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ABSTRACT 

Tool wear state classification has good potential to play a critical role in ensuring the dimensional accuracy of the work 
piece and prevention of damage to cutting tool in machining process. During machining process, tool wear is an impor- 
tant factor which contributes to the variation of spindle motor current, speed, feed and depth of cut. In the present work, 
on-line tool wear state detecting method with spindle motor current in turning operation for Al/SiC composite material 
is presented. By analyzing the effects of tool wear as well as the cutting parameters on the current signal, the models on 
the relationship between the current signals and the cutting parameters are established with partial design taken from 
experimental data and regression analysis. The fuzzy classification method is used to classify the tool wear states so as 
to facilitate defective tool replacement at the proper time. 
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1. Introduction 

The development of an effective means to monitor the 
wear condition of cutting tools is one of the most impor- 
tant issues in the automation of the cutting process [1]. 
The consequences of non detection of tool failure may 
result in a poor quality of product and damage to the 
work piece or machine [2-4]. Many researchers have 
looked for ways to detect tool wear states. A large variety 
of sensors can be used for tool condition sensing. But 
only a few are reliable and effective. Direct measurement 
of tool wear using optical methods can be applied only 
when the tool is not in contact with the workpiece [5]. 

Indirect methods that rely on the relationship between 
tool states and measured signals to estimate the tool wear 
states have been extensively studied. Among the used 
sensors for monitoring tool condition, motor current 
sensing constitutes a major method (X. L. Li and S. K. 
Tso, [6] and Mannan et al., [7] described the feasibility 
of motor power and motor current sensing for adaptive 
control and tool condition monitoring. Mannan and 
Nilsson [8] presented a method using motor current 
measured from the spindle motor and feed motor to esti-
mate the static torque and thrust in drilling and then to 
monitor the tool condition. The major advantage of using 

the measurement of motor current to detect any malfunc-
tion in the cutting process is that the measuring apparatus 
does not disturb the machining process. Moreover it can 
be applied in the manufacturing environment at almost 
no extra cost [9]. 

Most of the indirect approaches have been developed 
for fixed cutting conditions. In practical applications, 
however the cutting conditions are not fixed. The spindle 
speed and feed rate might change according to control 
strategies. Therefore wear estimation strategy that oper- 
ates under varying cutting conditions is much needed 
[10]. A successful monitoring system can effectively 
maintain machine tools, cutting tool and work piece. Re- 
search to date has shown that there are four parameters 
including cutting force, acoustic emission, motor current 
and vibration, which could be used to monitor tool, wear 
condition during turning operation.  

Regression is a statistical tool used to find relationship 
between variables for the purpose of predicting future 
values. Regression and correlation are introduced as 
techniques for describing and summarizing data consist- 
ing of observation on a dependent or response variable Y 
and one or more independent variables. The coefficient 
of determination R2 describes what proportion of total 
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variation in observed Y values can be contributed to this 
relation [11]. 

It is very important to develop a reliable and inexpen- 
sive intelligent monitoring system for use in cutting proc- 
esses. A successful monitoring system can effectively 
maintain machine tools, cutting tools and workpiece [12]. 
Artificial Neural Network (ANN) can approximate con- 
tinuous nonlinear functions well, and it is based on the 
mathematical principles and models of biological neu- 
rons and the nervous system. ANN has recently been 
applied to tool wear monitoring by some researchers. Q. 
Liu and Y. Altintas [13] have designed Multi-layer 
feed-forward neural network using force ratio, cutting 
speed and feed as input variables and flank wear as out-
put response in turning operation. Y. X. Yao et al., [14] 
have proposed a new method for tool wear detection with 
different cutting conditions and detected signals which 
includes the model of wavelet fuzzy neural network with 
acoustic emission (AE) and the model of fuzzy classifi-
cation with motor current.  

