
I. J. Communications, Network and System Sciences, 2009, 1, 1-89
Published Online February 2009 in SciRes (http://www.SciRP.org/journal/ijcns/).

Copyright © 2009 SciRes. I. J. Communications, Network and System Sciences, 2009, 1, 1-89

A Genetic Based Fuzzy Q-Learning Flow Controller for
High-Speed Networks

Xin LI, Yuanwei JING, Nan JIANG, Siying ZHANG
College of Information Science and Engineering, Northeastern University, Shenyang, China

Email: lixin820106@126.com
Received August 15, 2008; revised December 3, 2008; accepted December 30, 2008

Abstract

For the congestion problems in high-speed networks, a genetic based fuzzy Q-learning flow controller is
proposed. Because of the uncertainties and highly time-varying, it is not easy to accurately obtain the
complete information for high-speed networks. In this case, the Q-learning, which is independent of
mathematic model, and prior-knowledge, has good performance. The fuzzy inference is introduced in order
to facilitate generalization in large state space, and the genetic operators are used to obtain the consequent
parts of fuzzy rules. Simulation results show that the proposed controller can learn to take the best action to
regulate source flow with the features of high throughput and low packet loss ratio, and can avoid the
occurrence of congestion effectively.

Keywords: High-Speed Network, Flow Control, Fuzzy Q-learning, Genetic Operator

1. Introduction

The growing interest on congestion problems in high-
speed networks arise from the control of sending rates of
traffic sources. Congestion problems result from a
mismatch of offered load and available link bandwidth
between network nodes. Such problems can cause high
packet loss ratio (PLR) and long delays, and can even
break down the entire network system because of the
congestion collapse. Therefore, high-speed networks
must have an applicable flow control scheme not only to
guarantee the quality of service (QoS) for the existing
links but also to achieve high system utilization.

The flow control of high-speed networks is difficult
owing to the uncertainties and highly time-varying of
different traffic patterns. The flow control mainly checks
the availability of bandwidth and buffer space necessary
to guarantee the requested QoS. A major problem here is
the lack of information related to the characteristics of
source flow. Devising a mathematical model for source
flow is the fundamental issue. However, it has been
revealed to be a very difficult task, especially for
broadband sources. In order to overcome the
above-mentioned difficulties, the flow control scheme
with learning capability has been employed in flow
control of high-speed network [1,2]. But the
priori-knowledge of system to train the parameters in the
controller is hard to achieve for high-speed networks.

In this case, the reinforcement learning (RL) shows its
particular superiority, which just needs very simple
information such as estimable and critical information,
“right” or “wrong” [3]. RL is independent of mathematic
model and priori-knowledge of system. It obtains the
knowledge through trial-and-error and interaction with
environment to improve its behavior policy. So it has the
ability of self-learning. Because of the advantages above,
RL has been played a very important role in the flow
control in high-speed networks [4-7]. The Q-learning
algorithm of RL is easy for application and has a firm
foundation in the theory. In [8], a Metropolis criterion
based Q-learning controller is proposed to solve the
problem of flow control in high-speed networks.

In Q-learning based control, the learning agent should
visit each state in a reasonable time. But in high-speed
networks, the state space is large, so the usual approach
of storing the Q-values in a look-up table is impractical.
In [8], a state space partitioning method is introduced to
reduce the number of state variables, but it can not solve
this problem ultimately. In this paper, we adopt fuzzy
Q-learning (FQL), which is an adaptation of Q-learning
for fuzzy inference system (FIS), to facilitate
generalization the state space. In FQL, both the actions
and Q-values are inferred from fuzzy rules, and it can
map a state-action pair to a Q-value in a continuous state
space. Furthermore, we employ the changes of q
values as the fitness values, and use the genetic operators

 A GENETIC BASED FUZZY Q-LEARNING FLOW CONTROLLER FOR HIGH-SPEED NETWORKS 85

Copyright © 2009 SciRes. I. J. Communications, Network and System Sciences, 2009, 1, 1-89

to obtain the consequent parts of fuzzy rules.
In this paper, a genetic based fuzzy Q-learning flow

controller (GFQC) for high-speed networks is proposed.
The proposed controller can behave optimally without
the explicit knowledge of the network environment, only
relying on the interaction with the unknown environment
and provide the best action for a given state. By means of
learning process, the proposed controller adjusts the source
sending rate to the optimal value to reduce the average
length of queue in the buffer. Simulation results show that
the proposed controller can avoid the occurrence of
congestion effectively with the features of high throughput,
low PLR, low end-to-end delay, and high utilization.

