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ABSTRACT 

In this paper we consider a linear regression model with fixed design. A new rule for the selection of a relevant sub-
model is introduced on the basis of parameter tests. One particular feature of the rule is that subjective grading of the 
model complexity can be incorporated. We provide bounds for the mis-selection error. Simulations show that by using 
the proposed selection rule, the mis-selection error can be controlled uniformly. 
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1. Introduction 

In this paper we consider a linear regression model with 
fixed design and deal with the problem of how to select a 
model from a family of models which fits the data well. 
The restriction to linear models is done for the sake of 
transparency. In applications the analyst is very often 
interested in simple models because these can be inter-
preted more easily. Thus a more precise formulation of 
our goal is to find the simplest model which fits the data 
reasonably well. We establish a principle for selecting 
this “best” model. 

Over time the problem of model selection has been 
studied by a large number of authors. The papers [1,2] by 
Akaike and Mallows inspired statisticians to think about 
the comparisons of fitted models to a given dataset. 
Akaike, Mallows and later Schwarz (in [3]) developed 
information criteria which may be used for comparisons 
and in particular, may be applied to non-nested sets of 
models. The basic idea is the assessment of the trade-off 
between the improved fit of a larger model and the in-
creased number of parameters. Akaike’s approach is to 
penalise the maximised log-likelihood by twice the num- 
ber of parameters in the model. The resulted quantity, the 
so called AIC, is maximised with respect to the parame-
ters and the models. The disadvantage of this procedure 
is that it is not consistent; more precisely, the probability 
of overfitting the model tends to a positive value. Subse-
quently, a lot of other criteria have been developed. In a 
series of papers the consistency of procedures based on 
several information criteria (BIC, GIC, MDL, for exam-
ple) are shown. The MDL-method was introduced by 
Rissanen in [4]. In the nineties of the last century a new 
class of model selection methods came into focus. The 

FDR procedure of Benjamini and Hochberg (see [5]) 
uses ideas from multiple testing and attempts to control 
the false discovery rate, which we will call the mis-se- 
lection rate in this paper. More recent papers of this di-
rection are published by Bunea et al. [6], and by Benja-
mini and Gavrilov [7]. Surveys of the theory and existing 
results may be found in [8-11]. In a large number of pa-
pers the consistency and loss efficiency of the selection 
procedure is shown and the signal to noise ratio is calcu-
lated for the criterion under consideration. Among these 
papers we refer to [12-16], where consistency is proved 
in a rather general framework. A method for the sub-
model selection using graphs is studied in [17]. Leeb and 
Pötscher examine several aspects of the post-model-se- 
lection inference in [9,18,19]. The authors point out and 
illustrate the important distinction between asymptotic 
results and the small sample performance. Shao intro-
duced in [20] a generalised information criterion, which 
includes many popular criteria or which is asymptotically 
equivalent to them. In this paper Shao proved conver-
gence rates for the probability of mis-selection. In [21] a 
rather general approach using a penalised maximum like-
lihood criterion was considered for nested models. 

Edwards and Havránek proposed in [22] a selection 
procedure aimed at finding sets of simplest models that 
are accepted by a test like a goodness-of-fit test. Unfor-
tunately, it is not possible to use the typical statistical 
tests of linear models in Edwards and Havránek’s proce-
dure since the assumption (b) in the Section 2 of their 
paper is not fulfilled (cf. Section 4 of their paper). 

In this paper we develop a new universal method for 
selecting a significant submodel from a linear regression 
model with fixed design, where the selection is done 
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from the whole set of all submodels. We point out the 
several new features of our approach: 

1) A new selection procedure based on parameter tests 
is introduced. The procedure is not comparable with 
methods based on information criteria and it is different 
from Efroymson’s algorithm of stepwise variable selec-
tion in [23]. 

2) We derive convergence rates for the probability of 
mis-selection which are better than those proved in pa-
pers about information criteria e.g. in [20]. 

3) Subjective grading of the model complexity can be 
incorporated. 

Concerning 1) we consider tests on a set of parameters 
in contrast to FDR-methods, where several tests on only 
one parameter are applied. Moreover w.r.t. 2), many au-
thors do not analyse the behaviour of mis-selection pro- 
babilities. The results on bounds or convergence rates of 
these probabilities are more informative than the consis-
tency. The aspect 3) is of special interest from the point 
of view of model building. Typically model builder have 
some preference rules in mind when selecting the model. 
They prefer simple models with linear functions to mod-
els with more complex functions (exponential or loga-
rithmic, for example). The crucial idea is to assign to 
each submodel a specific complexity number. 

