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Abstract 
 
A multiobjective variational problem involving higher order derivatives is considered and optimality condi-
tions for this problem are derived. A Mond-Weir type dual to this problem is constructed and various duality 
results are validated under generalized invexity. Some special cases are mentioned and it is also pointed out 
that our results can be considered as a dynamic generalization of the already existing results in nonlinear 
programming. 
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1. Introduction 
 
Calculus of variation is a powerful technique for the so-
lution of various problems appearing in dynamics of 
rigid bodies, optimization of orbits, theory of variations 
and many other fields. The subjects whose importance is 
fast growing in science and engineering primarily con-
cern with finding optimal of a definite integral involving 
a certain function subject to fixed point boundary condi-
tions. In [1] Courant and Hilbert, quoting an earlier work 
of Friedrichs [2], gave a dual relationship for a simple 
type of unconstrained variational problem. Subsequently, 
Hanson [3] pointed out that some of the duality results of 
mathematical programming have analogous in varia-
tional calculus. Exploring this relationship between 
mathematical programming and the classical calculus of 
variations, Mond and Hanson [4] formulated a con-
strained variational problem as a mathematical pro-
gramming problem and using Valentine’s [5] optimality 
conditions for the same, presented its Wolfe type dual 
variational problem for validating various duality results 
under convexity. Later Bector, Chandra and Husain [6] 
studied Mond-Weir type duality for the problem of [4] 
for weakening its convexity requirement. In [7] Chandra, 
Craven and Husain studied optimality and duality for a 
class of non-differentiable variational problem with 
non-differentiable term in the integrand of the objective 
functional while in [8] they derived optimality conditions 

and duality results for a constrained variational problem 
having terms with arbitrary norms in the objective as 
well as constrained functions. 

Recently Husain and Jabeen [9] studied a wider class 
of variational problem in which the arc function is twice 
differentiable by extending the notion of invexity given 
in [10]. They obtained Fritz John as well as Karush- 
Kuhn-Tucker necessary optimality conditions as an ap-
plication of Karush-Kuhn-Tucker optimality conditions 
studied various duality results for Wolfe and Mond and 
Weir type models. 

In single objective programming we must settle on a 
single objective such as minimizing cost or maximizing 
profit. However, generally any real world problems can 
be identified with multiple conflicting criteria e.g., the 
problems of oil refinery scheduling, production planning, 
portfolio selection and many others can be modelled as 
multiobjective programming problems. 

Duality results are very useful in the development of 
numerical algorithms for solving certain classes of opti-
mization problems. Duality for multiobjective variational 
problem has been studied by a number of authors, nota-
bly Bector and Husain [11], Chen [12] and many others 
cited in these references. Applications of duality theory 
are prominent in physics, economics, management sci-
ences, etc. 

Since mathematical programming and classical calcu-
lus of variations have undergone independent develop-
ment, it is felt that mutual adaptation of ideas and tech-
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niques may prove useful. Motivated with this idea in this 
exposition, we propose to study optimality criteria and 
duality for a wider class of multiobjective variational 
problems involving higher order derivative. These results 
not only generalize the results of Husain and Jabeen [9] 
and Bector and Husain [11] but also present a dynamic 
generalization of some of the results in multiobjective 
nonlinear programming already existing. 
 
2. Invexity and Generalized Invexity 
 
Invexity was introduced for functions in variational 
problems by Mond, Chandra and Husain [10] while 
Mond and Smart [13] defined invexity for functionals 
instead of functions. Here we introduce extended forms 
of definitions of invexity and various generalized invex-
ity for functional in variational problems involving 
higher order derivatives. 

Consider the real interval  , ,I a b

:

and the continu-

ously differentiable function n n nI R R R R    , 

where x is twice differentiable with its first and second 
order derivatives x and x  respectively. If 

 1 2, , . . . ,
Tn x x x x , the gradient vectors of f with re-

spect to x , x and x  respectively denoted by 

1 1
, . . . , , , . . . ,

T T

x xn nx x x x

    
     

        
  





 

1
, . . . , .

T

x nx x

 
  

    
  

 

DEFINITION 1. (Invexity): If there exists vector 

function  , , , , , nt u u x x x R      with 0   and 

    ,x t u t t I 0D and    for     ,x t u 


t t I 

 , , ,x x x 
 

such that for a scalar function , the func-

tional 

t

   Φ , , , , ,
I

x x x t x x x dt      satisfies 

   Φ , , -Φ , ,x u u x x x    
 

      , , , , , ,
TT

x x
I

t x x x D t x x x     
    

 

   2 , , ,
T

xD t x x x dt  



  
 

Φ is said to be invex in ,x x and x   on I with respect 

to η. 
Here D is a differentiation operator defined later. 
DEFINITION 2. (Pseudoinvexity): Φ is said to be 

pseudoinvex in ,x x and x   with respect to   if 

      , , , , , ,
TT

x x
I

t x x x D t x x x          

   2 , , , 0
T

xD t x x x dt      

implies    Φ , , Φ , ,x u u x x x    . 