2. Theoretical Framework

2.1. Architecture of the Proposed Flow Controller

The architecture of the proposed GFQC is shown in
Figure 1. In high-speed networks, GFQC in bottleneck
node acts as a flow control agent with flow control
ability. The inputs of GFQC are state variables S in
high-speed networks composed of the current queue
length Lq , the current change rate of queue length &Lq ,
and the current change rate of source sending rate &u .
The output of GFQC is the feedback signal a to the
traffic sources, which is the ratio of the sending rate. It
determines the sending rate u of traffic sources. The
learning agent and the network environment interact
continually in the learning process. At the beginning of
each time step of learning, the controller senses the states
for the network and gets the reward signal. Then it
selects an action to make decision on which ratio the
sources should use to determine the source sending rate.
The determined sending rate can reduce the PLR and
increase the link utilization. After the sources take the
determined rate to send the traffic, the network changes its
state and gives a new reward to the controller. Then the
next step of learning begins.

2.2. Fuzzy Q-Learning Flow Controller

Q-learning learns utility values (Q-values) of state and
action pairs. During the learning process, learning agent
uses its experience to improve its estimate by blending
new information into its prior experience.

Switch

ServerMultiplexer's
 buffer

Flow Control
Agent

States
M

Feedback
 Control
 SignalT raffic

Sources

Figure 1. Architecture of the proposed GFQC.

In general form, Q-learning algorithm is defined by a
tuple , , ,< >S A r p , where S is the set of discrete state

space of high-speed networks; A is the discrete action
space, which is the feedback signal to traffic sources;

: × →S A Rr is the reward of the agent; : ()× →∆S Ap s

is the transition probability map, where () [0,1]∆ ∈s is

the set of probability distributions over state space S .
Q-learning provides us with a simple updating

procedure, in which the learning agent starts with
arbitrary initial values of (,)Q s a for all ∈Ss , ∈ Aa ,
and updates the Q-values as

() () () ()1 1, 1 , max ,t t t t t t t t t
a

Q s a Q s a r Q s aα α β+ +
 = − + +

(1)
where α is the learning rate and [0,1)β ∈ is the

discount rate [9].
It is vital to choose an appropriate r in Q-learning [10].

In this paper, based on the requirement and experience of
the buffer, r is defined as

0 1.1 or 0.9

1.1
1.1

0.1

0.9
0.9

0.1

1

L LT L LT

LT L
LT L LT

LT

L LT
LT L LT

LT

L LT

q q q q

q q
q q q

q
r

q q
q q q

q

q q

≥ ≤
 − < <
= − < <

=

 (2)

where LTq is the set value of queue length in the buffer.
Refer to (2), if the value of Lq is less than 0.9 LTq or
more than 1.1 LTq , 0=r , the control result should be
considered bad. If the value of Lq is equal to Lq ,

1=r , it can be thought that the control result is good.
Otherwise, r is in the range (0,1), the larger r is, the
better control affects.

In Q-learning based control, the usual approach of
storing the Q-values in a look-up table is impractical in
the case of a large state space in high-speed networks.
Furthermore, it is unlikely to visit each state in a
reasonable time. Fuzzy Q-learning is an adaptation of
Q-learning for fuzzy inference system, where both the
actions and Q-values are inferred from fuzzy rules [11].

In high-speed networks, FIS relies on three
parameters (, ,)S & &L Lq q u to generate a selected action a .

For an input state { , , }=s & &L Lq q u , we find the activate

value of each rule : ()ω si
iR . Each rule has m possible

discrete control actions 1 2{ , , , }=A L ma a a , and a

parameter called q value associated with each control

action. The state associates to each action in iR , a quality
with respect to the task. In FQL, one builds an FIS with
competing actions for each rule ∈i N designated as

1 2 3: If is and is and is
 then is with

i i i i
L L

i i
j j

R q L q L u L
a a q

& &
 (3)

where i
jq is the thj q value in a rule i and

86 X. LI ET AL.

Copyright © 2009 SciRes. I. J. Communications, Network and System Sciences, 2009, 1, 1-89

i
sL =linguistic term (fuzzy label) of input variable ss in

rule iR , its membership function is denoted by µ i
sL .

