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ABSTRACT 

In this paper, we propose a fully automated method to individually classify patients with Alzheimer’s disease (AD) and 
elderly control subjects based on diffusion tensor (DTI) and anatomical magnetic resonance imaging (MRI). We pro-
pose a new multimodal measure that combines anatomical and diffusivity measures at the voxel level. Our approach 
relies on whole-brain parcellation into 73 anatomical regions and the extraction of multimodal characteristics in these 
regions. Discriminative features are identified using different feature selection (FS) methods and used in a Support 
Vector Machine (SVM) for individual classification. Fifteen AD patients and 16 elderly controls were discriminated 
using mean diffusivity alone, combination of mean diffusivity and fractional anisotropy, and multimodal measures in 
the 73 ROIs and the overall accuracy obtained was 65.2%, 68.6% and 72% respectively. Overall accuracy reached 99% 
in multimodal measures when relevant regions were selected. 
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1. Introduction 

Due to aging of the population, Alzheimer’s disease (AD) 
is increasingly becoming a crucial public health issue [1]. 
Early detection and diagnosis of AD is an important task, 
especially for identifying candidate patients for emerging 
therapies against amyloidosis [2]. AD is characterized by 
progressive gray matter (GM) loss which occurs presy- 
mptomatically in some neuroanatomical structures [3]. 
Thus, magnetic resonance imaging (MRI) measurements, 
primarily in the GM, could be sensitive markers of the 
disease and assist early diagnosis. 

MRI studies in AD have demonstrated that volumetry 
of medial temporal lobe (MTL) anatomical structures, 
such as the hippocampus, the amygdala and the entor- 
hinal cortex can be useful in the diagnosis of AD [4-7]. 
Recent studies on structural MRI have demonstrated that 
AD is also characterised by cortical thinning [8]. On the 
other hand, diffusion tensor imaging (DTI) allows in vivo 
investigation of the molecular motion of tissue water at a 
microscopic level in cerebral gray matter and white mat- 
ter (WM). 

The priniciple of DTI is to translate the diffusion into a 

MR signal loss. To construct the diffusion tensor, the di- 
ffusion properties of a subject are determined along at 
least six non colinear directions. Diagonalization of the 
diffusion tensor yields a basis for the set of diffusion pro- 
bability ellipsoids. Different measures are derived from 
the diffusion ellipsoid as the mean diffusivity (MD) and 
the fractional anisotropy (FA). MD describes the local 
magnitude of diffusion regardless of direction. On the 
contrary, FA is used to characterize the degree of anisot- 
ropy of the diffusion ellipsoid. Indeed, in areas of dense 
white matter, diffusion is highly anisotropic. 

As neurodegeneration is accompanied by a progressive 
loss of barriers that restrict water molecule motion, MD 
increases pathologically, whereas FA decreases. Accord- 
ingly, DTI studies in AD patients have shown abnor- 
mally increased MD and reduced FA in GM and WM 
including regions as the cingulate gyrus, the genu and the 
splenium of corpus callosum, hippocampus, amygdala 
and thalamus [9-15]. Thus, microarchitectural damage 
seems to be a sensitive marker of AD pathology. More- 
over, it could be complementary to volumetric alterations 
[9]. Thus, there has been, recently, a growing interest for 
multimodal studies that combine information from ana- 
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tomical MRI and DTI [8,10-12]. 
DTI measures (MD and FA) have been associated to 

different characteristics extracted from structural MRI as 
shape [16] and volume [9,12,17-19] of anatomical struc- 
tures or cortical thickness [8,10,20,21]. Most of these 
studies focused on comparison of groups and few of 
them evaluated the combination of multimodal measures 
for discrimination between individual subjects. In [8] the 
authors reached perfect classification using different MRI 
modalities (metabolism PET, morphometry and DTI) in 
nine ROIs. Muller et al. [12] showed that DTI in the 
hippocampus was more sensitive than the hippocampal 
volume to discriminate MCI from healthy subjects. 
Kantarci et al. [17] and Zhang et al. [18] were interested 
in combination of hippocampal volume and MD or FA in 
some regions of interest (ROI) chosen a priori as the 
posterior cingulate gyrus. These studies, based on manu- 
ally labeled ROI, present several limitations as the inter- 
rater variations and requirement of a priori definition of 
interested regions. Moreover, in AD, even though atro- 
phy starts in the MTL, it is not confined to these regions 
and patients present with a distributed spatial pattern of 
atrophy. 

