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ABSTRACT

Tool wear state classification has good potential to play a critical role in ensuring the dimensional accuracy of the work
piece and prevention of damage to cutting tool in machining process. During machining process, tool wear is an impor-
tant factor which contributes to the variation of spindle motor current, speed, feed and depth of cut. In the present work,
on-line tool wear state detecting method with spindle motor current in turning operation for Al/SiC composite material
is presented. By analyzing the effects of tool wear as well as the cutting parameters on the current signal, the models on
the relationship between the current signals and the cutting parameters are established with partial design taken from
experimental data and regression analysis. The fuzzy classification method is used to classify the tool wear states so as

to facilitate defective tool replacement at the proper time.
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1. Introduction

The development of an effective means to monitor the
wear condition of cutting tools is one of the most impor-
tant issues in the automation of the cutting process [1].
The consequences of non detection of tool failure may
result in a poor quality of product and damage to the
work piece or machine [2-4]. Many researchers have
looked for ways to detect tool wear states. A large variety
of sensors can be used for tool condition sensing. But
only a few are reliable and effective. Direct measurement
of tool wear using optical methods can be applied only
when the tool is not in contact with the workpiece [5].
Indirect methods that rely on the relationship between
tool states and measured signals to estimate the tool wear
states have been extensively studied. Among the used
sensors for monitoring tool condition, motor current
sensing constitutes a major method (X. L. Li and S. K.
Tso, [6] and Mannan et al., [7] described the feasibility
of motor power and motor current sensing for adaptive
control and tool condition monitoring. Mannan and
Nilsson [8] presented a method using motor current
measured from the spindle motor and feed motor to esti-
mate the static torque and thrust in drilling and then to
monitor the tool condition. The major advantage of using
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the measurement of motor current to detect any malfunc-
tion in the cutting process is that the measuring apparatus
does not disturb the machining process. Moreover it can
be applied in the manufacturing environment at almost
no extra cost [9].

Most of the indirect approaches have been developed
for fixed cutting conditions. In practical applications,
however the cutting conditions are not fixed. The spindle
speed and feed rate might change according to control
strategies. Therefore wear estimation strategy that oper-
ates under varying cutting conditions is much needed
[10]. A successful monitoring system can effectively
maintain machine tools, cutting tool and work piece. Re-
search to date has shown that there are four parameters
including cutting force, acoustic emission, motor current
and vibration, which could be used to monitor tool, wear
condition during turning operation.

Regression is a statistical tool used to find relationship
between variables for the purpose of predicting future
values. Regression and correlation are introduced as
techniques for describing and summarizing data consist-
ing of observation on a dependent or response variable Y
and one or more independent variables. The coefficient
of determination R* describes what proportion of total
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variation in observed Y values can be contributed to this
relation [11].

It is very important to develop a reliable and inexpen-
sive intelligent monitoring system for use in cutting proc-
esses. A successful monitoring system can effectively
maintain machine tools, cutting tools and workpiece [12].
Artificial Neural Network (ANN) can approximate con-
tinuous nonlinear functions well, and it is based on the
mathematical principles and models of biological neu-
rons and the nervous system. ANN has recently been
applied to tool wear monitoring by some researchers. Q.
Liu and Y. Altintas [13] have designed Multi-layer
feed-forward neural network using force ratio, cutting
speed and feed as input variables and flank wear as out-
put response in turning operation. Y. X. Yao et al., [14]
have proposed a new method for tool wear detection with
different cutting conditions and detected signals which
includes the model of wavelet fuzzy neural network with
acoustic emission (AE) and the model of fuzzy classifi-
cation with motor current.

In the present study, the current of the spindle motor is
used to estimate the flank wear state. The current de-
pends on the cutting parameters Viz the spindle speed (v),
the feed rate (f), and depth of cut (d), as well as its wear
(V). This paper implements a method for on-line estima-
tion of flank wear from the currents measured using re-
gression technology and a fuzzy classification method
over a wide range of cutting conditions. The essence of
the method is to establish a simple model relating the
measured current value and the flank wear state under
different cutting conditions. Based on the model, the tool
wear states can then be estimated from the knowledge of
the cutting parameters and the motor current signal. Ac-
cording to the tool wear states obtained, the decision
about tool replacement can be made.