In the present study, the current of the spindle motor is 
used to estimate the flank wear state. The current de- 
pends on the cutting parameters viz, the spindle speed (v), 
the feed rate (f), and depth of cut (d), as well as its wear 
(Vb). This paper implements a method for on-line estima- 
tion of flank wear from the currents measured using re- 
gression technology and a fuzzy classification method 
over a wide range of cutting conditions. The essence of 
the method is to establish a simple model relating the 
measured current value and the flank wear state under 
different cutting conditions. Based on the model, the tool 
wear states can then be estimated from the knowledge of 
the cutting parameters and the motor current signal. Ac- 
cording to the tool wear states obtained, the decision 
about tool replacement can be made.  

2. Experimentation on Metal Cutting  
Process 

The essence of the method is to establish a simple model 
relating the measured current value and the flank wear 
state under different cutting conditions. Experiments are 
carried out in a Computer Numerical Control (CNC) 
lathe using K10 cemented carbide tool. The work piece 
material used for the experiment is LM25 Al (Alumin-  

ium)/10% SiCp (Silicon Carbide) particulate reinforced 
composite material prepared through stir casting. The 
cutting conditions used for experimentation are listed in 
Table 1. 

Cutting tests are performed on a (CNC) Lathe driven 
by Permanent Magnet Direct Current (PMDC) motor. A 
PMDC motor is similar to an ordinary DC shunt motor 
except that its field is provided by permanent magnet 
instead of salient pole wound field structure. In such 
motors torque is produced by interaction between the 
axial current carrying conductors and the magnetic flux 
produced by the permanent magnets. The DC motor cur- 
rent of the lathe is measured. A personal computer is 
interfaced with the turning lathe. The cutting conditions 
are provided as data to the computer and the cutting op- 
eration is performed automatically. Figure 1 to Figure 3 
show the scanning electron microscopy images of worn 
out tool in different cutting conditions with varying in- 
tensity of wear.  

 

Figure 1. Wear at v = 250 rpm, f = 1.1 mm/rev and d = 0.8 
mm. 

 

Figure 2. Wear at v = 740 rpm, f = 1.1 mm/rev and d = 0.8 
mm. 

Table 1. Experimental conditions for metal cutting process. 

Spindle speed 250, 740 and 1150 rpm 

Feed rates 0.05 and 1.07 mm/rev 

Depth of cut 0.5, 0.75 and 1.0 mm 
Cutting conditions 

Flank wear 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 mm 

Work piece Al +10% of SiC particulate reinforced composite material 

Cutting tool K10 cemented carbide 
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Figure 3. Wear at v = 740 rpm, f = 1.1 mm/rev and d = 1 
mm. 

Experiments are conducted for various sets of cutting 
conditions that include spindle speed, feed rate and depth 
of cut. For each set of cutting conditions, machining is 
done starting with a fresh tool inserted continuing until 
the tool worn out A total of 56 tool wear cutting tests are 
conducted under different cutting conditions, 35 sample 
data are randomly selected and used as learning samples 
as shown in Table 2.  

The remaining 21 samples are used as the test samples 
in the classification phase as illustrated in Table 3. 

3. Prediction of Flank Wear Using  
Regression Analysis and Fuzzy  
Classification 

Regression analysis is a statistical forecasting model that 
is concerned with describing and evaluating the relation- 
ship between a given variable usually called dependent 
variable and one or more other variables known as the 
independent variables. In the present work, a regression 
method is used to determine the model for the spindle 
motor current as a function of the spindle speed v (rpm), 
feed rate f (mm/rev) and depth of cut d (mm). The model 
was approximately modified so as to describe the flank 
wear states wi such as 0.30, 0.40, 0.50, 0.60, 0.70, 0.80 
and 0.90 (mm) for . For different values of 
cutting conditions the current values are noted experi- 
mentally and the corresponding wear values are noted at 
particular time intervals. 