We do not assume that the errors are normally distrib-
uted. This ensures a wide-ranging applicability of the 
approach, but only asymptotic distributions of test statis-
tics are available. From examples in Section 2, it can be 
seen that applications are possible in several directions, 
for instance to the one-factor-ANOVA model. The simu-
lations show an advantage of the proposed method in that 
it controls the frequency of mis-selection uniformly. For 
models with a large number of regressors, the problem of 
establishing an effective selection algorithm is not dis-
cussed in this paper; we refer to the paper [24]. 

The paper is organised as follows: In Section 2 we in-
troduce the regression model and several versions of 
submodels. The asymptotic behaviour of the basic statis-
tic is also studied there. Section 3 is devoted to the model 
selection method. We provide convergence rates for the 
probability that the procedure selects the wrong model 
(mis-selection). We see that the behaviour is similar to 
that in the case of hypothesis testing. The results of simu- 
lations are discussed in Section 4. The reader finds the 
proofs in Section 5. 

2. Models 

Let us introduce the master model  

1
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where 1 n ,     . The least square  
estimator for   is given by 

  1ˆ T TX X X Y


 . 

This leads to the residual sum of squares 

   2 1ˆ T T T
nR Y X Y I X X X X Y


    , 

where  is the Euclidean vector norm. .
The aim is to select model (1) or an appropriate sub-

model which fits the data well. Moreover, we search for 
a reasonably simple model. In the following we define 
the submodels of (1). The submodel with index  

 1, ,  
 , , ,

T l
l       :l l

 has the parameter vector  

1 2 ,  , where the vector   
is related to   by D   with an appropriate ma-
trix 

k lD  l k having maximum rank . In a large 
number of applications, the γi’s coincide with different 
components of  . The submodel indices 1 and   
correspond to the model function equal to zero (no pa-
rameters) and to the full model, respectively. Thus we 
can write the model equation for the submodel   as 

Y X   ,                (2)  

X XD  . The parameter space of submodel where   
in (1) is given by  : lD      . Next we give 
several versions for the definition of submodels in dif-
ferent situations. 

Example 1. We consider all submodels, where com-
ponents of   are zero. More precisely, index   is  
assigned to a submodel if 
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the submodel with index 14   has the parameters 

1 1  , 2 3  , 3 4   and 2 5 0  

1 0 0
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0 0 1

0 0 0
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 holds. 
Moreover, we have  

     , 
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in this case. Here the digits “1” in the binary representa-
tion of 1   give the indices of the parameters j  
available in the submodel  . X  in (2) consists of the 
columns 1 l  of the design matrix ,i , i X  correspond-
ing to the present parameters in submodel  . □ 

Example 2. Let . submodel 1: 3k  1 0 
T

,  

2 3 . Submodel 2:  ,    1 1  , . Sub- 
model 3: identity (1). □ 

 2 3,
T  

ijY

Example 3. We consider the one-factor ANOVA model 

i ij    for , 1, ,i g  1, , gj n 
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vector. 11 ggn   are independent random variables. 
The submodels are characterised by the fact that several 
μi’s are equal. Let   be the k-th Bell number. A Sub-
model with index  1, ,    is determined by a par-
tition  1 ,, , lJ J    of  1, , g

 for some i i
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□ 

Example 3 shows that the model selection problem 
occurs also in the context of ANOVA. In submodel (2) 
with index  , the least square estimator ̂  and the 
residual sum of squares S  are given by 
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What is an appropriate statistic for model selection? 
Let nM S R   . Here we consider a quantity  

 nM  , which is similar to F-statistics known from hy-
pothesis testing in linear regression models with normal 
errors: 
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The main difference to classical F-statistics is that the  

estimator 
1

S
n l 

 of the model variance in submodel 

  appears in the denominator. The quantity 
 

1
S

n l
  

is the proper estimator under the hypothesis of submodel 
 . Classical F-statistics are used in Efroymson’s algo-
rithm of stepwise variable selection (see [23]). 

In the remainder of this section we study the asymp-
totic behaviour of the statistic  M   when 0n   is the 
true parameter of the model (1). For this reason, we first 
introduce some assumptions. 
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In a wide range of applications, the entries x  of the 
design matrix are uniformly bounded such that  

  2p
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 may be weakened in some ways, but we use this as-
sumption to reduce the technical effort. We introduce 

 
  

     and 

 1
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Proposition 2.1 clarifies the asymptotic behaviour of 
the statistic  M n . 

Proposition 2.1. Assume that Assumption  is sat-
isfied.  



