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ABSTRACT 

Efficient power consumption and energy dissipation in embedded devices and modern processors is becoming increas-
ingly critical due to the limited energy supply available from the current battery technologies. It is vital for chip archi-
tects, circuit, and processor designers to evaluate the energy per access, the power consumption and power leakage in 
register files at an early stage of the design process in order to explore power/performance tradeoffs, and be able to 
adopt power efficient architectures and layouts. Power models and tools that would allow architects and designers the 
early prediction of power consumption in register files are vital to the design of energy-efficient systems. This paper 
presents a Radial Base Function (RBF) Artificial Neural Network (ANN) model for the prediction of energy/access and 
leakage power in standard cell register files designed using optimized Synopsys Design Ware components and an UMC 
130 nm library. The ANN model predictions were compared against experimental results (obtained using detailed si-
mulation) and a nonlinear regression-based model, and it is observed that the ANN model is very accurate and outper-
formed the nonlinear model in several statistical parameters. Using the trained ANN model, a parametric study was car-
ried out to study the effect of the number of words in the file (D), the number of bit in one word (W) and the total num-
ber of Read and Write Ports (P) on the values of energy/access and the leakage power in standard cell register files. 
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1. Introduction 

Reducing the energy consumption of modern processors 
is critical to the extension of battery life time in portable 
devices. Various studies have shown that register files 
are major consumers of energy in modern processors [1- 
3]. Different architectures and techniques have been 
proposed in the literature [4-9] where the primary objec-
tive was to optimize the energy consumption of register 
files. Hence, there exists a justifiable need for the accu-
rate power modeling of these components taking into 
consideration the current nanometer processing tech-
nologies. Different modeling techniques have been dis-
cussed in the literature but mostly assuming micrometer 
technologies; a discussion of the various modeling ap-
proaches and their advantages and shortcomings can be 
found in [10,11].  

In recent years, there has been a great advancement in 
the field of ANN, both from theoretical and applications 
points of view. ANN has been used in classification, pat-
tern matching, pattern recognition, optimization and con-
trol-related problems. In electrical engineering, neural 
networks have been used to solve a wide variety of VLSI- 

related problems [12-16]. A neural network (NN) ap-
proach for modeling the time characteristics of funda-
mental gates of digital integrated circuits that include 
Iinverters, NAND, NOR, and XOR gates is discussed in 
[2]. The modeling approach presented in the article is 
technology independent, fast, and accurate, which makes 
it suitable for circuit simulators. The application of an 
artificial neural network (ANN) to the study of the nano-
scale CMOS circuits is presented in [13]. A novel me- 
thod of testing analog VLSI circuits, using wavelet trans- 
form for analog circuit response analysis and artificial 
neural networks (ANN) for fault detection is proposed in 
[14]. Power consumption using neural network of analog 
components at the system level is discussed in [15]. The 
method provides estimation of the instantaneous power 
consumption of analog blocks. In [16], the authors pro- 
posed an ANN-based approach for modeling perform- 
ance of nano-scale CMOS Inverters. The inputs to the 
network are the channel width of the PMOS and NMOS 
transistors and the load capacitor. The outputs are rise 
time and fall times of the output, inverter switching point, 
and average power consumption. 

In this work, we propose the use of neural networks in 
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modeling energy/access and leakage power of standard 
cell based register files designed using 130 nm technolo-
gies. Three parameters that influence the power con-
sumed by a register file, namely, the number of words in 
the register file (Depth), the number of bits in one word 
(Width), and the total number of Read and Write Ports 
(Port) are used as inputs to the ANN. The output pa-
rameters of the ANN are the energy/access and the leak-
age power. To the best of the authors’ knowledge this is 
the first work that attempts to create power models for 
register files using ANN. 

