use for opera-
tional activities because of the number of users and vol-
umes of data being processed. Indeed, the combination of
large geospatial data sets and high popularity (such as
with the USGS Seamless Data Server) can ultimately
impair usability. Interestingly, both MapServer [4] and
ArcGIS Server [5] offer scalable service (e.g. they are fast,

Copyright © 2012 SciRes. JGIS

C. D. MICHAELIS ET AL. 162

and remain fast for many simultaneous users) when sim-
ply providing data via WFS, WMS, or ArcXML (an ESRI
specific XML specification used by ArcIMS). The pri-
mary computational overhead with web based mapping
tools is associated with map display, not data distribution.
Simple map servers such as Google Maps, Yahoo Maps,
and MapQuest have become popular due to their ability
to create a seamless, interactive map viewing experience
for end users; however, browsing and acquiring scientific
geospatial data through GIS web servers is still often a
tedious process.

Geoprocessing can also be challenging when working
with strictly web based GIS tools because of data transfer
speeds and general web based geoprocessing capabilities.
An example of a web based GIS that can perform ad-
vanced geoprocessing is the USGS StreamStats [6] sys-
tem. This tool allows one to select a point on a map and
then delineate a contributing drainage area from this
point and calculate several catchment properties. A web
service such as this can make simple calculations and
provide results through a web browser. However, more
complex analytical and mathematical analyses can be
challenging to operate in this way, especially when cal-
culation of results is time intensive.

Many of the challenges associated with web based
mapping tools are largely overcome through the use of
desktop GIS applications following the client-side com-
puting model. Speed of visualization and data interaction
is rarely an issue on desktop based GIS tools using
graphics technologies such as GDI+, DirectX or OpenGL
[7]. Additionally, inexpensive desktop computer storage
and memory can be used to improve computing speed
and display capabilities. When working on a local or
client-side computer, local copies of data are always avail-
able, and advanced geoprocessing tasks which can be
time-consuming may be performed.

In spite of these benefits of traditional desktop based
GIS tools, client-side GIS systems can suffer from two
obvious problems: outdated data sources and the inability
to easily share data. Both of these are areas in which the
web based GIS tools excel. One could argue that a mixed
approach, combining the best features and capabilities of
client-side and web based GIS tools, would be ideal. We
explore an approach for making use of web-oriented
OGC standards in a desktop GIS application. The result
is a system that benefits from local processing and data
storage capabilities while using web based data services
to solve the problems of outdated data sources and diffi-
cult data sharing. Specifically, the WMS and WFS speci-
fications are implemented in a client-side GIS in a case
study that tests several optimization methods, improving
performance for data visualization and analysis on a local
desktop GIS platform. The methods presented here can
be implemented together with other established optimi-

zation techniques including data caching, multithreading
and pyramids for raster data [8].

2. Methods

The open source MapWindow GIS desktop application
[1] was selected as a case study implementation platform
for this project. MapWindow GIS is programmed in the
Microsoft.NET Framework [9], with a plug-in frame-
work that encourages separation of logic and data layers
such that code can be easily transferred to other GIS ap-
plications and platforms. Specifically, we developed an
online data plug-in for MapWindow as a desktop data
interface for access to WFS data for feature (vector) data
such as points, lines and polygons, and WMS data for
preassembled map imagery. ArcXML [10] data sources
such as ESRI ArcIMS Servers are also supported to make
use of the large data volume presently available in that
form. In addition to providing access to remote data
sources, our implementation demonstrates three specific
data visualization and downloading techniques including
request envelope optimization, tiled display, and feature
simplification. The tool also allows data to be down-
loaded and saved locally. Possible optimization modes
when using data directly from online sources include
optimization for geoprocessing without attributes, opti-
mization for geoprocessing with attributes, or optimiza-
tion for simplified viewing. The three optimization tech-
niques explored are presented in the following sec-
tions.irst, confirm that you have the correct template for
your paper size. This template has been tailored for out-
put on the custom paper size (21 cm × 28.5 cm).

2.1. Request Envelope Optimization

The first optimization uses an envelope optimizer re-
ferred to as a detail square grid (DSG). This is a recur-
sive grid or quadtree structure (Figure 1) of short integer
data indicating the current status of each cell within that
grid. The initial size of the grid and the initial size of grid
cells are determined by user-configurable options. Each
tile of this grid is downloaded separately allowing
real-time adjustment of target data downloaded sizes to
take place, based on the time that a given cell takes to
transfer. After each dataset tile is transferred, the transfer
time is evaluated and each grid cell may be broken down
into sublevels. In this case, each grid cell contains an-
other instance of a DSG which further divides that cell.
All functions from outside the optimizer are called on the
outer level DSG. This means that analysis functions are
all recursive in order to expose multiple sublevels of grid
cells. Since the grid may have a large depth of grid cells,
this provides a great deal of scalability in quickly pro-
viding data updates to the user, automatically adapting to
the connection and transfer speeds available. Because

Copyright © 2012 SciRes. JGIS

C. D. MICHAELIS ET AL.

Copyright © 2012 SciRes. JGIS

163

rather than fetching all data at once, the design of the
DSG is intended to provide the user with data as quickly
as possible. This allows the user to examine and work
with the data while additional data continues to down-
load in the background.