2. Experimentation on Metal Cutting
Process

The essence of the method is to establish a simple model
relating the measured current value and the flank wear
state under different cutting conditions. Experiments are
carried out in a Computer Numerical Control (CNC)
lathe using K10 cemented carbide tool. The work piece
material used for the experiment is LM25 Al (Alumin-
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ium)/10% SiC,, (Silicon Carbide) particulate reinforced
composite material prepared through stir casting. The
cutting conditions used for experimentation are listed in
Tablel.

Cutting tests are performed on a (CNC) Lathe driven
by Permanent Magnet Direct Current (PMDC) motor. A
PMDC motor is similar to an ordinary DC shunt motor
except that its field is provided by permanent magnet
instead of salient pole wound field structure. In such
motors torque is produced by interaction between the
axial current carrying conductors and the magnetic flux
produced by the permanent magnets. The DC motor cur-
rent of the lathe is measured. A personal computer is
interfaced with the turning lathe. The cutting conditions
are provided as data to the computer and the cutting op-
eration is performed automatically. Figure 1 to Figure 3
show the scanning electron microscopy images of worn
out tool in different cutting conditions with varying in-
tensity of wear.

Figure 1. Wear at v =250 rpm, f = 1.1 mm/rev and d = 0.8
mm.

e

Figure 2. Wear at v= 740 rpm, f = 1.1 mm/rev and d = 0.8
mm.

Table 1. Experimental conditionsfor metal cutting process.

Spindle speed
Feed rates
Cutting conditions
Depth of cut
Flank wear
Work piece

Cutting tool

250, 740 and 1150 rpm

0.05 and 1.07 mm/rev

0.5,0.75 and 1.0 mm
0.3,0.4,0.5,0.6,0.7,0.8 and 0.9 mm

Al +10% of SiC particulate reinforced composite material

K10 cemented carbide

Copyright © 2012 SciRes.
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Figure 3. Wear at v=740 rpm, f = 1.1 mm/rev and d = 1
mm.

Experiments are conducted for various sets of cutting
conditions that include spindle speed, feed rate and depth
of cut. For each set of cutting conditions, machining is
done starting with a fresh tool inserted continuing until
the tool worn out A total of 56 tool wear cutting tests are
conducted under different cutting conditions, 35 sample
data are randomly selected and used as learning samples
as shown in Table 2.

The remaining 21 samples are used as the test samples
in the classification phase as illustrated in Table 3.

3. Prediction of Flank Wear Using
Regression Analysis and Fuzzy
Classification

Regression analysis is a statistical forecasting model that
is concerned with describing and evaluating the relation-
ship between a given variable usually called dependent
variable and one or more other variables known as the
independent variables. In the present work, a regression
method is used to determine the model for the spindle
motor current as a function of the spindle speed v (rpm),
feed rate f (mm/rev) and depth of cut d (mm). The model
was approximately modified so as to describe the flank
wear states W; such as 0.30, 0.40, 0.50, 0.60, 0.70, 0.80
and 0.90 (mm) for i=1,---,7. For different values of
cutting conditions the current values are noted experi-
mentally and the corresponding wear values are noted at
particular time intervals.

The effect of the cutting variables v, f, and d on the
current signals, for a sharp tool can be represented by the
following equation:

| = K,V f22d® (1)

where | is the current and K, depends on the tool geome-
try and work piece material. Taking the logarithmic value
of | for differ rent tool wear values, the spindle motor
current § where i=1,---,7 denotes the respective wear
values and are given by

S=a,+4,Inv+a,Inf +a,Ind
S =a,+a,nv+a,Inf+a,Ind

w; =0.3 mm (2)
W, = 0.4 mm (3)
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Table 2. Experimental cutting conditions and current sig-
nals.