DEFINITION 3. (Quasi-invex): The functional Φ is 
said to quasi-invex in ,x x and x  with respect to η if  

   Φ , , Φ , ,x u u x x x     implies 

       , , , , , ,
TT

x x
I

t x x x D t x x x          

   2 , , , 0
T

xD t x x x dt      

 
3. Variational Problem and Optimality  

Conditions 
 
Before stating our variational problem and deriving its 
necessary optimality condition, we mention the follow-
ing conventions for vectors x and y in n-dimensional 
Euclidian space Rn will be used throughout the analysis 
of this research. 

, , 1, 2i i , , .x y x y i n     x 

, , 1, 2i ix y x y i n    , , .  

, , 1, 2, , , buti ix y x y i n x y    
,x y  is the negation of x y  

For , ,x y R x y  and x y  have the usual me- 

aning. 
In this section, we present the following variational 

problem whose optimality conditions will be derived and 
duality will be investigated in the subsequent sections: 

 (VPE) Minimize 

   1 , , , , . . . , , , ,p

I I

f t x x x dt f t x x x dt
 
 
 
      

Subject to 

  0 x a x  b            (1) 

   0x a x   b           (2) 

 , , , 0 ,g t x x x t I          (3) 

 , , , 0 ,h t x x x t I          (4) 

where : ,i n n n 1,2, ,f I R R R R i p      , 

: n n n mg I R R R R   
are continuously differen

 and : n n nh I R R R    kR  

tiable functions, and X desig-

nates the space of piecewise functions : nx I R  pos-

sessing derivatives x and xwith the norm x x


   

2x D xD
 
 , where the differentiation operator D is 

given by 
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where α is given boundary value; thus 

   
t

D x x t u s ds     
a

u 

d
D

dt
  except at 

discontinuities. 

In the results to follow, we use  , mI R  

: k

C to denote 

the space of continuous functions I R   with the 

uniform norm sup
t I

 


 ; the partial derivatives of g 

and h are m n  and k n  matrices respectively; su-
perscript T denotes matrix transpose. 

We require t definition of efficient solu-
tion for our f er analy

DEFINITION 4. (Efficient Solutio

he following 
urth sis. 

n): A feasible solu-
tion x is efficient for (VPE) if there exist no other feasi-

ble x for (VPE) such that for some  1,2,...,i P p  , 

   , , , , , ,i i

I I

f t x x x dt f t x x x dt      

and    , , , , , ,i i

I I

f t x x x dt f t x x x dt      for all j P , 

j i . 

In f  relation to (VPE), we introduce the following set o
problems 

rP  for each  in the spirit of 

[14], with a single objective,  

1,2, . . . ,r p

  rP  Minimize  , , ,r

I

f t x x x dt    

Subject to 

   0x a x  , b

   0x a x   , b

 , , , 0 ,g t x x x t I   , 

 , , , 0 ,h t x x x t I   , 

   , , , , , , , 1,2, . . . , ,i i

I I

f t x x x dt f t x x x dt i p i r        

The following lemma can be proved on the lines of 
Chankong and Haimes [14]. 

LEMMA 1: x  is an efficient solution of (VPE) if 

and only if x  is an optimal solution of   rP for each 

r 1,2, . . . , p . 

(P0) Minim ze  , , ,
I

t x x x dt    i

Subject to  

   0x a x  , b

   0x a x   , b

 , , , 0 ,g t x x x t I   , 

 , , , 0 ,h t x x x t I   , 

: n n nI R R R R     . where 

PROPOSITION 1. [9]: (Fritz John Optimality Con-
ditions) If x  is an optimal solution of (P0) and 

      , ,x xxh x      maps X into the subspace of 

 , kC I R , then there exists Lagrange multiplier R  , 

oth the piecewise smo : my I R  and : kz I R , 

such that 

    T T

x xy t g hx z t    
 

     T T

x xD y t g z t    

 

xh

    2 0 , t
T T

x x xD y t g z t h I       

 



   , , , 0 ,
T

y t g t x x x t I   , 

  , 0 ,y t t I   , 

    , , 0 ,y t z t t I   . 