2. Background 

In their work, Praveen and others [10], used low level 
simulation that takes into account the layout details as 
well as detailed transistor characterization provided by a 
standard cell library to collect data on the power con-
sumption of various structures of register files. They used 
optimized Synopsys Design Ware components from the 
UMC 130 nm library to design various register files 
structures. Layouts were generated for register files with 
a varying number of ports ranging from 3 to 12, a depth 
that varies from 4 to 64 words, and a width that varies 
from 8 to 128 bits. All these combinations of register 
files were designed; patristic capacitances in the routing 
wires and gate capacitances of each transistor were ex-
tracted from the layouts. The extracted netlist was then 
simulated using ModelSim with different switching ac-
tivity factors to obtain power estimates. After completing 
over 100 register file design for the 130 nm technology 
node, the dynamic and leakage energy of each design 
was tabulated. Curve fitting was performed on each vari- 
able using register file depth, width, number of ports as 
well as the activity factor as independent input variables. 
For the designs it is assumed that each of the ports of the 
register file is driving a load of F04. To a first degree of 
approximation and to keep the problem tractable, the 
authors assumed that the energy/access scales linearly 
with the Hamming Distance between consecutive read/ 
written words. The assumption is validated using differ-
ent Hamming Distances. Equations (1) and (2) below are 
the derived model equations, where Energy/Access and 
Leakage power are the subjects of the two equations re-
spectively; the authors in [10] referred to it as the Empire 
Model. For a complete description of the steps taken to 
arrive to this model, readers are referred to [10].  

 

 

13

2

06 10 D

D P

D

HD P

 



 

 





11

13 12

14 14

14 15

16 2 14 2

Access in : 2.23 10 8.

5.89 10 3.35 10  

2.06 10 7.57 10

6.34 10 2.48 10

9.93 10 8.72 10

E J

W P

D W

W P

W P

 



 

 

  
     

     

     

     

  (1) 

       

     

  

    (2) 

In the equations above: D represents the number of 
words in the file, W represents the number of bit in one 
word, P represents the total number of ports (read and 
write), HD is the total number of bits that switch (either 
from 1 to 0 or from 0 to 1) on the data and address lines 
from one read/write cycle to another.  

To validate the curve-fitted formulae described by Equa- 
tions (1) and (2), they were compared against results ob- 
tained using low level detailed implementations. It is 
reported that the Empire models exhibit on average about 
10% error when compared to the values obtained using 
detailed simulation. 

In this work, data sets obtained from detailed simula-
tion using the power estimation framework proposed in 
[10] were used to train and test the proposed ANN model. 
The performance of the ANN model is compared with 
results obtained using Empire model, as well as power 
measurements obtained using detailed low-level design 
simulations of the register files. 

3. Neural Network Model and Architecture 

The field of Artificial Neural Networks is one of the 
main branches of artificial intelligence that found many 
applications in several engineering disciplines. ANNs are 
processing elements that are capable of learning rela-
tionships between input and output and they can be used 
for classification, prediction, clustering and function ap-
proximation, among others. Several neural network archi-
tectures with different learning algorithms such as back- 
propagation were used over the years. In general, an ANN 
consists of massive parallel computational processing 
elements (neurons) that are connected with weighted 
connections and have learning capability that simulates 
the behavior of a brain [17]. The network weights and the 
network threshold values are initially set to random val-
ues and new values of the network weights and bias val-
ues are computed during the network training phase. The 
neurons output are calculated using Equation (3) below: 

   i j ij jy F x w b               (3) 

where yi is the output of the neuron i, xj are the input of j 
neurons of the previous layer; value, wij is the neuron 
weights, bj is the bias for modeling the threshold; and F 
is the transfer or activation function [17,18]. The transfer 
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function also known as the processing element is the por-
tion of the neural network where all the computing is 
performed. The activation function maps the input do-
main (infinite) to an output domain (finite). The ANN 
Error (E) for a given training pattern i is given by Equa-
tion (4): 