In this paper, we propose a new method to automati- 
cally discriminate between patients with AD and elderly 
control subjects using both diffusivity and structural 
measures at the voxel level. Our approach is based on a 
parcellation of the MRI into 73 different regions in which 
different GM characteristics are estimated: distribution of 
GM concentration from the structural MRI [22], MD and 
FA measures from the DTI and multimodal measures 
combining the information from the two types of MRI at 
the voxel level. We also estimate the ratio between MD 
and FA measures at the voxel level in order to compare it 
to the multimodal parameter. We then perform the classi- 
fication based on Support Vector Machine (SVM) [23] 
using all these parameters extracted from the 73 ROI 
space. We introduce a feature selection (FS) approach 
which aim is to identify regions contributing to the pat- 
tern of atrophy of AD. We perform and compare two di- 
fferent FS methods: a univariate and a multivariate ap- 
proach. Moreover, we introduce a bootstrap [24] proce- 
dure in order to obtain more robust estimates of the clas- 
sification results. 

2. Materials and Methods 

Our approach is composed of the following steps. Indi- 
vidual MR images are first parcellated into anatomical 
regions of interest (ROI) using registration with a la- 
belled template (Section 2.4). DTI measures and concen- 
tration of GM are then extracted from each of these ROIs 
(Section 2.5). In addition to these standard MRI mea- 
sures, we also propose a new multimodal measure that 
combines information from both structural and DTI MRI. 

The most discriminative regions are then identified using 
a univariate and a multivariate FS method (Section 2.6). 
Individual subjects are finally classified using a non-linear 
SVM (Section 2.7). Robust estimates of classification 
results are obtained using a bootstrap approach. 

2.1. Subjects 

The study was conducted in the Research and Resource 
Memory Center of the Pitié-Salpêtrière hospital (Pitié- 
Salpétriêre Hospital, Paris, France). The local ethics com- 
mittee approved the study and written informed consent 
was obtained from all participants. 

Two groups of subjects were included in this study: 
AD patients and healthy controls. All participants were 
evaluated by neurologists experienced in the care of pa- 
tients with neurodegenerative diseases. AD patients ful- 
filled the National Institute of Neurological and Commu- 
nication Disorders and Stroke/AD and Related Disorders 
Association (NINCDS-ADRDA) criteria for probable 
AD [25]. We only included patients living in the commu- 
nity and who had a score on the Clinical Dementia Rat- 
ing Scale (CDR) ≥ 1 [26]. 

Healthy controls were visitors of unrelated patients in 
our unit, matched with AD patients for age and education 
level. They had no history of neurological or psychiatric 
disorders, no memory or cognitive disorders, and none 
took psychotropic drugs. They were also evaluated by the 
Mini Mental State Examination (MMSE) [27] and the 
Frontal Assessment Battery (FAB) [28]. Individuals who 
scored less than 28 out of 30 points for the MMSE or less 
than 16 out of 18 for the FAB were not included in this 
study. All healthy controls scored 0 at the CDR. 

We did not include in this study (either in AD group or 
in the normal controls) subjects who presented: 1) clini- 
cal or neuroimaging evidence of focal lesions, including 
brain tumor, subdural hematoma, and CNS infection; 2) 
severe cortical or subcortical vascular lesions or stroke 
history; or 3) severe depression, as assessed by the Mon- 
tgomery and Asberg depression rating scale [29] (pa- 
tients or healthy controls that scored more than 16 out of 
60 points were not included). 