If 1  , then the above optimal  conditions will 
reduce to the Karush-Kuhn-Tucker type optimality con-
ditions and the solution 

ity

x  is referred to as a normal 
solution. 

We now establish the following theorem that gives the 
necessary optimality conditions for (VPE). 

THEOREM 1: (Fritz-John Conditions): Let x  be an 
efficient solution of (VPE) and       , ,xh x x x     

maps X into the subspace of  , kC I R , then there exist 

kR  and the piecewise smooth : my I R  and 

: kz I R , such that 

         T T T TT T
x x x x xxf y t g z t h D f y h    t g z t  

    2 0 ,
T T

xD g z t h t IT
x xf y t      ,  (5) 

   , , , 0 ,
T

y t g t x x x t I   ,        (6) 

  , 0 ,y t t I   .          (7) 

    , , 0 ,y t z t t I   .        (8) 

x  PROOF: Since is an efficient so

by Lemma 1, 

lution of (VPE) 

x  is an optimal solution of ( rP ), for each 

1,2, . . . ,r p . From Proposition1, it follows that, there 

exist scalars 1 2, , ,r r pr    and piecewise smooth 

function : my I R  and  : kz I R  , such hat  t
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1

p m k
ir i jr j lr l

1 1

rr r
x x x

j
x

i l
i r

f f y t g z t h


     
 




   
1 1 1

p m k
rr r ir i jr j lr l

x x x
i j l
i r

D f f y t g z t h 
  


x


      
 

       


   2

1 1 1

0 ,
p m k

rr r ir i jr j lr l
x x x x

i j l
i r

D f f y t g z t h 
  


 
      
 

       

,t I  

   , , , 0 ,Ty t g t x x x t I   , 

      1 2 1 2, , , , , , , 0 ,r r pr r r mry t y t y t t I       

          1 2 1 2 1 2, , , , , , , , z , ,r r pr r r mr r ry t y t y t t z t   

 , 0 ,lrz t t I  . 

Summing over r, we have 

   
1 1 1 1 1 1

p p p pm k
ir i jr j lr l

x x x
r i r j r l

f y t g z t h
     

    
     

    
     

 

   
1 1 1 1 1 1

p p p m
ir i

p k
jr j lr l

x x x
r i r j r l

t g z t h
     

D f y
  

 
  

           
       

 2

1 1 1 1 1 1

p p p pm k
ir i jr j lr l

x x
r i r j r l

D f y g z t
     


xh

    
             

       




0 , t I 
 

   , , , 0 ,Ty t g t x x x t I   , 

   1 1

1 1 1 1

, , ; , , 0 ,
p p p p

r pr r mr

r i i i

y t y t t I 
   

 
  

 
      

     1 1

1 1 1 1 1

, , ; , , ; ,1
p p p p p

r pr r mr r

r i i i r

y t y t z t 
    




     

 
1

, 0 ,
p

lr

r

z t t I



 


 . 

Setting 
1

p
i ir

r

 


  ,    
1

,
p

j jr

r

y t y t t


I   and  

   
1

,
l

l lr

r

z t z t t I


  , we have 

         T T T TTT
x x x x x xf y t z t h  g z t h D f y t g    

   T
g z t

   , , , 0 ,
T

y t g t x x x t I   , 

  , 0 ,y t t I   , 

    , , 0 ,y t z t t I   . 

 
4. Mond-Weir Type Duality 
 
In this section, we consider the following variational 

roblem involving higher order derivatives, by sup-
PE). 

p
pressing the equality constraint in (V

(VP) Minimize  

   1 , , , , . . . , , , ,p

I I

f t x x x dt f t x x x dt
 
 
 
      

Subject to 

   0x a x   b

   0x a x    b

 , , , 0 ,g t x x x t I    

We formulate the following Mond-Weir type dual to 
the problem (VP) and establish various duality results 
under invexity defined in the preceding section. 

(M-WD) Maximize  

   1 , , , , . . . , , , ,p

I I

f t u u u dt f t u u u dt      

Subject to 

   0x a x   b           (9) 

   0x a x    b          (10) 

     T TTT
x x x xf y t g D f y    t g   

  2 0T
x xD f y t g T

              (11) 

   
1

, , , 0
T

y t g t u u u dt         (12)    

  0 ,y t t I              (13) 

0  .       

