
Journal of Software Engineering and Applications, 2012, 5, 249-254
http://dx.doi.org/10.4236/jsea.2012.54029 Published Online April 2012 (http://www.SciRP.org/journal/jsea)

249

Measuring Whitespace Pattern Sequences as an Indication
of Plagiarism

Nikolaus Baer, Robert Zeidman

Zeidman Consulting, Cupertino, USA.
Email: Nik@ZeidmanConsulting.com

Received February 7th, 2012; revised March 10th, 2012; accepted April 8th, 2012

ABSTRACT

There are several methods and technologies for comparing the statements, comments, strings, identifiers, and other
visible elements of source code in order to efficiently identify similarity. In a prior paper we found that comparing the
whitespace patterns was not precise enough to identify copying by itself. However, several possible methods for im-
proving the precision of a whitespace pattern comparison were presented, the most promising of which was an exami-
nation of the sequences of lines with matching whitespace patterns. This paper demonstrates a method of evaluating the
sequences of matching whitespace patterns and a detailed study of the method’s reliability.

Keywords: Plagiarism; Source Code; Source Code Similarity; Whitespace; Obfuscation; Indentation; Maintainability;

Copyright Infringement; Intellectual Property; Litigation; Open Source

1. Introduction

Source code development and traditional source code
analysis focus on the visual elements of the code, and the
whitespace (space, tab, newline, and other blank charac-
ters) is simply left as a matter of individual style and
preference [1]. Yet, when attempting to discover copied
source code or analyzing identified sections of code for
specific evidence of copying, the style decisions gain
importance [2-4].

Most state-of-the-art source code comparison methods
disregard whitespace patterns. Several methods reduce
the source code to individual tokens, and others examine
the similarity of how the tokens are parsed, such as by a
source code compiler’s parser, thereby eliminating the
whitespace from further consideration [5-9]. A method
proposed by H. T. Jankowitz analyzes the sequence exe-
cution of procedures in the code, which does not take
whitespace into account [10]. A method proposed by E.
Merlo compares metrics of a programs structural ele-
ments, without consideration for the whitespace [11].
Previous methods described by R. Zeidman utilize the
source code elements, such as statements, comments,
strings, and identifies, but not the whitespace itself [12,
13].

Methods that do consider whitespace, often analyze
the total amount of whitespace used in a piece of source
code as one of many metrics, which are then compared to
detect similarities [14-16]. Academic plagiarism detec-
tions systems have been developed that introduce and

evaluate whitespace signatures to identify student work
[17]. S. Aliefendic described an approach for identifying
similar sections of source code based upon unusual
whitespace patterns common to both pieces of software
[18]. However, little work has been done to examine the
usage of naturally occurring normal whitespace patterns
to detect similarities.

Whether trying to determine if correlated code is cop-
ied in an academic or industrial setting, there are two
major obstacles: locating the areas of correlation and
determining if the correlated areas of source code are the
result of copying or not. There can be many reasons for
code from different programs to be correlated, such as
the common use of third-party code or concepts. How-
ever, the stylistic elements of a body of code are rarely if
ever dictated by external requirements, so their similarity
may reduce the possible reasons for the overall similarity
to the point where copying is the only logical explanation
[12]. Since the stylistic elements represented as white-
space patterns are less dictated by the external require-
ments than the visual elements of source code, it has long
been thought that correlated whitespace patterns could be
used to provide further evidence of copying [19]. In fact,
surveys have found that academics often examine the
whitespace patterns when evaluating possible student
plagiarism [2,3]. Furthermore, a comparison of white-
space patterns may provide a new method of identifying
correlated source code in which other elements have
been modified to disguise coping, such as through the
use of global replacements of variable names [20].

Copyright © 2012 SciRes. JSEA

Measuring Whitespace Pattern Sequences as an Indication of Plagiarism 250

We set out to discover whether whitespace patterns
can be used to differentiate between similar and dissimi-
lar source code. Unfortunately, we found that the white-
space patterns of individual lines are not unique and are
often repeated throughout a body of code, so comparing
the whitespace patterns of individual lines of code has
proven to be too imprecise to adequately measure the
level of copying or identify specific sections of copying
[21].