All participants were screened using a standardized 
neuropsychological battery that assessed a broad range of 
cognitive abilities commonly affected in AD. The total 
duration of the cognitive examination was approximately 
2 hours and included various tests : the MMSE [27] and 
the Mattis Dementia Rating Scale (Mattis) [30] for global 
cognitive efficiency; the Free and Cued Selective Remin- 
ding test (FCSR) [31] for verbal episodic memory and 
face recognition memory task of Wechsler Memory Scale 
(WSM) [32] for visual episodic memory; spatial span 
and digit span task of WMS [32] for working memory; 
evaluation of instrumental functions included examina- 
tion of limb praxis; visuospatial and visuoconstructive 
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functions; language and visuoperceptual skills with re- 
cognition and naming pictures of objects and famous 
faces; visual knowledge about shape of objects with ob- 
ject’s decision task (test 10) of the BORB [33]; executive 
functions were assessed by the FAB [28] and the Frontal 
Score [34] including verbal fluency tests in one minute: 
animals names for category fluency and letter M for pho- 
nemic fluency [35]. 

2.2. MRI Acquisitions 

In each subject, a T1-weighted volume MRI scan was ac- 
quired using the spoiled gradient echo sequence (SPGR) 
(TR/TE/flip angle: 23 ms/5 ms/35˚, 256 × 256 matrix; 
voxel size = 0.859 × 0.859 × 1.5 mm3) on a 1.5T scanner 
(General Electric, Milwaukee, WI, USA). 

DTI scan was acquired using the echo-planar sequence 
(EPI) with 23 directions and b = 700 s/mm2 (TR/TE/flip 
angle: 6500 ms/85 ms/90°, 256 × 256 matrix; voxel size 
= 1.25 × 1.25 × 5 mm3). A reference scan with b = 0 (no 
diffusion gradient) was also acquired in each subject. 
DTI scan was limited to 20 slices due to technical limita- 
tions of the MRI scanner and so far the brain was par- 
tially imaged. However, we assured that the entire tem- 
poral lobe was scanned in all subjects. 

2.3. MRI Preprocessing 

For the DTI images, the eddy current correction was per- 
formed using BrainVISA (Institut Fédératif de Recherche 
IFR-49, Orsay, France, http://www.brainvisa.info/). Dif- 
fusion tensors were calculated and ADC and FA maps 
extracted (Figure 1). Then, we co-registered the b0 (no 
diffusion gradient) image with the structural SPGR im- 
age using the registration method of SPM2 (Statistical 
Parametric Mapping, University College London, UK). 
The transformation matrix was then applied to the ADC 
and FA images. The resulting images were superimposed 
over the original T1-weighted image for each subject and 
the registration was visually assessed by two trained ra- 
diologists.  

Structural images were segmented in GM, WM and 
cerebrospinal fluid (CSF) using the segmentation module 
of SPM2 (Figure 2). DTI images were segmented fol- 
lowing the method of Liu et al. [36]. Briefly, the ADC 
maps were segmented in CSF/non-CSF maps and the FA 
images in WM/non-WM maps. DTI GM maps were ob- 
tained by the intersection of non-CSF and non-WM maps. 
The final GM map resulted from the intersection of the 
DTI GM map and the structural GM map. 

2.4. Brain Parcellation into 73 Regions Using 
AAL 

The parcellation that we propose relies on the AAL in- 
troduced by Tzourio-Mazoyer et al. [37]. DTI images  

 

Figure 1. ADC (left) and FA (right) images. 
 

 

Figure 2. Structural MRI segmented in GM (left), WM 
(middle) and CSF (right) images. 
 
were coregistered to anatomical MR images. Individual 
scans were segmented and normalised in the Montreal 
Neurological Institute (MNI) standard space using the 
segmentation and the spatial normalization modules of 
SPM2. 

The technical limits of the DTI acquisition resulted in 
brains which were only partially acquired by the MRI. 
Therefore, for our analysis, we calculated a minimal brain 
volume common to all the subjects (Figure 3). The indi- 
vidual scans were first normalised in the MNI standard 
space using the EPI template and default parameters in 
SPM2. Binary masks were associated to the normalised 
images and their intersection was calculated. Then, the 
binary mask of common volume was mapped to the AAL 
and we retained ROIs which volume was preserved in the 
mask (i.e. in each subject) at least at 70% compared to 
the volume of the AAL ROI.  