The q values in (3) are calculated according to total

accumulated rewards and rules’ activate values.
The functional blocks of FIS are a fuzzifier, a

defuzzifier, and an inference engine containing a fuzzy
rule base [12]. The fuzzifier performs the function of
fuzzification that translates the value of each input
linguistic variable into fuzzy linguistic terms. These
fuzzy linguistic terms are defined in a term set ()SF and
are characterized by a set of membership function ()µ S .
The defuzzier describes an output linguistic variable of
selected action a by a term set ()F a , characterized by
a set of membership functions ()µ a , and adopts a
defuzzification strategy to convert the linguistic terms of

()F a into a nonfuzzy value representing selected action a .
The term set should be determined at an approximate

level of granularity to describe the values of linguistic
variables. The term set for Lq is defined as () =LF q
{ (),Low L (), ()}Medium M High H , which is used to
describe the degree of queue length as “Low”,
“Medium”, or “High”. The term set for &Lq is defined as

() { (), ()}=&LF q Decrease D Increase I , which describes
the change rate of queue length as “Decrease” or
“Increase”. The term set for &u is defined as () =&F u
{ (), ()}Negative N Positive P , which describes the change
rate of source sending rate as “Negative” or “Positive”.
On the other hand, in order to provide a precise graded
feedback signal in various states, the term for feedback
signal is defined as () { (),=F a Higher HE (),High H

(), (), ()}Normal N Low L Lower LE . The membership
functions (MFs) are shown in Figure 2.

In each rule iR , the learning agent (controller) can
choose one action i

ja from the action set =A

1 2{ , , , }L ma a a . The inferred global continuous action ta
at state s is calculated as

()

()
1

1

N
i

i t j
i

t N

i t
i

a
a

ω

ω
=

=

=
∑

∑

s

s
 (4)

1

1

1

Lq&

u&

Lq

a

()L Lqµ ()M Lqµ ()H Lqµ ()D Lqµ & ()I Lqµ &

()P uµ &()N uµ &
HEµHµNµLµ

(a) (b)

(c) (d)
0LE 0HE0H0N0L

LEµ

1aM bL aM
1aH

1bL bM aH
1b

M bHaL aD− bD−
1aI−

1bD aI
bI

aN− bN−
1b

N aP bP
1aP−

Figure 2. MFs of term set (a) ()LF q , (b) ()LF q& , (c) ()F u& ,

and (d) ()F a .

where i
ja is the action selected in rule iR using a

Metropolis criterion based exploration/exploitation
policy in [8].

Following fuzzy inference, the Q-value for the
inferred action ta is calculated as

()
()

()
1

1

,
ω

ω
=

=

=
∑

∑

s
s

s

N
i

i t j
i

t t N

i t
i

q
Q a (5)

Under action ()sta , the system undergoes transition

1+→s s
r

t t where r is the reward received by the
controller. This information is used to calculate temporal
difference (TD) approximation error as

() ()1max , ,β +∆ = + ⋅ −s st t ta
Q r Q a Q a (6)

The change of q value can be found by

()
()

1

ω

ω
=

∆ = ∆ ⋅
∑

s

s

i ti
j N

i t
i

q Q (7)

We can rewrite the learning rule (1) of q parameter
values as

 α← + ⋅∆i i i
j j jq q q (8)

2.3. The Genetic Operator Based Flow Controller

In this section we develop the fuzzy Q-learning
controller by genetic operators. The consequent parts of
fuzzy rules need to compete for survival within a niche.
In this case, each rule in FIS maintains a q value, but it
is no longer an estimation of accumulated rewards. The
max operator in standard fuzzy Q-learning is not used
since the rules that have maximum q value no longer
represent rules with the best rewards. Because it is not
suitable to use the q values as the fitness values in the

learning, we employ their changes ∆q as the fitness
values. In this paper the fuzzy rule in (3) can be rewritten
as follows:

1 2 3: If is and is and is
 then is with and

i i i i
L L

i i i
j j j

R q L q L u L
a a q q∆

& &
 (9)

The fitness value for a rule is an inverse measure of
∆q . By using the fitness value calculation in [13], a
predicted rule accuracy κ at time step t is defined as

()0

0
otherwise

ηκ
η

− ∆ −∆ ∆ > ∆=

tq q
t

t

e q q
 (10)

The accuracy falls off exponentially for 0∆ > ∆tq q .