Feed rate Depth of cut Flank wear ~ Spindle motor
(mm/rev) (mm) (mm) current (mA)
0.05 0.75 0.3 892
1.07 0.75 0.3 956
1.07 0.5 0.3 968
1.07 0.75 0.3 1094
1.07 1 0.3 1126
0.05 0.75 0.4 934
1.07 0.75 0.4 982
1.07 0.5 0.4 986
1.07 0.75 0.4 1173
1.07 1 0.4 1227
0.05 0.75 0.5 968
1.07 0.75 0.5 1004
1.07 0.5 0.5 1027
1.07 0.75 0.5 1228
1.07 1 0.5 1255
0.05 0.75 0.6 985
1.07 0.75 0.6 1027
1.07 0.5 0.6 1042
1.07 0.75 0.6 1249
1.07 1 0.6 1284
0.05 0.75 0.7 1007
1.07 0.75 0.7 1045
1.07 0.5 0.7 1085
1.07 0.75 0.7 1293
1.07 1 0.7 1304
0.05 0.75 0.8 1021
1.07 0.75 0.8 1068
1.07 0.5 0.8 1104
1.07 0.75 0.8 1312
1.07 1 0.8 1338
0.05 0.75 0.9 1058
1.07 0.75 0.9 1116
1.07 0.5 0.9 1163
1.07 0.75 0.9 1372
1.07 1 0.9 1415

S =a;+a;Inv+a,;Inf+a;Ind ws= 0.5 mm (4)

S, =a,+a,Inv+a,Inf+a,Ind
S =a,+a;Inv+a,Inf+a,lnd

w,; = 0.6 mm (5)
Ws = 0.7 mm (6)

S, =a,+a,Inv+a,lnf+a,nd  W;=0.8 mm (7)
S =a,+a,Inv+a,,Inf+a,Ind w; = 0.9 mm (8)
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Table 3. Experimental cutting conditions and current sig-
nalsfor test cases.

Cutting Feed rate Depth of cut Flank wear Spindle motor
speed (rpm)  (mmirev) (mm) (mm) current (mA)
1150 0.05 1 0.3 997
740 1.07 0.5 0.3 968
250 1.07 0.75 0.3 956
740 0.05 0.5 0.4 801
1150 1.07 0.75 0.4 1173
740 1.07 1 0.4 1227
250 0.05 0.75 0.5 814
740 1.07 0.5 0.5 1027
1150 0.05 1 0.5 1123
740 1.07 0.75 0.6 1189
740 0.05 0.5 0.6 846
1150 1.07 0.75 0.6 1249
250 1.07 1 0.7 1136
740 0.05 0.75 0.7 1007
1150 1.07 0.75 0.7 1293
740 0.05 0.75 0.8 1021
250 1.07 0.5 0.8 934
740 1.07 0.5 0.8 1104
1150 0.05 1 0.9 1232
740 1.07 0.5 0.9 1163
250 1.07 0.75 0.9 1116

The actual models derived from the experimental data
become

S =511.1558+92.0064 xInv+54.0223 x1n f

+226.5482xInd W, =0.3 mm, R* =0.995 ©
S, =357.9337 +127.4543xInv+61.6012xIn f 10
+345.6559xInd w, =0.4 mm, R* =0.994
S, =287.3501+146.0524 xInv+63.2407 xIn f m
+392.5424xInd W, = 0.5 mm, R* = 0.999
S, =321.3647 +145.1459xInv+65.0159 x In f )
+349.4221xInd w, =0.6 mm, R* =0.999
S, =243.7464 +160.4426 x In v+ 68.5357 x In f 3)
+317.7824xInd w, = 0.7 mm, R =0.996
S, =278.1798 +159.7316 x Inv+71.8728 x In f 14
+337.7303xInd w, = 0.8 mm, R* =0.999
S, =274.2301+170.8532x Inv+80.5139 xIn f 1s)

+360.8119xInd w, =0.9 mm, R* =0.993
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where R’ is the correlation coefficient obtained in the
regression analysis. It is observed that the correlation
coefficients are very close to unity, and the relationship
between the current signals and the cutting parameters is
reasonably well represented by the proposed models for
different tool wear states.

Figure 4 shows the effect of depth of cut on the cur-
rent signals. It is found that current signal increases as
the depth of cut increases, with almost linear relationship.
Figure 5 shows the effect of the feed rate on the current
signal. Current signal increases as the feed rate increases.
The reason for the condition is complex and is discussed
by Shaw [15]. Figure 6 shows the main effect of the
spindle speed on the current signal. It is found that cur-
rent signals increases with quadratic relation as the speed
in increases. Figure 7 shows the effect of tool wear on
the current signals. Spindle motor current increases ex-
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Figure 4. Effect of depth of cut on current signal.