THEOREM 2. (Weak Duality): Let 

        (14) 

x X  be feasi-
ble for (VP) and  , ,u y  be feasibl

allfeasible 

e for (M-WD) if for 

 ,, ,x u y  , , ,T

I

f t u u u dt    is pseudoinvex 

an

 2 0 ,
TT

x x xD f y t h t I    

 

d    , , ,
T

I

y t g t u u u dt    is quasi-invex respect to 

the same η. 
Then, 

 with 
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   , , ,, , ,
I I

f t x x x d  

The relations 

t f t u u u dt    . 

PROOF:    , , , 0 , 0 ,g t x x x y t     

ply t I  im

       , , , , , ,
T T

I I

y t g t x x x dt y t g t u u u dt      

Th e of the quasi-invexity of 

implies that 

is, becaus    , , ,
T

I

y t g t u u u dt   , 

      20
TTT T T T

u u
I

y t g D y g D     uy g dt   

   

     

   

t bT TT T
u u

I t a

t bT T TT
u u

t aI

T T

u
I

y t g dt y t g

Dy t g dt D y t g

D Dy t g dt

 

 











  

 









 



 

(By integration by parts) 
Using the boundary conditions which gives  

0D    at ,t a t b   

   

   2

T TT
uy t g dt  T

u

tT TT
u u

t a I

Dy t g dt

t g D y t g dt






 







 

 

(By integration by parts) 
Using the boundary conditions which give 

I I

b
T Dy

0D    

at ,t a t b   

     2 0
T TT T

u

TT
u

I
u

I I

y t g dt Dy t  g dt D y t g dt     

      2 0
T T TT

u u u
I

y t g Dy t g D y t g dt      

From Equation (11) this yields, 

 2 0T T T T
x x x

I

f D f D f dt        

en using boundary 
co

This by integration by parts and th
nditions gives, 

         2 0
TTT T T T

x x x
I

f D f D f dt          , 

f psedoinvexity of This, in view o  , , ,T

I

f t x x x dt    

implies that 

   , , , , , ,T T

I I

f t x x x dt f t u   

For this, it

   , , , , , ,
I I

f t x x x dt f t u u u dt     . 

THEOREM 3. (Strong Duality): If x  is a feasible 
solution for (VP) and assume that x  is an efficient so-
lution and for at least one , ,i i P x satisfies a regular-

ity condition for [7] for  kP x . 

Then there exists one ,p mR y R    such that 

 , ,x y   is efficient fo ). r (VD Further if the assump-

tio sfied, thenns of Theorem 2 are sati   ,y,x   is an 

solution of (VD). efficient 
PROOF: Since x  is efficient solution by Lemma 1, 

u u dt  . 

 follows 

it is an optimal solution of  kP x . By Pro tion 1, 

this implies that there e

posi

xists  1, ,T p     and 

piecewise smooth : my I R that,  such 

   2k k k
k x x x i

k

2i i i
x x x

i

f Df D f      

 

f Df D f


  

     0x x xy t g Dy t g D y t g2T T T       (15) 

     T TT T
x x x xf y t g D f y t g      

  2 TT 0 ,x xD f y t g t I         (16) 

   , , , 0 ,
T

y t g t x x x dt t I         (17) 

  , 0 ,y t t I             (18) 

  , 0 ,y t t I             (19) 

From (17), we have 

 and (18) imply that 

   
1

, , ,
T

y t g t x x x dt    0         (20) 

Equations (16), (17)  , ,x y  is 

feasible for (M-WD). The equality of o
tional of primal and dual problems is obvious from their 

fo

bjective func-

rmulations. Efficiency of  , ,x y  is imm om 

the application of Theorem 2. 
As in [4], by employing chain rule in calculus, it can 

be easily seen that the exp   TT
x xf y t g    

ediate fr

ression 

     2T TT T
x x xf y t g D f y t g      ,may be re-

garded as a function 

xD

  of variable  s , , , , , , ,t x x x x y y y    
and  , where  3x D x  and  2y D y . That is, we 

can write  
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  , , , , , , T , ,
T

x xx y y t g  t x x x y y f      

    2TT T T

x x xD f y t g D f y t g        x

In order to prove converse duality between (VP) and
(M-WD), the space X is now replaced by a smaller space



 
 

2X  of piecewise smooth thrice differentiable function 

: nx I R  with the norm 2x Dx D x
  
    

3 .D x


 The problem (M-WD) m  

 1 , , ,

ay now be briefly

written as, Minimize  

 , , , , ,p

i i

f t x x x
 
   dt f t x x x dt

 
    