0∆q is an initial value. The predicted accuracy in (10)
can be used to adjust rule’s fitness value tf using the
standard Widrow-Hoff delta rule

() χ κ= + −t t t tf f f (11)

where x is an adjust rate of fitness values.

 A GENETIC BASED FUZZY Q-LEARNING FLOW CONTROLLER FOR HIGH-SPEED NETWORKS 87

Copyright © 2009 SciRes. I. J. Communications, Network and System Sciences, 2009, 1, 1-89

The niche genetic operators can prevent the
population from the premature convergence or the
genetic drift resulting from the selection operator. The
niche genetic operators maintain population diversity and
promote the formation of sub-population in the
neighbourhood of local optimal solutions. In fuzzy
Q-learning, the fitness sharing is implicitly implemented
by assigning fitness values to the activated rules based on
their contributions. The fuzzy rule antecedent constitutes
an evolving niche or sub-population where the fuzzy
rules with the same antecedent share similar environment
states. The rule consequences or actions need to compete
for survival within a niche, while the rules from different
niches co-operate to generate the output.

In the definition of a fuzzy rule in (9), a fuzzy rule can
be defined as a sub-population and the rule actions are
encoded as individuals in sub-population. If there are N
rules in fuzzy Q-learning, there will be N
sub-population. As shown in Figure 3, in each learning
step, the reward from the environment is apportioned to
the rules that are activated in the previous step. The
rule’s fitness values are accordingly updated in the form
of (11). There is a winner action in each sub-population
and the winner actions from all sub-population are
formed the consequent parts of fuzzy rules. The selection
for the winners in sub-population is implemented by the
niche genetic operator. The niche genetic operator uses
two operators to select the actions:

Reproduce operator: individuals in each sub-
population are selected as winners in terms of their
fitness values. The roulette wheel selection is used.

Mutation operator: the mutation is taken for each
sub-population with a mutation probability. The operator
chooses an individual from sub-population randomly to
replace a winner in the sub-population.

In the learning process, the network environment
provides current states and rewards to the learning agent.
The learning agent produces actions to perform in the
network. The learning agent includes a performance
component, a reinforcement component, and a discovery
component.

The performance component reads states from
network environment, calculates activation degrees of
fuzzy rules, and generates an action. The action is then

1 1
1 1:a f
1 1
2 2:a f

1 1:K Ka f
M

2 2
1 1:a f
2 2
2 2:a f

2 2:K Ka f
M

L

1 1:N Na f

2 2:N Na f

:N N
K Ka f
M

1
ja 2

ja N
jaL

Reward

Figure 3. Learning mechanism of genetic operator.

executed by the traffic sources. The network moves into
next state and receives evaluating reward from the
network environment for its action.

The discovery component plays an action selection
role. Two genetic operators are used to implement the
selection. Finally, a set of rule actions is selected for the
performance component.

The reinforcement component serves to assign the reward
to the individual rules that are activated by current state.

3. Simulation and Comparison

The simulation model of high-speed network, as shown
in Figure 4, is composed of two switches, Sw1 with a
control agent and Sw2 with no controller are cascaded.
The constant output link L is 80Mbps. The sending rates
of the sources are regulated by the flow controllers
individually.

In the simulation, we assume that all packets are with
a fixed length of 1000bytes, and adopt a finite buffer
length of 20packets in the node. On the other hand, the
offered loading of the simulation varies between 0.6 and
1.2 corresponding to the systems’ dynamics; therefore,
higher loading results in heavier traffic and vice versa.
For the link of 80Mbps, the theoretical throughput is
62.5K packets.

From the knowledge of evaluating system performance,
the parameters of the membership functions for input
linguistic variables in FIS are selected as follows. For

()µL Lq , ()µM Lq , and ()µH Lq , 0=aL , 6=bL ,

1
10=bL ,

1
2=aM , 8=aM , 12=bM ,

1
20=bM ,

1
9=aH , 14=aH , 20=bH , and

1
20=bH ; for

()µ &D Lq and ()µ &I Lq , 4=aD ,
1

2= =b bD D ,

1
2= =a aI I , and 4=bI ; for ()µ &N u and ()µ &P u ,

0.8=aN , 0.4=bN ,
1

0.2=bN ,
1

0.2=aP , 0.4=aP ,

and 0.8=bP . Also, the parameters of the membership
functions for output linguistic variables are given by