880 ‘ . .
860

840

820

800+
780+

760

Spindle Motor Current (mA)

740

720

700 i 1 i
0 02 04 06 08 1 1.2 14
Feed rate (mm/rev)

Figure5. Effect of feed rate on current signal.
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Figure 6. Effect of spindle speed on current signal.
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Figure 7. Effect of wear on current signal.

ponentially as tool wear increase with an almost incre-
mental relationship. It is found that the tool wear has
more significant effect on the spindle motor current.
Based on above studies, it is seen that the tool wear,
spindle speed, feed rate, dept of cut and current signals
are related. The spindle motor current can be selected as
a function of wear states in turning, taking into account
the cutting parameters.

It has been recognized widely that the tool life can be
divided into three phases characterized by three different
wear processes, 1) break in, 2) normal wear and 3) ab-
normal or catastrophic wear. The sudden rise in the wear
rate observed during the abnormal tool wear phase is of
interest here as an indication of the need for tool re-
placement. Because many factors affect tool wear, the
tool wear curve usually fluctuates and is not smooth. The
current signal models for the different wear states (flank
wear = 0.3---0.9 mm) are established. The models can
then be used to estimate the tool wear state from meas-
ured current signals, and other cutting parameters. Thirty-
five experimental results were used for the development
of regression models (Table 2). Twenty-one additional
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tests were conducted to examine the feasibility of using
these models to estimate the tool wear state as in Table 3.
Table 4 shows the comparison of the measured and es-
timated spindle current using Equations (9)-(15) respec-
tively.

The measured current and estimated currents are de-
fined as real feature values (§)) and estimated feature
values (S) (where i=1,---,7), respectively. § values
are compared in turn with the estimated feature values
for different wear states (0.3:--:0.9 mm) in order to
evaluate the degree of similarity between the real wear
state to any of the estimated wear state.

For the spindle motor current, the following member-
ship functions g are established

DIfS<S(i=1L---,7)then

Hg (So):1
Hs, (SJ):xUs,3(Sci):/“s,4 (S)):/“s5 (S))

(16)
= s () =15 (S)=0
2)IfS < S<S then
5 (8)=370 e (S)=gmg
ﬂ%(%):ﬂs4(%):ﬂss(st)):ﬂsﬁ(sb) a17)
:ﬂs7(sb):0
3)If S < S< S then
ts (S) =15, (S) = 115, () = 11, (S) = 145, () = 0
_3-S _S5-S 18
ts, (S) s s Hs, (S) s s (18)
4)IfS, < < S then
ts (S) =15, (S) = 115, () = 11, (S) = 115, () = 0
S — -
ﬂ%(so)=s“_§: us4(80)=§_2 (19)
S)If§ < §< S then
ts (S) =15, (S) = 115, () = 145, (S)) = 125, (S) =0
- -s
ﬂs4(3)):§_§b ﬂsS(S)):SS_S4 (20)
6) If S < §< § then
ﬂsl(S))::usz(S)):;U%(S)):/JQ(%):/J&(S)):O
p(8)-3-0  m(S)=3=g e
T If §<S< S then

/Usl(S))::usz (S)):;U% (S)):/JQ(%):,U% (S)):O
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Estimated current (mA)

Test Measured current (mA) ()