Although the whitespace patterns of individual lines
are not unique enough, groupings of such lines with
matching whitespace into large scale patterns may prove
unique enough to identify sections of copying. By deve-
loping a method of examining the sequences of lines of
matching whitespace patterns, we determine whether
comparing these large scale whitespace patterns is a
method of reliably measuring source code similarity and
identifying source code copying.

In Section 2 we describe our hypothesis regarding how
to test whether comparing large scale whitespace patterns
is a reliable method of evaluating source code similarity.
In Section 3 we discuss the methodology that we used to
perform these tests. In Section 4 we present the resulting
data. Our conclusions regarding the reliability of com-
paring large scale whitespace patterns as a method of
evaluating source code file similarity are presented in
Section 5.

2. Hypothesis

If comparing large scale whitespace patterns, seen as
sequences of lines of matching whitespace, is a reliable
method of evaluating source code file similarity and thus
a good method of detecting copied code, then a file co-
pied from another file will have long corresponding se-
quences of lines with matching whitespace patterns while
two independently created files will have very short, if
any, corresponding sequences. Measuring the longest
common sequence length should reliably differentiate
files pairs and bodies of code with similarity from file
pairs and bodies of code without similarity.

To test this hypothesis we compared and calculated the
sequence score between file pairs from different bodies
of code. The sequence score is the percentage of the
longest sequence of lines divided by the smaller file’s
length. For example, if the longest common sequence of
instructions is 80 lines when comparing a 100 line file to
a 200 line file then the sequence score for the file pair is
80% [13].

We modeled identical source code by comparing a
body of code against itself, which should produce the
obvious 100% similarity between each file and itself. We
modeled a project that has some copied code amongst
mostly new original code by comparing two distant ver-
sions of a single software project, which have limited

similarities [22].
Based upon the assumption that a file compared to it-

self should produce a 100% similarity score, and com-
paring a file to a completely different file should produce
very few, if any, similarities and a very low similarity
score, a reliable method of comparison should demon-
strate the following behavior:
 When comparing the source code files from one body

of code against itself, the resulting scores for all of
the file pairings should produce a bimodal distribu-
tion with the majority of scores being distributed
close to a very low local maximum (a large peak
close to zero), and the pairings of identical files pro-
ducing the second local maximum at the top of the
range (a second peak at the maximum possible score,
100);

 When comparing the source code files from one pro-
ject against another completely separate project the
results should always produce a distribution with a
very low mean and a small standard deviation;

 When comparing the source code files from one ver-
sion of a software project against another version of
the same project the results should show a distribution
with a higher mean and larger standard deviation than
the comparison of completely different projects. The
results should still be skewed toward the low end be-
cause most file pairs will have little to no similarity.

3. Methodology

Building upon the whitespace comparison tools from our
last paper, the steps to measure the sequences of white-
space are:
 Convert each file in the source code (*.c, *.cc, *.cpp,

*.h, *.hh, *.hpp) to a whitespace file format;
 Compare whitespace formatted files;
 Analyze and properly filter the results.

3.1. Whitespace Conversion

To convert each file into a whitespace format we inte-
grated our previous tool into the new Whitespace Extra-
ctor custom application, which performs the conversion
according to the following rules:
 Every continuous sequence of printable characters is

converted to the character “x”;
 Every space is converted to the character “S”;
 Every tab is converted to the character “T”;
 Newline characters are not converted.

The output file contains only the characters “T”, “S”,
“x” and the original newline characters, which are con-
sidered the line separators. For example, the following
line of C code:

int var = prevValue + 5;

can be thought of as:

Copyright © 2012 SciRes. JSEA

Measuring Whitespace Pattern Sequences as an Indication of Plagiarism 251

(T)int(S)var(T) = (S) (S) prevValue (S) + (S)5;

where (S) and (T) represent space and tab characters, so
Whitespace Extractor will translate the line into:

TxSxTxSSxSxSx

3.2. Sequence Comparison

We used a source code comparison tool to compare the
sequences in each file pairing. The program compares the
files in pairs—one file from the first directory and one
file from the second directory. When more than ten lines
of matching whitespace are found in a file pair, the file
pair is reported. The comparison scores of all file pairs
are compiled into a single database.