1, ,7i  

The effect of the cutting variables v, f, and d on the 
current signals, for a sharp tool can be represented by the 
following equation: 

1 2 3
0

a a aI K v f d              (1) 

where I is the current and K0 depends on the tool geome- 
try and work piece material. Taking the logarithmic value 
of I for differ rent tool wear values, the spindle motor 
current Si where  denotes the respective wear 
values and are given by 

1, ,7i  

1 01 11 21 31ln ln lnS a a v a f a d        w1 = 0.3 mm (2) 

2 02 12 22 32ln ln lnS a a v a f a d       w2 = 0.4 mm (3) 

Table 2. Experimental cutting conditions and current sig- 
nals. 

Feed rate 
(mm/rev) 

Depth of cut 
(mm) 

Flank wear 
(mm) 

Spindle motor 
current (mA)

0.05 0.75 0.3 892 

1.07 0.75 0.3 956 

1.07 0.5 0.3 968 

1.07 0.75 0.3 1094 

1.07 1 0.3 1126 

0.05 0.75 0.4 934 

1.07 0.75 0.4 982 

1.07 0.5 0.4 986 

1.07 0.75 0.4 1173 

1.07 1 0.4 1227 

0.05 0.75 0.5 968 

1.07 0.75 0.5 1004 

1.07 0.5 0.5 1027 

1.07 0.75 0.5 1228 

1.07 1 0.5 1255 

0.05 0.75 0.6 985 

1.07 0.75 0.6 1027 

1.07 0.5 0.6 1042 

1.07 0.75 0.6 1249 

1.07 1 0.6 1284 

0.05 0.75 0.7 1007 

1.07 0.75 0.7 1045 

1.07 0.5 0.7 1085 

1.07 0.75 0.7 1293 

1.07 1 0.7 1304 

0.05 0.75 0.8 1021 

1.07 0.75 0.8 1068 

1.07 0.5 0.8 1104 

1.07 0.75 0.8 1312 

1.07 1 0.8 1338 

0.05 0.75 0.9 1058 

1.07 0.75 0.9 1116 

1.07 0.5 0.9 1163 

1.07 0.75 0.9 1372 

1.07 1 0.9 1415 

 

3 03 13 23 33ln ln lnS a a v a f a d        w3= 0.5 mm (4) 

4 04 14 24 34ln ln lnS a a v a f a d       w4 = 0.6 mm (5) 

5 05 15 25 35ln ln lnS a a v a f a d       w5 = 0.7 mm (6) 

6 06 16 26 36ln ln lnS a a v a f a d       w6 = 0.8 mm (7) 

7 07 17 27 37ln ln lnS a a v a f a d       w7 = 0.9 mm (8) 
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Table 3. Experimental cutting conditions and current sig- 
nals for test cases. 

Cutting 
speed (rpm) 

Feed rate 
(mm/rev) 

Depth of cut 
(mm) 

Flank wear 
(mm) 

Spindle motor 
current (mA)

1150 0.05 1 0.3 997 

740 1.07 0.5 0.3 968 

250 1.07 0.75 0.3 956 

740 0.05 0.5 0.4 801 

1150 1.07 0.75 0.4 1173 

740 1.07 1 0.4 1227 

250 0.05 0.75 0.5 814 

740 1.07 0.5 0.5 1027 

1150 0.05 1 0.5 1123 

740 1.07 0.75 0.6 1189 

740 0.05 0.5 0.6 846 

1150 1.07 0.75 0.6 1249 

250 1.07 1 0.7 1136 

740 0.05 0.75 0.7 1007 

1150 1.07 0.75 0.7 1293 

740 0.05 0.75 0.8 1021 

250 1.07 0.5 0.8 934 

740 1.07 0.5 0.8 1104 

1150 0.05 1 0.9 1232 

740 1.07 0.5 0.9 1163 

250 1.07 0.75 0.9 1116 

 
The actual models derived from the experimental data 

become 

1

2
1

511.1558 92.0064 ln 54.0223 ln

      226.5482 ln    0.3 mm,  0.995

S v

d w R

    