The view optimizer instantiates the DSG object with
the corner coordinates, the desired cell size, and the num-
ber of rows and columns of the data in question. Priori-
ties are established for each grid cell; these priorities are
updated through function calls. The most important func-
tion in this process increases the priority level by two for
tiles which are entirely contained within the given ex-
tents, also called an envelope, and increases the priority
level by one for tiles partially intersected by the given
extents. As the user zooms, pans and interacts with the
data, this continual update of prioritization creates an
effective preference map for cells in the DSG. When a
new tile is ready to be retrieved, a function call to the
optimizer provides the envelope for the highest priority
data that is pending retrieval. The optimizer works solely
in terms of extents or envelopes, separating it from the
type of data being optimized. The technique is illustrated
in Figure 2. This approach is similar to the tiled display
observed in Google Maps, which also aims to display an
overview quickly and provide additional data as needed.

Figure 1. Detail Square Grid (DSG). Any given grid cell
may recursively contain another instance of a DSG.

some data transfer bandwidth may be consumed in the
overhead of multiple requests to download multiple tiles,

Figure 2. Flowchart showing the general operation of the Detail Square Grid (DSG).

C. D. MICHAELIS ET AL. 164

The key difference is that Google Maps provides low
resolution data followed by higher resolution data on
every zoom or pan, whereas the DSG technique contin-
ues to retrieve high-resolution data for areas outside of the
current view, choosing tiles in an arrangement determined
to be optimal to retrieve areas likely to be viewed next.
This difference can be attributed to different target audi-
ences and intended uses of a simple web based map
viewer, versus a desktop GIS intended for complex data
analyses.

2.2. Tiled Display Optimization

After retrieving the desired data envelope to download, a
request may be formulated using extensible markup lan-
guage (XML) [11] for WMS or WFS, and using ArcXML
[4] for ESRI services. In the case of WMS, this request
will return an image of the map tile requested. Merging
this new data with already-displayed data can present a
problem with respect to speed and seamless interaction.
One approach is to dynamically merge newly down-
loaded high-resolution imagery with a low-resolution
backdrop, resulting in one image file with mixed quality
(i.e. merged tiles of varying resolution). Following this
approach, additional imagery transfers would then cause
the single client-side image file to be composed of in-
creasingly high resolution elements. This approach is
relatively slow and may be undesirable because of radi-
cally different cell sizes caused by a resized viewing
window, and recomputed download tile sizes at different
transfer speeds.

A second approach involves using GIS drawing engine
optimizations to avoid examining images that are not in
view or which are covered. In this case, a low-resolution
backdrop is added as the first layer, and then high-reso-
lution tiles are added to the map as they are downloaded
and become available (Figure 3). This approach is better
for speed of visualization, because the GIS drawing en-

gine displays new layers almost instantaneously since no
data merging is required. In the MapWindow GIS im-
plementation of this approach, a side effect was the ap-
pearance of legend entries for each separate tile as a new
layer in the MapWindow legend. This was avoided by
flagging the additional layers as invisible to the legend.
In so doing, the results are displayed in an effective
mechanism for showing increasingly detailed data with
no speed lost to data merging.

2.3. Feature Retrieval and Feature Simplification
Optimization

When requesting feature data, it can be important to re-
trieve any feature which falls within the requested enve-
lope, and return the entire feature rather than a feature
clipped to the requested boundary. The OGC Filter En-
coding Implementation Specification [12] indicates that
the bounding box operation “should identify all geome-
tries that spatially interact with the box in some manner”,
making the bounding box operation well-suited for this
task. When formulating an ArcXML request, the “area-
intersection” operation performs this same task. For speed
purposes, it is useful to drop attribute data if it is un-
needed (a preference specified by the user). ArcXML
provides a mechanism for this, but the OGC WFS speci-
fication lacks the ability to ignore or drop attributes from
received data.

A WFS server returns data to the client using the geo-
graphic markup language (GML), an XML grammar;
ESRI servers typically return data in the ArcXML format,
a proprietary but published format. For our case study
implementation, this data must be converted to the more
common shapefile format which is natively supported by
many GIS software packages. This step occupies a small
but notable portion of CPU time. Presumably a desktop
GIS with native GML support would not experience this
specific delay.