(S) (S) (S) (S) (S) (S)
1 997 997.7 1089.6 1127.2 1149.5 1169.2 1188.6 1237.1
2 968 965.6 982.6 1028.1 1042.5 1088.1 1104.2 1158.3
3 956 957.6 984.4 1003.2 1026.7 1042.8 1067.8 1119.2
4 801 800.1 793.8 834.4 843.3 878.1 884.1 911.7
5 1173 1098.1 1178.9 1226.1 1248.2 1287.7 1311.6 1380.0
6 1227 1122.7 1222.1 1256.5 1284.7 1308.4 1338.3 1408.4
7 814 792.2 795.7 809.5 827.5 832.9 847.7 872.6
8 1027 965.6 982.6 1028.1 1042.5 1088.1 1104.2 1158.3
9 1123 997.7 1089.6 1127.2 1149.5 1169.2 1188.6 1237.1
10 1189 1057.5 1122.7 1161.7 1184.2 1217.0 1241.2 1304.6
11 846 800.1 793.8 834.4 843.3 878.1 884.1 911.7
12 1249 1098.1 1178.9 1226.1 1248.2 1287.7 1311.6 1380.0
13 1136 1022.8 1083.8 1098.1 1127.2 1134.3 1165.0 1223.0
14 1007 892.0 934.0 968.0 985.0 1007.0 1021.0 1058.0
15 1293 1098.1 1178.9 1226.1 1248.2 1287.7 1311.6 1380.0
16 1021 892.0 934.0 968.0 985.0 1007.0 1021.0 1058.0
17 934 865.8 844.2 869.6 885.0 914.0 930.9 972.9
18 1104 965.6 982.6 1028.1 1042.5 1088.1 1104.2 1158.3
19 1232 997.7 1089.6 1127.2 1149.5 1169.2 1188.6 1237.1
20 1163 965.6 982.6 1028.1 1042.5 1088.1 1104.2 1158.3
21 1116 957.6 984.4 1003.2 1026.7 1042.8 1067.8 1119.2
e (%):—3_2 e, (S)= 2_3 @)

) IfS>S(i=1,---,7) then
Hg (S))::usz (S))::u% (S)):ﬂs4 (S)
=45 () =15, (S)=0

Hs, (S)):l

where g (SO) is the membership degree of current
associated with the i tool wear state.

The key to the fusion of tool wear states is the selec-
tion of appropriate shapes of fuzzy membership function
for process variables based on experimental results. Fig-
ure 8 shows the trapezoidal membership function of tool
wear states. The reason for choosing trapezoidal shape
for tool wear states is that it is difficult to quantify an
exact wear value.

Using a wider range avoids defining an exact wear

~—

(23)

value for a certain level of linguistic variable of tool wear.

This will also allow an easy knowledge acquisition when
developing a set of fuzzy rules for fuzzy inference. Based
on the classification of tool wear states, the trapezoidal
function is defined as follows [16].

u(w)=aw+b, k<w<l| (24)

Copyright © 2012 SciRes.
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Figure 8. Fuzzy member ships of tool wear state.

where p(w) is the fuzzy membership value for tool
wear states, and a, b, k and | are constants for different
fuzzy sets. The constants of fuzzy membership of tool
wear conditions under the A, B, C, D, E, F and G classi-
fication are shown in Table5.

The outputs of the inference are still fuzzy values and
they need to be defuzzified. Basically defuzzification is a
mapping from a space of fuzzy values into that of the
non-fuzzy universe. At present there are several strate-
gies that can be used to perform the defuzzification proc-
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Table 5. Constants of fuzzy membership functions for tool
wear condition.

Tool wear Constants of fuzzy functionsfor tool wear condition
classification a B K I

A 0 1 0 0.25
20 6 0.25 0.3

20 -5 0.25 0.3

B 0 1 0.3 0.35
20 8 0.35 0.4

20 -7 0.35 0.4

C 0 1 0.4 0.45
20 10 0.45 0.5

20 -9 0.45 0.5

D 0 1 0.5 0.55
20 12 0.55 0.6

20 —11 0.55 0.6

E 0 1 0.6 0.65
20 14 0.65 0.7

20 -13 0.65 0.7

F 0 1 0.7 0.75
20 16 0.75 0.8

G 20 -15 0.75 0.8
0 1 0.8 0.9

ess. The most commonly used method is centroid method
of defuzzification which produces the center of area of

ET AL.

the possibility distribution of inference output.
Therefore the defuzzified tool wear states can be ob-
tained by using the formula

J 4 (w)wdw
Wear =*——— 25
f p(w)dw )
w
where wear represents the numerical value of tool wear
states and fuzzy membership degree fused by fuzzy in-
ference.

The membership degree of tool wear state with spindle
current ug(W) where i=A,B---G is calculated using
fuzzy classification method. The membership degrees of
tool wear states are shown in Table 6.