We excluded the precentral, postcentral and paracen- 
tral lobule regions, the frontal superior, middle and supe- 
rior medial regions, the superior motor area, the parietal 
superior and the occipital inferior left regions (Table 1). 
As we did not have interest in cerebellum, the final atlas 
contained 73 ROIs from 90 ROIs in AAL. 

2.5. Parameter Extraction 

In each of the 73 ROIs, we calculated first the mean dif- 
fusivity (mean ADC). Then, the multimodal characteris- 
tics were calculated as the ratio between ADC and GM 
concentration in each voxel. Indeed, while GM concen- 
tration decreases in AD patients, ADC increases. Thus, 
the multimodal parameter increases in regions with brain 
atrophy and/or diffusion abnormality. 

Another parameter which increases in the same way is 
the ratio between ADC and FA as the FA measurement 
decreases in AD patients. We assessed whether this DTI  
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Figure 3. Workflow for the creation of common volume 
mask and brain parcellation in 73 ROIs. 
 
Table 1. Volume (in voxels) of the 17 ROIs AAL excluded 
from the study: full volume measured in the AAL atlas (co- 
lumn “Volume AAL”) and the acquired volume in the DTI 
scans measured in the mask of common volume (column 
“Volume DTI”). The last column shows the ratio (in %) of 
the DTI and AAL volumes for each of the excluded ROIs. 

ROI 
AAL 

ROI name 
Volume 

AAL 
Volume 

DTI 

volume 
preserved 

(%) 

1 Precentral_L 3381 1331 39.37% 

2 Precentral_R 3526 1620 45.94% 

3 Frontal_Sup_L 4056 688 16.96% 

4 Frontal_Sup_R 3599 707 19.64% 

7 Frontal_Mid_L 5104 1401 27.45% 

8 Frontal_Mid_R 4863 1829 37.61% 

19 Supp_Motor_Area_L 2371 206 8.69% 

20 Supp_Motor_Area_R 2147 151 7.03% 

23 Frontal_Sup_Medial_L 2134 647 30.32% 

24 Frontal_Sup_Medial_R 2992 949 31.72% 

53 Occipital_Inf_L 989 444 44.89% 

57 Postcentral_L 3823 1939 50.72% 

58 Postcentral_R 3892 2282 58.63% 

59 Parietal_Sup_L 2222 656 29.52% 

60 Parietal_Sup_R 2065 922 44.65% 

69 Paracentral_Lobule_L 836 105 12.56% 

70 Paracentral_Lobule_R 1349 106 7.86% 

 
parameter classifies similarly to the multimodal parame- 
ter. 

The mean of the multimodal measure and the mean of 
the DTI measure were then calculated for each of the 73 
ROIs. The feature vector for each subject was thus con- 
stituted by the mean ADC, the mean DTI parameter (ra- 
tio of ADC and FA), the mean of the multimodal pa- 
rameter (combination of ADC and GM concentration) for 
each of the 73 regions. 

In the end, we compared the discriminative accuracy 
of the DTI and the multimodal measures with GM mea- 
sures extracted from the anatomical MRI. We performed 
a histogram analysis of the distribution of the GM, WM 

and CSF in the 73 ROIs of the brain atlas [22]. 

2.6. Feature Selection 

The aim of this step is to identify the most relevant fea- 
tures (or parameters) for the classification. We performed 
a univariate FS approach. The discriminating power of 
the feature parameter in each ROI was assessed by using 
a two-sample t-test. The probability distribution was ge- 
nerated by using a bootstrap method [24] (bootstrap is a 
generalization of the leave one out (LOO) method), 
working with the null hypothesis H0 that there is no dif- 
ference between the two groups of subjects. To obtain a 
good estimation of the p value of the t-test, we performed 
the method with a large number of resamplings (5000). 
According to the p value, we determined the significance 
of the t-test for each ROI. Thus, the most significantly 
different ROIs (p < 10–2) were selected as being the most 
relevant for the discrimination. 