Subject to 

   0x a x   b

   0x a x   b  

 , , , , , , , , 0t x x x x y y y        

   
1

, , , 0
T

y t g t x x x dt     

  0 ,y t t I   

Consider               , , , , , , , , 0t x x x x y y              

 mapping 2: p

y

as defining a X Y R B     where Y is 

ecewise twice differentiable function and B
order to apply Theo

a space of pi  
is the Banach Space. In rem 1 to the 
problem (M-WD), the infinite dimensional inequality 
must be restricted. In the following theorem, we use    
to represent the Frèchèt derivative  

     , , , , , , , , .x yx y x y x y         

THEOREM 4. (Converse Duality): Let D be an effi-

cient solution with  and  and 2 2,x X  y Y T pR 
   have a (weak*) closed range hypothesis. Let f and g 
be twice continuousl nt Assum

(H1) 
T

I

y differe iable. e that  

f dt  be pseudoinvex and  T
I

y t g dt  be 

quasi-in respect to same vex with  .  

        2T

x x xt t D t D         

(H ) 



(H3) 

2

 3 0xt D t 

  0,t t I   . 



2 , 1, 2, . . . ,i i i
x x xf Df D f i p     are linearly 

independent.  
Then x  is an efficient solution of (VP)

 

. 

Proof: Since  , ,x y where x X  and    hav-

in sed of (M-WD), 

by mplies that there exist 

g a clo  range, is an efficient solution 

 Theorem 2, it i R R,   , 
pR   and piecewise smooth : nR R   and 

: mR R   satisfying the following conditions . 

 2
x x xf Df D f     

        x
2T T T

x xy t g D y t g  D y t g   

     2T T   T

x x xtt D t D         

  3 T

xD t  0            (21) 

      2T T

y yt D   t    0g t T

yt D        

(22) 

   2T

x x xt f Df D f  0             (23)

0         (24)

t

 

    
1

, , ,
T

y t g t x x x d    t 

0,   0,
TT t y t   I        (25) 

  , , , 0 ,t t I       and 

    , , , , 0,t t     t  I         (26) 

Since 0 ,   0,T    which implies 0   

This yields from (23) 

   2 0x xDf D f T

xt f           (27)

1), we have 

 

(11) inUsing the equality constraint  (2

   2  T T

x x xf Df D f xt          

        2 3 0
T T T

D t D t D t     x x x       (28)

 t  and using

 

ltiplying Equation (21) by  

 we get, 

Postm

(27) in (

u

28)



          2 3 0 ,
T T T

x x xt t D t D t I     T
t         

This 

Also 

by hy

from

pothesis (H2) implies 

 (28) we have   

  0,t t I   

   xf2 0
T

x xf Df D      

ce of i i
x xThis, because of linear independen f Df   

2 i
xD f  , 1i  , 2, . . . , p , gives 

0                

0

     (29)

Now suppose   , then, from (22) and (29) we 

have   0 ,t t I    and 0   respectively. 

This implies     , , , 0t t    , which is the , 

Copyright © 2010 SciRes.                                                                                   CN 



I. HUSAIN  ET  AL. 
 

Copyright © 2010 SciRes.                                                                                   CN 

144 

diction to contra    0t t   , t I .  , , , ,  
Hence 0   0and by (29) we have,   . 

The relation (  22) in conjunction with  t , and 0

  0 ,t t   gives I

 , , , 0g t x x x   , t I  

 the feasiThis implies bility of x  for d its
ficiency is evident from and application f  2. 
 
5. Natural Boundary Values 

bjecti
roblems with natural boundary values ra an fixed

(VP) an
 Theorem

ding sections ca
ve variatio
ther th

 

 ef-
o

 
The duality results obtained in the prece
easily be extended to the multio

n 
nal 

 p
end points. 

Primal (P1) Minimize  

1  , , , , . . . , , , ,p

II

f t x x x dt f t x x x    dt 
  



Subject to 



 , , , 0 ,g t x x x t I    

Dual (D1) Maximize 

 1 , , , , . . . , , , ,p

I

 
I

f t x x x dt f t x x x

      dt

 
x

g

t b , 

t b , 





Subject to 

I

 and 

 and 



     
 2 0 ,

T TT T
x x x

TT
x x

f y t g D f y t g

D f y t t

 



  

  

 

 

 

  0 ,
T

xy t g at t a 

  0 ,
T

xy t g at t a 

  0 ,y t t I .  

 
6. Nonlinear Programming 
 

ndepe f t, the
u

ar programming problems studied in [15]

If the problems (P1) and (D1) are i
they will reduce to the following m

ndent o
ltiobjective nonlin-

 

n 

e
(NP): Minimize  f x  

Subject to  

  0.g x   

(ND): Maximize  f x  

Subject to 

0T T
x xf y g    
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