Figure 3. Display mechanism for showing high-resolution data over low-resolution data, as new data is downloaded. Note the
new tile added in the top-right corner.

Copyright © 2012 SciRes. JGIS

C. D. MICHAELIS ET AL. 165

A number of methods for efficient transfer of vector

data have been proposed an implemented in different
software packages [13,14]. In our implementation, for
feature simplification optimization, once data has been
downloaded and converted to the shapefile format it is
added to the GIS application’s map view window. If op-
timization for geoprocessing has been selected, the fea-
tures will be immediately merged into a single shapefile
to facilitate analysis functions. If optimal visualization is
selected for the data download method, each individual
tile will be added to the map, thus using a form of the
tiled display optimization developed for WMS services.
Additionally, this visualization method will attempt to
simplify vector features for a smaller number of overall
vertices. The goal is to remove all vector vertices from
the data that have no notable effect on the final display of
the data due to their density (Figure 4). A final pass over
the shapefile is made using a modified implementation of
the Douglas-Peucker algorithm [15], which was origi-
nally intended to simplify polyline point arrays.

2.4. File Management and Project Saving
Considerations

The visualization optimizations described above result in
multiple individual parts present in the map, all associ-
ated with a single data layer but stored in separate files.
Because of this, it is crucial to track all temporary files
used, both for timely cleanup and to aid in correct project
saving functionality. When a map project is saved, it is
necessary to ensure that layers originating from an online
data source do not get saved to the project file from
temporary locations. If this were to occur, the project

would reference a temporary file that will not persist
upon reopening the project file. MapWindow allows
plug-ins to specify settings which are saved to, and
loaded from, the main project file. This allows the soft-
ware to prepare an XML segment detailing the source of
all online data layers in enough detail to rebuild the pro-
ject from the online data when reloaded. This has the
added advantage that a project compiled from online data
sources takes a very small amount of disk space to store
(typically less than 50 KB). One potential downside to
this approach is that when the project is re-opened and
the computer does not have an active internet connection,
the datasets will not be viewable unless initially the user
specified download of local copies of the data.

3. Results and Discussion

The client-side GIS approach and case study implemen-
tation presented here resulted in a viewing system for
online data that can be easily integrated with existing
local data on a desktop GIS. The approach addressed the
goal of building upon the strengths of both web based
and client-side GIS tools in an integrated “web-enabled”
GIS system that optimizes viewing and download of data
for analysis.

Our WFS and WMS case study implementation was
compared with on-line data functionality in two existing
GIS systems: uDig, ArcExplorer, and ArcIMS HTML
Viewer. A dataset comprised of several different data
types (vector and raster) was accessed using each GIS
application, with twenty replicates of the same dataset
tested using the same client computer and network con-
nection, and connecting to the same server. Tests were

Figure 4. Removing redundant vertices as no impact on visual appearance and a negligible initial time impact.

Copyright © 2012 SciRes. JGIS

C. D. MICHAELIS ET AL. 166

peate

s the time analysis results from this
co

re d for varying numbers of features and varying
raster resolutions. The time to acquire an initial view of
the dataset for both vector and raster data was measured
(ti), as well as the time to download and display all data
(tf). Initial and final raster quality (qi and qf, respectively)
were evaluated qualitatively using a one-to-ten scale,
where ten is highest. Data sources tested include point,
polyline and polygon vector data and a raster image rep-
resenting a 30-meter digital elevation model (DEM).
Datasets were served using both ArcIMS in the ArcXML
data format, and by MapServer using OGC WFS or
WMS as appropriate. The measured values for ti and tf
from each application were averaged for each given data
type and metric.

Figure 5 show
mparative study, with our results on the Y axis and

results from the tested tools on the X axis. Each point
represents a single average of all replicates performed
with the given software. A 1:1 line is shown for reference;
any point to the left (or above) the line indicate occur-
rences where our tool was slower than the comparison
product, while points to the right (or below) the line in-
dicate occurrences where our tool was faster than the
comparison product. The plot indicates that our tool per-
forms faster than ArcExplorer about half of the time.
This is consistent with designed behavior where an initial
display is presented as quickly as possible, yielding the
fast initial access (ti) times. After initial view, the re-
maining data is downloaded in prioritized pieces in the
background, yielding the slower final display (tf) times.
Our implementation performs better than uDig in all
cases except one (a final display time), and performs better
than the ArcIMS HTML Viewer for initial data display.

Figure 5. Time to load and display data using our online
data plugin (ODP) versus comparison tools.

or the

ccess to shared data for visu-
sis could potentially be improved by
ted here. The ArcXML capabilities of

nded by the Pacific Northwest Re-
 of a Pacific Northwest Na-
unded by NASA through

. Dunsford, “Introducing
the MapWindow GIS Project,” OSGeo Journal, Vol. 2,
2007, pp. 8-10.