We also performed a multivariate FS approach based 
on the SVM-Recursive Feature Elimination (SVM-RFE) 
[38] algorithm. The algorithm estimates at each step the 
features’ weights (using linear SVM) and rejects the fea- 
tures with the least weights keeping in the end the most 
relevant features. In order to determine the optimal num- 
ber of features to select, we applied recursively the SVM- 
RFE eliminating at each iteration only one feature and 
calculating the classification accuracy of the selected 
ones. To obtain a more robust FS, we embedded a ran- 
domization with 500 resamplings in this procedure. To 
this purpose, we drew without replacement approxima- 
tely 75% of each group of subjects to obtain a training set. 
The remaining 25% of subjects were used as a test set. 
The procedure was repeated 500 times. We thus obtained 
the correct classification rate for the 500 drawings. Thus, 
for each level corresponding to the number of selected 
features, the eliminated feature was the most frequently 
chosen one within the different resamplings and the 
cross-validation (CV) error was estimated as the mean of 
the 500 samples’ CV errors. The level with the least CV 
error gave the optimal number of features and the set of 
the selected features. 

In our application, the selected features correspond to 
MRI measurements in anatomical structures. The para- 
meters extraction being based on the GM concentration 
and/or mean diffusivity in the ROI, we hypothesize that 
the FS step will identify brain structures altered by the 
neurodegenerative pathology. 

2.7. Classification Method 

Subjects’ classification was performed using nonlinear 
SVM [23] with radial basis function (RBF) kernel. To 
obtain robust estimates of the classification accuracy, a 
randomization with 5000 resamplings was added in the 
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learning and cross-validation steps. The large number of 
samples insures that every subject’s data have partici- 
pated in the cross-validation step. Here again, we drew 
without replacement approximately 75% of each group 
of subjects to obtain a training set and the remaining 25% 
were used as a test set. Accuracy was evaluated for every 
subset of data and global accuracy was evaluated as the 
mean of the 5000 resamplings. 

The optimal values of the two SVM parameters—γ 
(width of the RBF) and C (error/trade-off parameter), 
were determined using a grid search. Using the bootstrap 
procedure for training and test selection, we performed 
classifications for the MRI dataset with (γ,C) varying 
along a grid, with a search range of [2–5, 210] for C and 
[2–10, 25] for γ. The value of (γ,C) that gave the best clas- 
sification accuracy was then used to build the classifier. 

3. Results 

3.1. Participants 

Fifteen AD patients (10 women, five men) and sixteen 
elderly controls (ten women, six men) were recruited. 
Clinical, cognitive and demographic characteristics of the 
participants are displayed in Table 2.  

AD patients were compared to controls for sex, age, 
education level and neuropsychological scores using the 
two-sample t-test. There was no significant difference 
between groups for sex, age or education level. Neuro- 
psychological assessment of AD patients showed cogni- 
tive decline in global efficiency, verbal episodic memory, 
verbal fluency and executive functions. Patients under- 
performed most significantly (p < 0.005) on the total free 
recall of the Free and Cued Selective Reminding test 
(FCSR), the Mattis test and the verbal category fluency 
test (Table 2). 

3.2. Feature Selection with Multimodal  
Characteristics 

The univariate FS method identified 15 ROIs with p 
value less than 10–2. The most significant ROIs included 
regions that have been previously reported to be affected 
in AD, such as the middle and posterior cingulate gyri, 
the precuneus, the thalamus, calcarine, frontal orbital 
areas and inferior temporal gyrus.  

The SVM-RFE algorithm identified 15 regions from 
the 73 ROI as being the most relevant for the discrimina- 
tion. Selected regions included (but not only) the hippo- 
campus, the amygdala, the cuneus, the calcarine, the an- 
terior cingulate gyrus, the thalamus, the inferior parietal 
and occipital regions and the polar temporal regions (Ta- 
ble 3). Interestingly, the set of selected regions with the 
multivariate approach included some regions that were 
estimated as non significantly different using the two- 
sample t-test. 