The comparison tool only determines that a series of
lines is a sequence if there are more than 10 matching
lines in a row. Therefore files with fewer than 10 non-
blank lines are not counted as having any similarity.
However, when proving plagiarism did not occur, small
files should not be dismissed based only on their size.

3.3. Analysis Tools

In addition to the Whitespace Extractor, two other cus-
tom programs were required to manipulate the com-
parison tool’s result databases:
 DB Skimmer: parses the database and removes all

entries except the nth highest scoring file pairs for
each file in the first directory.

 Filter DB: removes files from a database, based on
their extension, size, or the number of lines that they
contain.

The comparison tool produces summary spreadsheets
from the distribution of scores in a database. It also cal-
culates the mean and standard deviation for the scores in
a database.

3.4. Analysis

The comparisons were performed on open source code
that was written in the C programming language, namely
two versions of the Linux kernel, from www.kernel.org,
and the Apache HTTP server, from
http://d.apache.org/download.cgi. We ran the Whitespa-
ce Extractor on the source code and converted every
single file to whitespace format. Then we ran the com-
parison tool in multi-processor mode with the following
parameters:
 512 file threshold;
 Only analyze sequences;
 Record sequences.

3.5. Filtering

As long as an operation is applied equally to every file or
directory, it does not bias the results and qualifies as a
valid step of the method.

We found that header files are often similar in both
original content as well as the sequence of whitespace.
Therefore, one of the steps of our methodology involved
filtering out the scores of the header files.

We also found that #include statements have very
similar whitespace patterns and are typically listed to-
gether at the start of the file, so the sequences of match-
ing whitespace patterns that are caused by the #include
statements are false positives, which can be eliminated.
The regular expression “.*#include.*$” was used to re-
move the standard #include statements from every file.

Finally, when attempting to identify copied code one
would typically look at the highest scoring file pairs, so
we also filtered out all but the top score for each file.

What remains after these filtering steps are file pairs
that have the highest probability of containing substan-
tially similar code.

4. Results

We performed three comparisons of code from open-
source projects. The first was a comparison of a program
against itself, then a comparison of two completely dif-
ferent programs, and finally a comparison between two
different versions of the same program. The following
results for these three comparisons include charts of the
score distributions, and the mean and standard deviation
values for each filtration step.

4.1. Comparison of a Program to Itself

The open-source Linux Kernel version 1.0 was selected
for the comparison of a program to itself.

We expected to observe 100% similarity when com-
paring each file to itself. The comparison of the 488
source code files of version 1.0 of the Linux Kernel
against themselves did demonstrate that identical files
had similarity scores of 100%, while other file combina-
tions had lower scores.

4.2. Comparison of Two Different Programs

Comparing two different programs should result in low
similarity scores. Using the comparison tool, we com-
pared the Apache HTTP version 2.0.35, which contained
653 files to the Linux Kernel version 1.0, which con-
tained 488 files.

We expected to observe only low scores, as the code
should be completely unrelated. The comparison of the
two different programs, the Apache HTTP server project
against version 1.0 of Linux, is shown in Figure 1 with
the y-axis scaled linearly and on a logarithmic scale in
Figure 2. The y-axis is the number of file pairs, the x-
axis is the sequence similarity scores, and the z-axis is
the different filters that were applied to the data.

Copyright © 2012 SciRes. JSEA

Measuring Whitespace Pattern Sequences as an Indication of Plagiarism 252

Figure 1. Comparison of two different programs on a linear
scale.

Figure 2. Comparison of two different programs on a loga-
rithmic scale.

The linear scale demonstrates the very large local ma-
ximum for the low scores, and the logarithmic scale
shows greater detail for each level of filtering that we
performed. The large disparity between the number of
file pairs at the lower local maximum and the rest of the
data is easily seen in Figure 1. Figure 1 should be kept
in mind as one views the following logarithmically scaled
charts.

Starting from the back of Figures 1 and 2 the rows of

results show all the file pairs, the filtering out of the
header files, the additional filtering out of the #include
statements, and finally the additional filtering out of all
but the top scoring file pairs for each Apache file that
remains.