The final display time (tf) is omitted from the plot f
ArcIMS HTML Viewer, because the test is not applica-
ble (the initial display is the only display, thus there is no
“final” time to observe).

The complete data load (tf) of polyline features in our
tool requires a full 170 seconds while ArcExplorer re-
quires only 68 seconds. Our tool consistently falls behind
ArcExplorer for a complete data load, but provides an
initial view (ti) several seconds faster. Our tool is typi-
cally faster than uDig for initial display by a large margin,
and is faster than uDig for a complete data load in several
cases. Qualitative measures of raster quality indicated
that the initial quality in our tool is less than that of
comparison products, but that the final load quality in our
tool was higher than comparison products—again reach-
ing the designed behavior.

4. Conclusions

Applications that require a
alization and analy
the concepts presen
our online data plug-in implementation provide an addi-
tional way to work with data when a given ArcIMS web-
site gateway does not yield itself to the task at hand, such
as digitizing points from an ArcIMS image background.
The website interface may be bypassed entirely, using
the underlying data directly and thus allowing the task to
be completed easily.

In summary, the primary contributions of this work in-
clude the development of a request envelope optimizer to
determine what data to download, as well as implement-
tation of a tile-based display approach and vector feature
simplification techniques. The implementation and com-
parative study presented here have demonstrated the po-
tential for these optimizations with respect to data analy-
sis and display, as a case study to implementation of
WFS, WMS and ArcXML data integration within a desk-
top GIS platform.

5. Acknowledgements

This research was fu
gional Collaboratory as part
tional Laboratory project, f
Grant No. AGRNNX06AD43G. This work was also sup-
ported in part by the NSF-Idaho EPSCoR Program and
by the National Science Foundation under award number
EPS-0447689.The authors express gratitude to Patricia
Mercer for her editing assistance.

REFERENCES
[1] D. P. Ames, C. Michaelis and H

Copyright © 2012 SciRes. JGIS

C. D. MICHAELIS ET AL. 167

[2] Open Geospat sion and Mission,”

ssed Dec

 GIS,”

e,” Accessed August 2009.

)
 2009.

ding Im-

ns-
ILE Conference, Lyon,

 over the Internet,” International Jour-

ial Consortium, Inc., “Vi
Accessed December 2011.
http://www.opengeospatial.org/ogc/vision

[3] United States Geological Survey, “Seamless Data Distri-
bution System,” Accessed December 2011.
http://seamless.usgs.gov/

[4] University of Minnesota, “MapServer,” Acce
ber 2011. http://mapserver.org/

em- h

[5] Environmental Systems Research Institute (ESRI), “Ar-
cIMS,” Accessed August 2009.
http://www.esri.com/software/arcgis/arcims/index.html

[6] United States Geological Survey, “StreamStats,” Accessed
December 2011.
http://water.usgs.gov/osw/streamstats/index.html

[7] F. Yuan, “Windows Graphics Programming,” Prentice Hall
Saddle River, 2001.

,

24-

[8] C. Yang, D. W. Wong, R. Yang, M. Kafatos and Q. Li
“Performance-Improving Techniques in Web-Based
International Journal of Geographical Informatio

nal o

n Sci-
ence, Vol. 19, No. 3, 2005, pp. 319-342.

[9] T. Thai and H. Lam, “NET Framework Essentials,” O’Reilly

Media, Cambridge, 2003.

[10] Environmental Systems Research Institute, “ArcXML Pro-
grammer’s Reference Guid
http://edndoc.esri.com/arcims/9.1/

[11] W3C Consortium, “Extensible Markup Language (XML
1.0,” 2nd Edition, Accessed August
ttp://www.w3.org/TR/2000/REC-xml-20001006.pdf

[12] Open Geospatial Consortium, Inc., “Filter Enco
plementation Specification,” Accessed August 2009.
http://www.opengeospatial.org/

[13] H. Han, V. Tao and H. Wu, “Progressive Vector Tra
mission,” Proceedings of the 6th AG

26 April 2003.

[14] B. Yang, R. Purves and R. Weibel, “Efficient Transmis-
sion of Vector Data

f Geographical Information Science, Vol. 21, No. 2
2007, pp. 215-237. doi:10.1080/13658810600894281

[15] D. Douglas and T. Peucker, “Algorithms for the Reduc-
tion of the Number of Points Required to Represent a
Digitized Line or Its Caricature,” The Canadian Cartog-
rapher, Vol. 10, No. 2, 1973, pp. 112-122.

Copyright © 2012 SciRes. JGIS

http://dx.doi.org/10.1080/13658810600894281
http://dx.doi.org/10.1080/13658810600894281
http://dx.doi.org/10.1080/13658810600894281