Table 2. Clinical characteristics of controls and patients 
with Alzheimer’s disease. 

Characteristics Patients Controls 
Group 
comparison 

Number of subjects 15 16 NS 

Sex (W/M) 10/5 10/6 NS 

Age (years) 70.2 ± 6a 71 ± 4a NS 

Education 4.7 ± 1.3a 6 ± 0.9a NS 

MMSE 23 ± 2.4a 29 ± 1a * 

Mattis 129 ± 7a 142 ± 1a ** 

Total free recall  
FCSR 

5.4 ± 2.6a 16 ± 0a *** 

Test 10 BORB 28.3 ± 2a 30.3 ± 1a * 

FAB 13.3 ± 4a 16.9 ± 1a * 

Verbal phonemic  
fluency 

8.7 ± 3.5a 13.4 ± 4.3a * 

Verbal category  
fluency 

15 ± 6a 25.9 ± 5a ** 

Abbreviations: W = Women, M = Men, NS = Not Significant. aMean ± 
standard deviation. Significant difference between groups with p < 0.05 (*), 
p < 0.005 (**), p < 0.0005 (***). 

 
Table 3. Univariate and multivariate AAL’s ROIs selection. 
In bold the ROIs selected by both algorithms. 

Univariate ROIs selection 
ROI’s name in AAL atlas 

Multivariate ROIs selection 
ROI’s name in AAL atlas 

Calcarine_L Amygdala_L 

Cingulum_Mid_L Calcarine_L 

Cingulum_Mid_R Cingulum_Ant_L 

Cingulum_Post_R Cuneus_R 

Frontal_Med_Orb_R Frontal_Mid_Orb_R 

Frontal_Sup_Orb_R Frontal_Sup_Orb_R 

Fusiform_L Fusiform_R 

Fusiform_R Hippocampus_R 

Heschl_L Lingual_L 

Heschl_R Occipital_Inf_R 

Lingual_L Parietal_Inf_L 

Lingual_R Rectus_R 

Temporal_Inf_R Temporal_Mid_R 

Thalamus_L Temporal_Pole_Mid_L 

Precuneus_L Thalamus_L 

3.3. Classification 

The results from the following classification experiments 
are summarized in Table 4: 
 To assess the added value of our multimodal parame- 

ters, we compared the results obtained with these fea- 
tures to those obtained with the mean ADC and to 
those obtained with the combined ADC and FA mea- 
surements in each region. 
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Table 4. Classification results obtained with different MRI 
measurements and different number of features. 

MRI 
measurement 

Nb features Specificity 
(%) 

Sensitivity 
(%) 

Accuracy
(%) 

ADC 73 69.5 60.8 65.15 

FA/ADC 73 63.8 73.38 68.60 

Multimodal 73 82.4 62.4 72.4 

Multimodal 15 univariate 90.6 53.6 72.11 

Multimodal 
15 
multivariate 

99.95 99.25 99.60 

GM 73 74.3 78.7 76.5 

 
 We compared the results obtained using all 73 regions 

to those obtained using only the regions selected by 
the univariate or the multivariate FS methods. 

 We compared the results obtained using the different 
DTI measures to those obtained using the GM pa- 
rameter. 

Subjects were first discriminated using the mean diffu- 
sivity measures in the 73 ROIs. The specificity, the sen- 
sitivity and the overall accuracy were respectively 69.5%, 
60.8% and 65.15%. 

The combined DTI measures (ratio FA/ADC) discri- 
minated better the subjects: 68.6% accuracy. However, 
the multimodal characteristics discriminated even better 
the subjects with 82% specificity and accuracy above 
72%. Further classification using only the most relevant 
regions identified by the univariate FS approach did not 
improve the discrimination. On the contrary, the classifi- 
cation with regions selected with the multivariate FS 
method reached 99% accuracy. 

The classification accuracy obtained with the GM pa- 
rameters in the 73 ROIs was 76.5%, higher than any of 
the accuracies obtained with the DTI parameters and 
slightly better than that obtained with the multimodal 
parameter in the 73 ROIs. However, the classification 
with the multivariate parameter in the selected regions 
with the multivariate FS approach outperformed all the 
parameters. 