0 0.2=LE , 0 0.4=L , 0 0.6=N , 0 0.8=H , and

0 1=HE .
The fuzzy rule base is an action knowledge base,

characterized by a set of linguistic statements in the form
of “if-then” rules that describe the fuzzy logic relationship
between the input variables and selected action. After the
leaning process, the inference rules in fuzzy rule base
under various system states are shown in Table I.
According to fuzzy set theory, the fuzzy rule base forms a
fuzzy set with dimensions 3×2×2=12. For example, rule

Sw1

control
agent

Sw2

Sn Dn

D1
L

L:80Mbps

S1

M M

Figure 4. The simulation model of network with two switches.

88 X. LI ET AL.

Copyright © 2009 SciRes. I. J. Communications, Network and System Sciences, 2009, 1, 1-89

1 can be linguistically started as “if the queue length is
low, the queue length change rate is decreased, and the
sending rate change rate is negative, then the feedback
signal is Higher.”

In the simulation, four schemes of flow control agent,
AIMD, standard reinforcement learning-based neural
flow controller (RLNC), Metropolis criterion based Q-
learning flow controller (MQLC), and the proposed
GFQC are implemented individually in high-speed
network. The first scheme AIMD increases its sending
rate by a fixed increment (0.11) if the queue length is
less than the predefined threshold; otherwise the sending
rate is decreased by a multiple of 0.8 of the previous
sending rate to avoid congestion [14]. Finally, for the
other schemes, the sending rate is controlled by the
feedback control signal ta periodically. The controlled
sending rate is defined by the equation

 =t tu a FL (12)

where [0.2,1.0]∈ta is the feedback signal by the
flow controller, F is a relative value in the ratio of
source offered load to the available output bit rate, L
denotes the outgoing rate of link, and [0.2 ,]∈ ⋅tu FL FL
is the controlled sending rate at sample time t .

In simulation four measures, throughput, PLR, buffer
utilization, and packets’ mean delay, are used as the
performance indices. The throughput is the amount of
received packets at specified nodes (switches) without
retransmission. The status of the input multiplexer’s
buffer in node reflects the degree of congestion resulting
in possible packet losses. For simplicity, packets’ mean
delay only takes into consideration the processing time at
node plus the time needed to transmit packets.

The performance comparison of throughput, PLR,
buffer utilization, and mean delay controlled by four
different kinds of agents individually are shown in
Figure 5-8. The throughput for AIMD method decrease
seriously at loading of 0.9. Conversely, the GFQC
proposed remain a higher throughput even though the
offered loading is over 1.0, and can decrease the PLR
enormously with high throughput and low mean delay.
The GFQC has a better performance over RLNC and
MQLC in PLR, buffer utilization, and mean delay. It
demonstrates once again that GFQC possesses the ability
to predict the network behavior in advance.

Table 1. Rule table of FIS.

Rule Lq Lq& u& a Rule Lq Lq& u& a

1 L D N HE 7 M I N N

2 L D P H 8 M I P LE

3 L I N N 9 H D N L

4 L I P N 10 H D P LE

5 M D N H 11 H I N L

6 M D P L 12 H I P LE

0.6 0.7 0.8 0.9 1 1.1 1.2
0

1

2

3

4

5

6

7
x 10

5

offered loading

th
ro

u
g

h
p

u
t

AIMD
RLNC
MQLC
GFQC

Figure 5. Throughput versus various offered loading.

0.6 0.7 0.8 0.9 1 1.1 1.2
10

-8

10
-6

10
-4

10
-2

10
0

offered loading

p
a

ck
e

t
lo

ss
 r

a
tio

AIMD
RLNC
MQLC
GFQC

Figure 6. PLR versus various offered loading.

0.6 0.7 0.8 0.9 1 1.1 1.2
0

5

10

15

20

offered loading

m
e

a
n

 b
u

ff
e

r
(p

a
ck

e
t)

AIMD
RLNC
MQLC
GFQC

Figure 7. Mean buffer versus various offered loading.

 A GENETIC BASED FUZZY Q-LEARNING FLOW CONTROLLER FOR HIGH-SPEED NETWORKS 89

Copyright © 2009 SciRes. I. J. Communications, Network and System Sciences, 2009, 1, 1-89

0.6 0.7 0.8 0.9 1 1.1 1.2
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

offered loading

m
e

a
n

 d
e

la
y

(s
e

c)

AIMD
RLNC
MQLC
GFQC

Figure 8. Mean delay versus various offered loading.