01) Assume that     l k  and . Then we 
have 

   
2
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2) Suppose that 0    k  and l . Let   
 1 2
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     12
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  .  

Depending on whether the true parameter 0  belongs 
to submodel   or not, the statistic  M n   has a dif-
ferent asymptotic behaviour. In the first case, it has an 
asymptotic χ2-distribution. In the second case it tends to 
infinity in probability with rate n . Therefore, the sta-
tistic  M n   is suitable for model selection. In the next 
section a selection procedure is introduced based on 

 nM  serving as fundamental statistic. 

3. The New Selection Rule 

In this section we propose a selection rule which is based 
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 d   d d    are: on the statistic (4). We introduce a measure  
d1)  is the degree of the polynomial plus 1, of the complexity for submodel   with  

max . With this quantity  d l d d   d0 2)   is the number of parameters j  avail-
able in the submodel, the other parameters 

  it is possible 
to incorporate a subjective grading of the model com-
plexity. The restriction to integers is made for simpler 
handling in the selection algorithm. The following exam-
ples should illustrate the applicability of the complexity 
measure. 

j  are zero, 
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This choice takes into account that the logarithm is a 

more complex function in comparison to constants or 
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 d
, cf. part 1) of Proposition 2.1. The 

quantity n  will play the role of an asymptotic 
type-1 error probability later. A submodel is referred to 
as admissible if       ,M d ln n     is satisfied, 
which in turn corresponds to the nonrejection of the hy-
pothesis that the parameter belongs to the space   of 
the submodel. The generalised information criterion in-
troduced by Shao (see [20]) is given by  

   n nGIC S l     R n k . We next show that there 
is a relationship between the both approaches. A sub-
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The central idea is to prefer any admissible model with 
lower complexity. If there is more than one admissible 
model with the same minimum complexity, then we take 
the model with maximum p-value of  M . n

The next step is to analyse the asymptotic behaviour of 
the probability that the wrong model is selected; i.e. the 
probability of mis-selection (PMS). Let 0  
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 d d  , l l  . The following cases of mis-selec- 
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 for some  with j d j d

0

. 
The probability of mis-selection case (m2) may be de-

creased by reducing the number of submodels having the 
same complexity. The Theorem 3.1 below provides 
bounds for the selection error. 

Theorem 3.1. Let  
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  0n d 
1

lim lnn n
 max0, ,  for all d d .  

1) If  1 2  3p nG o n  as , and , then n 

         3 2
31 1 1n nm d o O n B      

with 
3

1, , 1

max
n

n ij
j k i

B x
 




 

3  . 

2) If a
n  for all d  with some d Cn  max0, , d 

,a C  0 , then  

  2  p
npB n   3m O    and p

npm O B n .  

The PMS of case (m1) behaves like a type-1-error in a 
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under the assumptions of part 1). The additional term 
with rate  3 2

nO n B
3  comes from the application of the  

central limit theorem, and has rate  1 2O n 

 1

 in the case,  

where the xij’s are uniformly bounded. This theorem 
shows that the PMS of cases (m2) and (m3) tends to zero 
at rate pO n  provided that the xij’s are uniformly 
bounded and 



  ad Cn  dn  for all  and some  
. These rates of PMS are rather fast. They are better 

than in comparable cases in [20] ( n

0a 
  and n  can be 

considered to have the same rate). One reason is that in 
this paper alternative techniques such as Fuk-Nagaev 
inequality are employed to obtain the convergence rates. 
The results of Theorem 3.1 recommend the selection rule 
above from the theoretical point of view. The behaviour 
in practice is discussed in the next section. 

4. Simulations 

Here we consider the polynomial model: 
2 3

4 i ix x1 2ni iY x 3 i         for  1, ,i n 

where 1 n  are the observations of the re-
gressor variable, and the εi’s are i.i.d. random variables.  

, , 0,1x x 

For simplicity, we consider the case i

i
x

n


d

. The com-  

plexity  is measured as given in Example 4(b). We 
compare the selection method of the previous section 
with procedures based on Schwarz’s Bayesian informa-
tion criterion (BIC, see [3]) and the Hannan-Quinn crite-
rion (HQIC, see [25]). The Tables 1-3 show the frequen-
cies of mis-selection. The results are based on 106 repli-
cations of the model. We choose the following error  

Table 1. Frequencies for mis-selection (FM) in percent in 
the case n = 100, σ = 0.2, εi ~ (0, σ2). 