validate the performance of the network by comparing its 
outputs with the values reported from the detailed simu-
lation of the register files design. Table 1 shows the 
range of maximum and minimum values of the training 
and testing data sets that is used in this study. The ranges 
of Energy/Access and Leakage Power indicate the mini-
mum and maximum values reported from detailed simu-
lation results within each selected category. Initial ran-
dom values are used for the weight of the neural network 
and different learning rates (step sizes) were used for the 
different layers of the RBF neural network. The learning 
rate used for the first and second hidden layers is 1.0 and 
for the output layer is 0.1. A momentum factor of 0.7 
was used for the model all through. The total number of 
data items used for training the neural network is 60, and 
the number of data items used for testing the neural net-
work is 20. The neural network was trained 20 times with 
2000 epochs in each training cycle and the average per-
formance was recorded. The average minimum normal-
ized mean square error (NMSE) for the training data was 
0.00045 with standard deviation of 0.00019.  
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where jO i is the output and jT  is the target. For a 
thorough discussion of neural network theory and appli-
cations readers are referred to [17].  

The Radial Basis Function (RBF) ANN together with 
the Gaussian activation function, and the Multi-Layer 
Perceptron (MLP) together with the hyperbolic tangent 
(tanh) activation function are among the most widely 
used feed-forward universal approximators. In this study 
a hybrid of these two universal approximators is used. 
Specifically, a RBF ANN topology with one additional 
hidden layer and 15 neurons (processing elements) in 
first hidden layer, and four processing element in the 
second hidden layer are used. The RBF neural network 
has a Gaussian activation function in the first hidden 
layer while the additional hidden layer has a tangent hy-
perbolic (tanh) activation function and the output layer 
has a bias axon activation function as shown in Figure 1. 
The performance of this combination of activation func-
tions for the data set used in this work proved to outper-
form the standard RBF or standard MLP, when used 
separately. 

4. Results and Discussions 

In this section we discuss results of power estimates ob-
tained using the following: 
 

As depicted in Figure 1, the neural network architec-
ture used in this study, has one input layer, two hidden 
layers and one output layer. The input layer consists of 
three nodes, mainly, the number of words in the register 
file Depth (D), the number of bits in one word Width (W), 
and the total number of Read and Write Ports (P). The 
output layer of the ANN consists of two nodes which are 
the energy/access, and the leakage power as shown.  

The data collected from the detailed simulation runs is 
divided into two categories referred to as the training data, 
and the test data. The training of the network is con- 
ducted using the training data set. The test data is used to 
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Figure 1. A multilayer RBF neural network topology. 
 

Table 1. Range of training and testing parameters. 

Training Data Testing Data 
Parameter 

Maximum Minimum Maximum Minimum 

Depth 64 4 64 4 

Width 64 8 64 8 

Ports 12 3 12 3 

Energy/Access (J) 1.38998E–10 3.14246E–13 1.70584E–11 6.77792E–13 

Leakage Power (μW) 492.5446 1.2387 107.862 3.3823 
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1) Empire Model (Empire Prediction); 
2) ANN Model (ANN Prediction); 
3) Detailed simulation-based power measurements (Ex- 

perimental Values). 
The ANN model was trained using 60 data sets, and 

for verification the trained ANN model is tested on 20 
randomly selected testing data sets. Tables 2 and 3 show 
the performance indicators of the 20 testing samples for 
the two outputs (Energy/Access and Leakage Power) 
respectively. As shown in Table 2, for the Energy/Ac- 
cess, the normalized mean square error (NMSE) obtained 
is 0.05951 and the correlation co-efficient (r) is 0.97445, 
while from Table 3 for Leakage Power, the normalized 
mean square error (NMSE) is 0.045778 and the correla-
tion coefficient is 0.9823. This indicates that the meas-
ured and the ANN predicted values correlate very well 
for both parameters. It is clear from the tabulated results 
that the ANN model outperformed the Empire model in 
all performance criteria.  

Figures 2 and 3 show the prediction and accuracy of 
the ANN model and the Empire model based on the test 
data set when compared to the detailed simulation values 
of energy/access and leakage power. The ANN predic-
tion is clearly better than the prediction computed using 
the Empire model.  

It is observed that 75% of ANN model predictions of 
the test data are within 10% of the measured values of 
energy/access compared to only 15% of Empire model 
predictions of the test data are within 10% of the meas- 
ured values of energy/access. Also, 75% of the ANN 
predictions of the test data are within 20% of the meas- 
ured values of the leakage power while only 30% of Em- 
pire model predictions of the test data are within 20% of 

Table 2. Performance of the ANN prediction of energy/ 
access on the test data. 