4. Conclusions

In the flow control of high-speed networks, the reactive
scheme AIMD could not accurately respond to a
time-varying environment due to the lack of prediction
capability. The fuzzy Q-learning flow controller has
good performance when the state space of high-speed
network is large and continuous. The genetic operator is
introduced to obtain the consequent parts of fuzzy rules.
Through a proper training process, the proposed GFQC
can respond to the networks’ dynamics and learn
empirically without prior information on the
environmental dynamics. The sending rate of traffic
sources can be determined by the well-trained flow
control agent. Simulation results have shown that the
proposed controller can increase the utilization of the
buffer and decrease the PLR simultaneously. Therefore,
the GFQC proposed not only guarantees low PLR for the
existing links, but also achieves high system utilization.

5. References

[1] R. G. Cheng, C. J. Chang, and L. F. Lin, “A QoS-

provisioning neural fuzzy connection admission con-
troller for multimedia high-speed networks,” IEEE/ ACM
Transactions on Networking, Vol. 7, No. 1, pp. 111-121,
1999.

[2] M. Lestas, A. Pitsillides, P. Ioannou, and G. Hadjipollas,
“Adaptive congestion protocol: A congestion control
protocol with learning capability,” Computer Networks: The
International Journal of Computer and Telecommunications

Networking, Vol. 51, No. 13. pp. 3773-3798, September
2007.

[3] R. S. Sutton and A. G. Barto, “Reinforcement learning an
introduction,” Cambridge, MA: MIT Press, 1998.

[4] A. Chatovich, S. Okug, and G. Dundar, “Hierarchical
neuro-fuzzy call admission controller for ATM networks,”
Computer Communications, Vol. 24, No. 11, pp. 1031-
1044, June 2001.

[5] M. C. Hsiao, S. W. Tan, K. S. Hwang, and C. S. Wu, “A
reinforcement learning approach to congestion control of
high-speed multimedia networks,” Cybernetics and
Systems, Vol. 36, No. 2, pp. 181-202, January 2005.

[6] K. S. Hwang, S. W. Tan, M. C. Hsiao, and C. S. Wu,
“Cooperative multiagent congestion control for high-
speed networks,” IEEE Transactions on System, Man,
and Cybernetics-Part B: Cybernetics, Vol. 35, No. 2, pp.
255-268, April 2005.

[7] X. Li, X. J. Shen, Y. W. Jing, and S. Y. Zhang,
“Simulated annealing-reinforcement learning algorithm
for ABR traffic control of ATM networks,” in Proceedings
of the 46th IEEE Conference on Decision and Control,
New Orleans, LA, USA, pp. 5716-5721, December 2007.

[8] X. Li, Y. W. Jing, G. M. Dimirovski, and S. Y. Zhang,
“Metropolis criterion based Q-learning flow control for
high-speed networks,” in 17th International Federation of
Automatic Control (IFAC) World Congress, Seoul, Korea,
pp. 11995-12000, July 2008.

[9] C. J. C. H. Watkins, and P. Dayan, “Q-learning,”
Machine Learning, Vol. 8, No. 3, pp. 279-292, May 1992.

[10] M. L. Littman, “Value-function reinforcement learning in
Markov games,” Journal of Cognitive System Research,
Vol. 2, No.1, pp. 55-66, 2001.

[11] D. B. Gu, and E. F. Yang, “A policy gradient reinforce-
ment learning algorithm with fuzzy function approxi-
mation,” in Proceedings of the 2004 IEEE International
Conference on Robotics and Biomimetics, Shenyang,
China, pp. 934-940, August 2004.

[12] Y. Zhou, M. J. Er, and Y. Wen, “A hybrid approach for
automatic generation of fuzzy inference systems without
supervised learning,” in Proceedings of the 2007 American
Control Conference, New York City, USA, pp. 3371-3376,
July 2007.

[13] S. W. Wilson, “Classifier fitness based on accuracy,”
Evolutionary Computation, Vol. 3, No. 2, pp. 145-179, 1994.

[14] P. Gevros, J. Crowcoft, P. Kirstein, and S. Bhatti,
“Congestion control mechanisms and the best effort
service model,” IEEE Network, Vol. 15, No. 3, pp. 16-26,
May-June 2001.