β1 β2 β3 β4 
FM new  
method 

FM 
BIC 

FM 
HQIC

0 100 100 100 1.910 2.018 2.043

0.344 100 100 100 1.998 1.895 1.869

100 0 100 100 1.900 2.006 2.029

100 3 100 100 1.952 1.855 1.830

100 100 0 100 1.918 2.029 2.055

100 100 6.99 100 1.943 1.844 1.822

100 100 100 0 1.911 2.017 2.043

100 100 100 4.58 2.011 1.910 1.886

0 0 100 100 2.049 3.201 3.239

–0.3681 3.21 100 100 1.830 5.006 4.928

0 0 0 100 2.078 3.725 3.780

0.377 3.38 7.65 100 1.936 3.490 3.432

0 0 0 0 2.102 4.008 4.060

0.38872 3.39 7.8987 5.1754 1.825 5.269 5.178

–0.38872 3.39 7.8987 5.1754 1.830 6.309 6.198

0.38872 –3.39 7.8987 5.1754 1.893 5.297 5.213

0.38872 3.39 –7.8987 5.1754 1.873 8.039 7.900

0.38872 3.39 7.8987 –5.1754 1.897 6.452 6.347

–0.38872 –3.39 7.8987 5.1754 1.893 5.297 5.213

–0.38872 3.39 –7.8987 5.1754 1.864 14.207 13.95

–0.38872 3.39 7.8987 –5.1754 2.029 6.736 6.622

Table 2. FM in percent for different error distributions. 

n β1 β2 β3 β4 εi ~ 
FM new 

meth. 
FM 
BIC

FM 
HQIC

100 0 0 0 0 σ·t(3)  1.735 3.895 3.951

0.468 4.104 9.516 6.264 σ·t(3)  2.043 2.966 2.943

400 0 0 0 0  20,

0 0 0 0 σ· )  0.942 1.736 2.459

–0.216 1.873 4.365 –2.863 

0.956 1.780 2.502

t(3

 20,

σ·t 3)  

1.122 5.869 3.905

–0.216 1.873 4.365 –2.863 ( 3.067 8.164 6.275

 
robp abilities:  1 0 .02 , n n ,   2  0.022
 3 0.024n   4 0n   in the case 100.026 n , , and 
  0.01i   0 . 

Th ule of the prev ous section alwa s 
FM

n in the case 40n
e selection r i ys give

-values near the given values of n . The methods 
based on BIC and HQIC partially show FM-values also 
near these n , but in some special cases the FM-values 
are much higher (for example, for 1 0.38872   ,  

2 3.39  , 3 7.8987   , 4 5.1754   according to 
Table 1; 1 0.2569   , 2 2.227  5.197, 3   ,  

54 3.40  according Ta ur method we  to ble 3). By o
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Table 3. F in  = , εi ~ M in percent  the case n  400, σ = 0.2
σ·t(3).  

2 3 4 method BIC HQIC
β1 β  β  β  

FM new  FM FM 

0 0 0 0 0.942 1.736 2.459

0.2569 2.227 5.197 3.405

–0.2569 2.227 5.197 3.

1  

1  

1  

1  

2  –  

1.003 1.990 1.596

405 0.958 2.086 1.657

0.2569 –2.227 5.197 3.405 0.984 2.169 1.728

0.2569 2.227 –5.197 3.405 0.945 2.575 2.004

0.2569 2.227 5.197 –3.405 0.987 2.141 1.690

–0.2569 –2.227 5.197 3.405 1.011 2.005 1.606

–0.2569 2.227 –5.197 3.405 0.798 3.567 2.652

–0.2569 2.227 5.197 –3.405 1.015 2.299 1.823

0 100 100 100 1.200 1.064 1.427

0.217 100 100 100 0.983 1.059 0.890

00 0 100 100 1.004 0.873 1.217

100 1.89 100 100 0.969 1.046 0.868

100 00 0 100 0.984 0.844 1.202

100 100 4.38 100 0.976 1.059 0.876

100 100 00 0 0.948 0.817 1.168

100 100 100 2.87 0.992 1.070 0.887

100 0 0 00 0.973 1.0706 1.525

100 2.08 4.84 100 1.010 1.084 0.914

100 .08 4.84 100 0.868 2.2384 1.741
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 able  contr  the F -valu by cho sing an appro

p n . 

of

enote a positive generic constant which can 
ace to place and does not depend on other 

ate
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vari s. Throughout this section, we assume that As-
sumption   is fulfilled. In the following we prove aux-
iliary statements which are used later in the proofs of the 
theorems. 
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Lemma 5.2. Assume that 0
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Note that 
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Hence by (8) and Lemma 5.3,  
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