Performance Criterion ANN Model Empire Model

Root Mean Square Error  
(RMSE) (J) 

1.1968E–12 3.8685E–12 

Mean Absolute Error (MAE) (J) 7.556E–13 2.9502E–12 

Mean Absolute Percent Error 
(MAPE) (%) 

10.94 90.10 

Minimum Absolute Error (J) 8.123E–15 2.2498E–13 

Maximum Absolute Error (J) 3.940E–12 9.714E–12 

Normalized Mean Square Error 
(NMSE) 

0.05951 0.62173 

Correlation Coefficient (r) 0.97445 0.86255 

 
Table 3. Performance of the ANN prediction of leakage 
power on the test data. 

Performance Criterion ANN Model Empire Model

Root Mean Square Error (RMSE) 
(μW) 

6.59782 9.77937 

Mean Absolute Error (MAE) (μW) 4.579615 7.61819 

Mean Absolute Percent Error 
(MAPE) (%) 

17.29 50.09 

Minimum Absolute Error (μW) 0.31224 0.41176 

Maximum Absolute Error (μW) 17.294355 21.39266 

Normalized Mean Square Error 
(NMSE) 

0.045778 0.100572 

Correlation Coefficient (r) 0.982399 0.952308 
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Figure 2. Prediction and accuracy of energy/access using test data. 
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the measured values of leakage power. Furthermore, 
some of Empire predictions have relative percent error 
well above 100%.  

5. Parametric Study 

To further compare the performance of the Empire model 
and the ANN model in predicting the Energy/Access and 
the Leakage Power, we varied the input parameters (width, 
ports, and depth) and computed the resulting outputs. 
Figures 4 and 5 depict comparative plots showing the  

predictions of energy and power respectively. From Fig-
ure 4(a), Empire seems to overestimate the Energy/Ac- 
cess prediction for wider designs with relatively fewer 
ports since from Figure 4(b), the estimates of both mod-
els for 32 ports is closer. Similar overestimates occurred 
when the number of ports and depth is varied (Figures 
4(d) and 4(e)). Interestingly from Figure 4(f), the Em-
pire model underestimated the energy per access in the 
case of wider and deeper designs. 

From the plots of Figure 5, the performance of the two  
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Figure 3. Prediction and accuracy of leakage power of test data. 
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Figure 5. Comparison of leakage power for selected register files. 

 
models for the tested instances was comparable with the 
ANN model underestimating in three instances (Figures 
5(a), 5(d) and 5(e)). Although Empire performance seem 
to be better in these instances, however, for 20 randomly 
selected test cases, the overall performance of ANN 
model was better in as demonstrated by the several per-
formance criteria shown in Table 3.  

From the aforementioned analysis of results and vali-
dation of the ANN model, it is evident that the proposed 
ANN model can be used to provide designers with rep-
resentative estimates of the energy/access and the leak-
age power of a perceived register file design before  
committing to silicon. The energy/access and the leakage 
power are shown in Figures 6 and 7 for all the register 
file designs used in this study assuming 130 nm technol-
ogy and a supply voltage of 1.2 V. 

6. Conclusions 

Register Files are becoming a major source of power 
dissipation in processor cores impacting the limited en-
ergy budget provided by batteries in portable devices. It 
is impractical to delay design decisions that impact the 
power consumption of a processor till the back-end de-
sign phase. It is becoming imperative that designers 
should be able to explore architectural tradeoffs at an 
early stage of the design cycle.  

In this paper, we proposed a novel neural network 
model for estimating energy and leakage power in regis-
ter files. The model is simple and efficient and can be 
used to provide estimates that are close to those expected 
when detailed and time consuming simulation is per-
formed. The model is validated by comparing its results  

 

Figure 6. ANN model energy/access for all ports. 
 

 

Figure 7. ANN model leakage power for all ports. 
 
to those produced by low level simulation, as well as by 
comparing it to the recently reported Empire model [10]. 
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