The comparison of all the file pairs produced a skewed
distribution with a mean score of 0.36 and a small stan-
dard deviation of 2.06. As expected, a low mean score
and small standard deviation were observed through all
the filtering, with the final filtering of header files, #in-
clude statements, and all but the highest scores producing
a skewed distribution with a mean score of 0.68 and a
small standard deviation of 3.61.

The final filtering step that one might use to identify
copied code is to only look at the highest matching file
pair for each file. Once headers and #includes were fil-
tered out there were no file pairs with similarity scores
more than 11 times the standard deviation above the
mean. A manual examination of the higher scoring file
pairs showed that false positives had occurred on a series
of common source code statements such as function de-
finitions, variable definitions, and preprocessor com-
mands that were otherwise dissimilar.

4.3. Comparison of Two Versions of the Same
Program

Version 1.0 of the Linux Kernel was compared against
the much later version 2.6. The 2.6 version was released
in late 2003 with 12,412 distinct source code files, which
is 9 years after version 1.0 was released in 1994 with
only 488 source code files.

We expected to observe lower scores, and few, if any,
100% similarity scores, but we also expected to find
some high similarity scores from code that has persisted
over the years. The result of the comparison of version
2.6 to version 1.0 of the Linux kernel is shown in Figure
3 with the y-axis scaled logarithmically for the clearest
detail. Starting from the back of the chart, the rows of
results show all the file pairs, the filtering out of the
header files and the #include statements, and finally the
additional filtering out of all but the top scoring file pair
for each remaining Linux 2.6 file.

The initial comparison of all the file pairs produced a
skewed distribution with a mean score of 0.48 and stan-
dard deviation of 2.62, which are both slightly higher
than the previous comparison of different projects. The
filtering of header files and #include statements produced
a skewed distribution with a low mean of 0.2 and a nar-
row standard deviation of 0.48

The large number of possible file pairs illustrates the
importance of performing the final step of filtering all but
the highest scores. This final filtering produced a skewed
distribution with a mean score of 2.33 and a standard
deviation of 5.85. There were several file pairs with simi-

Copyright © 2012 SciRes. JSEA

Measuring Whitespace Pattern Sequences as an Indication of Plagiarism 253

Figure 3. Comparison of two different versions of the same
program on a logarithmic scale.

larity scores that were up to 14 times the range of the
standard deviation. Many of these statistically significant
file pairs did indeed contain substantial similarity.

5. Conclusions

Examining the sequences of matching whitespace pat-
terns produced by a comparison of a single version of a
program against itself, different versions of a program
against each other, and two completely different pro-
grams demonstrated that this can potentially be a reliable
method of measuring source code similarity and pre-
cisely identifying similar sections of code.

The comparison of a single version of a program to it-
self showed that a file compared with itself has a white-
space sequence similarity score of 100.

The low mean and small standard deviation from the
comparison of two different programs, Apache and Linux,
demonstrates that this method accurately scores file pairs
without similarity. Two different programs should have
very little similarity, and low scores, which was confirmed
by the low mean.

When examining two different versions of the same
program, version 2.6 and 1.0 of Linux, a skewed distri-
bution with a mean and standard deviation that was
higher than the comparison of different programs was de-
tected. Therefore this method appears to reliably differ-
rentiate between similar and dissimilar projects.

Although the mean of the comparison of different ver-
sion was still larger than that from the comparison of
different programs, we had expected more of a difference
between the means and standard deviations for both the

raw and filtered data. Version 2.6 of Linux is a relatively
large project, which provides many possible file pairs
when compared with version 1.0, a small project, which
only allows for a limited number of correlated file pairs.
The final filtering, which limits the number of possible
file pairs did show a larger mean, and the difference be-
tween the similar and dissimilar comparisons was more
easily detectable.

The comparison of different versions of the same pro-
ject produced local maxima of high scores far above the
range of the standard deviation and the comparison of
different projects did not. Upon manual inspection the
higher scoring statistically significant file pairings, those
which were far above the range of the standard deviation,
generally demonstrated similarities, unlike the file pair-
ings inside a few standard deviations.