4. Discussion 

In this paper, we described the first multimodal study in 
brain GM using diffusivity and structural measures at the 
voxel level. We proposed a method to discriminate be- 
tween patients with AD and elderly controls based on 
SVM classification, 73 ROI anatomical parcellation and 
different FS approaches. 

Few studies [12,17,18] have demonstrated that the 
classification between AD or MCI patients and normal 
subjects could be improved by adding diffusion measures 
(ADC or FA) to the hippocampal volume. Zhang et al. 
[18] achieved 78% and 63% overall classification of AD 
and MCI patients using the hippocampal volume alone, 

and 91% and 74% respectively adding the measure of FA 
in the posterior cingulated gyrus. Muller et al. [12] 
showed that combining left hippocampal MD and left 
hippocampus volume in a logistic regression model rea- 
ched 86% classification accurary. A more recent multi- 
modal study [10] combined DTI measures (ADC and FA 
in white matter) and cortical thickness in different ROIs. 
The best classifiaction (AUC = 0.98) was obtained when 
cortical thickness and FA data from the left temporal 
region were combined. These results showed that com- 
bining structural and diffusion tensor measures improves 
the discrimination of patients and control subjects. How- 
ever, these studies evaluated the discrimination power of 
only one parameter in each modality in a priori chosen 
ROIs. 

Our method differentiated from these studies in several 
points: 1) the diffusivity and structural measures were 
extracted in the whole brain and not in a priori chosen 
ROIs; 2) we proposed a multimodal measure that com- 
bines GM concentration and ADC measures in each vo- 
xel; 3) we applied SVM and bootstrap procedure in order 
to obtain more robust estimates of the classification re- 
sults and 4) we selected relevant regions for the discri- 
mination between subjects using two different appro- 
aches.  

The result of the classification obtained with GM is 
pretty low while compared to our previous study [22]. 
Actually in the study of Magnin et al. we have shown 
that using the 90 ROIs of the AAL atlas to classify 
healthy subjects from AD patients with a mean MMSE of 
23.1%, the mean specificity was 96.6%, the mean sensiti- 
vity was 91.5% with an overall mean accuracy of 94.5%. 
The difference of the results with our current study, 
where we obtained a mean specificity of 74.3%, a mean 
sensitivity of 78.7% for an overall accuracy of 76.5%, 
cannot be explained by the method which is similar. The 
difference could be explained by the number of subjects: 
16 patients with AD and 22 healthy aged control subjects 
in Magnin et al. for 15 patients with AD and 16 controls 
in the present study. If the number of participants seems 
close in the two studies the statistics power can vary with 
such a low number of subjects. 

The most plausible explanation for difference in the 
results between the two studies is certainly to be found in 
the 17 ROIs which could not be included in the process. 
All the ROIs could not be used for the classification due 
to a problem of acquisition of the DTI images. Among 
these 17 missing ROIs, 11 of them (65%) were high- 
lighted to be significantly different in GM concentration 
between healthy elderly subjects and AD patients with a 
similar cognitive level (MMSE = 23.5) in a previous 
VBM study [39]. These ROIs are the left and right supe- 
rior frontal gyrus, the left and right middle frontal gyrus, 
the left and right supplementary motor areas, the left and 
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right medial superior frontal gyrus, the left postcentral 
gyrus and the superior parietal gyrus. These ROIs which 
show a great difference of grey concentration between 
elderly healthy subjects and AD patients certainly influ- 
ence the classification. Their absence from our classifica- 
tion certainly lowers the power of the process.  

The results showed that combining FA and ADC mea- 
sures didn’t improve significantly the classification ac- 
curacy (68.6% instead of 65.15% for ADC uniquely). 
This can be explained by the low anisotropy in grey mat- 
ter regions. Indeed, FA is mainly measured in WM fibers 
where the motion of water molecules is constrained 
along the fibers and so far anisotropic.  