4. Results and Discussion

A total of 55 tool wear cutting tests were conducted un-
der various cutting conditions. 35 samples were randomly
picked as learning samples and 21 samples were used as
the test samples in the classification phase. The above
method is used to estimate the tool wear value. The
membership degrees of present tool states under different
tool wear classification are calculated which is used by
fuzzy inference.

Based on studies, it is suggested that the effects of tool

Table 6. Member ship degrees of tool wear states (test cases).

Membership degree

Sl. No.

Estimated wear value

s Hs Hs Hs, Hs He, Hs, (mm)
1 1.000 0 0 0 0 0 0 0.300
2 0.858 0.141 0 0 0 0 0 0314
3 1.000 0 0 0 0 0 0 0.300
4 0 0.822 0.177 0 0 0 0 0.417
5 0.073 0.927 0 0 0 0 0 0.392
6 0 0.857 0.142 0 0 0 0 0.414
7 0 0 0.750 0 0 0 0 0.525
8 0 0.024 0.975 0.250 0 0 0 0.497
9 0 0.111 0.888 0 0 0 0 0.488
10 0 0 0 0 0.146 0 0 0.614
11 0 0 0 0.853 0.077 0 0 0.607
12 0 0 0 0.922 0.020 0 0 0.602
13 0 0 0 0.979 0.944 0.055 0 0.705
14 0 0 0 0 1.000 0 0 0.700
15 0 0 0 0 0.778 0.221 0 0.722
16 0 0 0 0 0 1.000 0 0.800
17 0 0 0 0 0 0.926 0.073 0.807
18 0 0 0 0 0.0124 0.987 0 0.798
19 0 0 0 0 0 0.105 0.894 0.889
20 0 0 0 0 0 0 1.000 0.900
21 0 0 0 0 0 0.062 0.937 0.893

Copyright © 2012 SciRes. MNSMS
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Table 7. Classification of tool wear in turning.

Classification A B C

D E F G

Tool wear value (mm) 0-03 0.25-0.4 0.35-0.5

0.45-0.6 0.55-0.7 0.65-0.8 0.75-0.9

wear, spindle speed, feed rate and depth of cut should be
taken in to account when modeling current signals. In the
present work, the tool wear values are divided into A, B,
C, D, E, F & G classification as shown in Table 7. One
of the main objectives of detecting the tool wear state is
to obtain a basis for replacing tools. During practical
application a noticeable changes of the tool wear states
has been examined. According to the estimated tool wear
state, a decision can be made if the tool should be re-
placed. The above method gives the tool wear state ac-
cording to previously collected data and test results. For
turning operation, monitoring can be conducted by cal-

culating the membership grade of the current observation.

The tool replacement decision is made when the grade of
wear in the current observation exceeds a certain thresh-
old as 0.9. For the present study, the rule for replacement
is suggested as follows:

“If the grade of membership ug for the spindle motor
current is greater than 0.9 mm then replace the tool”.
Figure 9 shows the comparison between measured and
predicted values of Tool wear.

5. Conclusion

The effects of tool wear and cutting parameters on the
spindle motor is analyzed. The model which shows the
relationship between the current signals and cutting pa-
rameters for different tool wear states (0.3 to 0.9) are
established through experimental study and regression
analysis. The membership function concept has been
successfully used to calculate the grade of membership
for given wear states and applied to the monitoring of
tool wear state. The grade of membership associated with

1
0.9 .
0.8 i .
0.7 1
0.6 .

05 & =l

Estimated wear (mm)

0.4 : 4

0.3 1

0.2 : ‘ : ‘
02 03 04 05 06 07 0.8 09 1
Measured wear (mm)

Figure 9. Comparison between measured and predicted val-
ues of tool wear using fuzzy classification method.

Copyright © 2012 SciRes.

the relevant flank wear is always very close to unity
based on the established models. This indicates that the
method is acceptable. The control of tool replacement
requires the recognition of the tool wear state associated
with the cutting parameter including spindle speed and
feed rate, which may change according to the control
strategies. The use of the grades of membership for the
tool wear state provides a scientific basis for controlling
the tool replacement. The method is applicable to the
choice of any desired threshold of wear according to the
quality standard adopted.
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