It is further observed that if the similarity score data
cannot be filtered to provide a standard deviation small
enough to allow for the possibility of statistically signi-
ficant similarity scores then the method is not reliable.
This supports the finding in our previous paper that the
whitespace patterns of individual lines were not unique
enough to make accurate and precise analysis of software
similarity, because the high mean and large standard de-
viations observed did not allow for the occurrence of
statistically significant file pairs [21].

However, the method of comparing large scale white-
space patterns by looking for sequences of matching
lines of whitespace did differentiate between a compari-
son of a program against another version of itself, and a
comparison of a program against another program. The
examination of sequences of lines of whitespace patterns
appears to be a good method for determining some sour-
ce code similarities and the higher scoring statistically
significant file pairings were found to be indicative of
copied files.

It is not possible to directly compare our method of
examining actual whitespace patterns with other methods,
because the state-of-the-art source code comparison me-
thods disregard the whitespace patterns, introduce artifi-
cial whitespace fingerprints, or only compare whitespace
metrics. We do not think that our method should be used
in place of existing methods, but since our method ex-
amines aspects of source code that are often dismissed
and has been shown to successfully identify similar sour-
ce code files it could provide some advantages when
used in conjunction with existing methods.

One very useful possibility for whitespace sequence
detection is to compare very large programs where an in-
depth comparison tool may take too long to run. White-
space sequence matching could be used to locate small
sets of files that appear similar. The in-depth comparison
tool would then be run on those files in a reasonable
amount of time to detect copying.

Copyright © 2012 SciRes. JSEA

Measuring Whitespace Pattern Sequences as an Indication of Plagiarism 254

Detecting similar code after the function and variable
names have been replaced or type definitions have been
altered is a challenge for many plagiarism detection me-
thods, so another possible use for whitespace sequence
detection could be the detection of source code where the
similarity has been obfuscated by global find and re-
placements [3,6,16].

6. Future Work

Although this method has been shown to be good it has
not been tested for completeness. Many file pairs with
high scores do show copying, and file pairs with low
scores did not show similarity. Also the method has not
been tested to see if it can miss similarity, producing
false negatives. Since false negatives can be as detri-
mental as false positives, this method may be especially
useful for detecting similarities between obfuscated code,
but may not be as useful to eliminate the possibility of
similarities between two bodies of source code. It would
be interesting to see what particular types of copying this
method can and cannot detect through further testing. It
would also be interesting to directly compare this method
against methods that rely upon whitespace metrics.

7. Acknowledgements

Thank you to Jim Zamiska for his insight and valuable
feedback.

Thank you to John Pfeiffer for his valuable validation.

REFERENCES
[1] E. Brady and C. Morris, “Whitespace,” 2004.

http://compsoc.dur.ac.uk/whitespace

[2] G. Cosma and M. Joy, “Source-Code Plagiarism: A UK
Academic Perspective,” Research Report, University of
Warwick, Coventry, 2006, pp. 116-120.

[3] G. Cosma, “An Approach to Source-Code Plagiarism
Detection and Investigation Using Latent Semantic Ana-
lysis,” Ph.D. Thesis, University of Warwick, Coventry,
2008.

[4] P. J. Plauger, “Fingerprints,” Embedded Systems Program-
ming, Miller Freeman, San Francisco, 1994, pp. 84-87.

[5] S. Schleimer, D. Wilkerson and A. Aiken, “Winnowing:
Local Algorithms for Document Fingerprinting,” Pro-
ceedings of the 2003 SIGMOD International Conference
on Management of Data, San Diego, 9-12 June 2003, pp.
76-85.

[6] B. Cui, L. Han, Y. Hao, Z. Li, J. Wang and R. Zhang,
“Type Redefinition Plagiarism Detection of Token-Based
Comparison,” Proceedings of the 2010 International Con-
ference on Multimedia Information Networking and Se-
curity of the IEEE Computer Society, Nanjing, 4-6 No-
vember 2010, pp. 351-355.

[7] G. Malpohl, M. Philippsen and L. Prechelt, “Finding
Plagiarisms among a Set of Programs with JPlag,” Jour-
nal of Universal Computer Science, Vol. 8, No. 11, 2000,

pp. 1016-1038.