More importantly, the multimodal measure classified 
the subjects better than the DTI measures separately or 
combined together. However, the best classification ac- 
curacy was obtained with the GM parameter separately, 
showing that adding the ADC measures to the GM mea- 
sures decreases the discrimination between patients and 
controls instead of increasing it. So far, the multimodal 
measure is less sensitive than the GM parameter alone 
and the acquisition of DTI images is no needed for the 
discrimination of patients and controls when they are 
analysed in the GM areas only.  

Our finding that GM measures classify better than DTI 
measures is consistent with a recent study [8] which 
combined brain metabolism (FDG-PET), morphometry 
(gray matter thickness), and DTI (FA in white matter). 
Here, only structural MRI measures helped explaining 
the differences between MCI patients and controls when 
all modalities were entered simultaneously in logistic 
regression models for most of the nine ROIs. However, 
when all modalities and all ROIs were used perfect clas- 
sification accuracy (100%) was achieved. In another 
study [11], DTI (MD) and morphometry (deformation- 
based maps) biomarkers were equally accurate in distin- 
guishing between AD patients and controls. The combi- 
nation of modalities in Logistic Regression model re- 
sulted in a classification accuracy of AUC = 0.86 after 
leave-one-out cross-validation. However, the DTI bio- 
markers were obtained only in the white matter, so these 
results can’t be compared directly with our study where 
MD is measured uniquely in the grey matter.  

The main interesting point in this study is the valida- 
tion results obtained in the case of the multivariate selec- 
tion of features. Actually, the classification accuracy 
above 99% implies that 1) multimodal analysis gives bet- 
ter results than unimodal analysis and 2) an selected set 
of ROIs improves the results of the classification. But 
this result should be used carefully: since the study was 
done on a limited set of data this results could be due to a 
local maxima with an overlearning effect. Therefore, it 
has to be confirmed with a study implying more data. If 
confirmed, these results indicate that choosing relevant  

ROIs may lead to achieve very high classification accu- 
racy even with a less sensitive marker like the DTI im- 
ages of the grey areas of the brain. 

We introduced two FS approaches: a univariate ap- 
proach based on the two-sample t-test and a multivariate 
approach based on the SVM-RFE algorithm. Though the 
selection was data driven and not based on prior know- 
ledge, both methods selected regions previously reported 
to be early altered in the degenerative disease such as the 
hippocampus, amygdale, cuneus, cingulate gyrus, infe-
rior parietal regions, inferior occipital regions and the 
temporal lobes. The FS provided increased classification 
accuracy with the multivariate approach (99% instead of 
72.4%). Most of the regions selected with the SVM-RFE 
algorithm were significantly different (p < 10–2) between 
AD patients and controls but some were not. Thus, iden-
tifying a discriminating subset of features seems to be 
more robust and relevant for the classification than com-
bining the most discriminating features identified with 
the univariate FS approach. It should be noted that the 
added value of the FS step might be accentuated by the 
fact that the subjects groups were relatively small. Future 
validations on larger groups are required to confirm the 
results of the present study. 

One should take in consideration several limitations of 
this study: Firstly, not the entire brain has been scanned 
and so far seventeen cortical ROIs have been excluded 
from the study. The second limitation is the small sample 
size of the included subjects. Further validation is needed 
on more important groups of subjects. Finally, it will be 
interesting to include other biomarkers in the multimodal 
study such as measures from PET and CSF proteins [40]. 

5. Conclusions 

In conclusion, we have introduced a method to automa- 
tically discriminate between patients with AD and elderly 
controls. We have proposed a new multimodal MRI 
measure combining brain GM concentration and mean 
diffusivity at the voxel level. The discrimination between 
AD patients and elderly controls reached 99% accuracy 
when relevant regions were selected. This result implies 
that 1) multimodal analysis gives better results than uni- 
modal analysis and 2) a selected set of ROIs improves 
the results of the classification. Thus, combining mea- 
sures from different MRI modalities improves classifica- 
tion accuracy and could be a useful tool to assist in the 
early diagnosis of AD. 
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