[8] M. Wise, “YAP3: Improved Detection of Similarities in
Computer Program and Other Texts,” Proceedings of the
27th SIGCSE Technical Symposium on Computer Science
Education, Philadelphia, 15-18 February 1996, pp. 130-134.

[9] C. Anderson and M. Ellis, “Plagiarism Detection in Com-
puter Code,” Rose-Hulman Institute of Technology, Terre
Haute, 2005.

[10] H. T. Jonkowitz, “Detecting Plagiarism in Student Pascal
Programs,” The Computer Journal, Vol. 31, No. 1, 1998,
pp. 1-8. doi:10.1093/comjnl/31.1.1

[11] E. Merlo, “Detection of Plagiarism in University Projects
Using Metrics-Based Spectral Similarity,” Dagstuhl Semi-
nar Proceedings, Dagstuh1, Saarland, 2007.

[12] R. Zeidman, “Software Source Code Correlation,” Pro-
ceedings of the 5th IEEE/ACIS International Workshop
on Component-Based Software Engineering, Honolulu,
10-12 July 2006, pp. 383-392.
doi:10.1109/ICIS-COMSAR.2006.79

[13] R. Zeidman, “Multidimensional Correlation of Software
Source Code,” Proceedings of the 3rd International Work-
shop on Systematic Approaches to Digital Forensic En-
gineering, Oakland, 22-22 May 2008, pp. 144-156.
doi:10.1109/SADFE.2008.9

[14] H. Li, Z. J. Li, H. H. Yan and H. Xiong, “BUAA_Anti-
Plagiarism: A System to Detect Plagiarism for C Source
Code,” Proceedings of the International Conference on
Computational Intelligence and Software Engineering,
Wuhan, 11-13 December 2009, pp. 1-5.
doi:10.1109/CISE.2009.5366790

[15] U. Bandara and G. Wijayarathna, “A Machine Learning
Based Tool for Source Code Plagiarism Detection,” In-
ternational Journal of Machine Learning and Computing,
Vol. 1, No. 4, 2011, pp. 337-343.

[16] J. Hamblen and A. Parker, “Computer Algorithms for Pla-
giarism Detection,” IEEE Transactions on Education,
Vol. 32, No. 2, 1989, pp. 94-99. doi:10.1109/13.28038

[17] C. Daly and J. Horgan, “A Technique for Detecting Pla-
giarism in Computer Code,” The Computer Journal, Vol.
48, No. 6, 2005, pp. 662-666.
doi:10.1093/comjnl/bxh139

[18] S. Aliefendic, “Using Whitespace Patterns to Detect Pla-
giarism in Program Code,” School of Computer Science
and Informatics University College Dublin, Dublin, 2003.

[19] R. Zeidman, “The Software IP Detective’s Handbook:
Measurement, Comparison, and Infringement Detection,”
Prentice Hall, Boston, 2011

[20] B. Baker, “On Finding Duplication and Near-Duplication
in Large Software Systems,” Proceedings of the Second
Working Conference on Reverse Engineering, Washington
DC, 1995, pp. 86-95.

[21] I. Shay, N. Baer and R. Zeidman, “Measuring Whitespace
Patterns as an Indication of Plagiarism,” Proceedings of
the ADFSL Conference on Digital Forensics, Security
and Law, St. Paul, 20 May 2010, pp. 63-72.

[22] N. Baer and B. Zeidman, “Measuring Software Evolution
with Changing Lines of Code,” Proceedings of the 24th
International Conference on Computers and Their Ap-
plications, New Orleans, 8-10 April 2009, pp. 264-270.

Copyright © 2012 SciRes. JSEA

http://dx.doi.org/10.1093/comjnl/31.1.1
http://dx.doi.org/10.1109/ICIS-COMSAR.2006.79
http://dx.doi.org/10.1109/SADFE.2008.9
http://dx.doi.org/10.1109/CISE.2009.5366790
http://dx.doi.org/10.1109/13.28038
http://dx.doi.org/10.1093/comjnl/bxh139