   

f

f

f

f

f

f

f
  (15) 

where R2 is the correlation coefficient obtained in the 
regression analysis. It is observed that the cor
coefficients are very close to unity, and the relationship 

 with almost linear relationship. 
Fi

    (9) 

2

2
2

357.9337 127.4543 ln 61.6012 ln

       345.6559 ln    0.4 mm,  0.994

S v

d w R

    

   
  (10) 

3

2
3

287.3501 146.0524 ln 63.2407 ln

       392.5424 ln    0.5 mm,  0.999

S v

d w R

    

   
  (11) 

4

2
4

321.3647 145.1459 ln 65.0159 ln

       349.4221 ln    0.6 mm,  0.999

S v

d w R

    

   
  (12) 

5

2
5

243.7464 160.4426 ln 68.5357 ln

       317.7824 ln     0.7 mm,  0.996

S v

d w R

    

   
 (13) 

6

2
6

278.1798 159.7316 ln 71.8728 ln

       337.7303 ln    0.8 mm,  0.999

S v

d w R

    

   
  (14) 

7

2
7

274.2301 170.8532 ln 80.5139 ln

       360.8119 ln    0.9 mm,  0.993

S v

d w R

    

   

relation 

between the current signals and the cutting parameters is 
reasonably well represented by the proposed models for 
different tool wear states. 

Figure 4 shows the effect of depth of cut on the cur- 
rent signals. It is found that current signal increases as 
the depth of cut increases,

gure 5 shows the effect of the feed rate on the current 
signal. Current signal increases as the feed rate increases. 
The reason for the condition is complex and is discussed 
by Shaw [15]. Figure 6 shows the main effect of the 
spindle speed on the current signal. It is found that cur- 
rent signals increases with quadratic relation as the speed 
in increases. Figure 7 shows the effect of tool wear on 
the current signals. Spindle motor current increases ex-  

 

Figure 4. Effect of depth of cut on current signal.  

 

Figure 5. Effect of feed rate on current signal. 
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Figure 6. Effect of spindle speed on current signal. 

 

Figure 7. Effect of wear on current signal. 

ponentially as tool wear increase with an almost incre- 
mental relationship. It is found that the tool wear has 
more significant effect on the spindle motor current. 
Based on above studies, it is seen that the tool wear, 
spindle speed, feed rate, dept of cut and current signals 
are related. The spindle motor current can be selected as 
a function of wear states in turning, taking into account 
the cutting parameters.  

It has been recognized widely that the tool life can be 
divided into three phases characterized by three different 
wear processes, 1) break in, 2) normal wear and 3) ab- 
normal or catastrophic wear. The sudden rise in the wear 
rate observed during the abnormal tool wear phase is of 
interest here as an indication of the need for tool  
placeme ear, the 
tool wear curve usually fluctuates and is not smooth. The 

the tool wear state as in Table 3. 
T

re-
nt. Because many factors affect tool w

current signal models for the different wear states (flank 
wear = 0.3 0.9  mm) are established. The models can 
then be used to estimate the tool wear state from meas- 
ured current signals, and other cutting parameters. Thirty- 
five experimental results were used for the development 
of regression models (Table 2). Twenty-one additional 

tests were conducted to examine the feasibility of using 
these models to estimate 

able 4 shows the comparison of the measured and es- 
timated spindle current using Equations (9)-(15) respec- 
tively.  

The measured current and estimated currents are de- 
fined as real feature values (S0) and estimated feature 
values (Si) (where 1, ,7i   ), respectively. S0 values 
are compared in turn with the estimated feature values 
for different wear states ( 0.3 0.9  mm) in order to 
evaluate the degree of similarity between the real wear 
state to a  estimated wear state. 

For the spindle motor current, the following member- 
ship functions 

iS

ny of the

  are established 
1) If S0 < Si ( 1, ,7i   ) then  

 01
1S S   

       
   

0 0 0 052 3 4

0 076
             0

S S S S

S S

S S S S

S S

   

 

  

  
   (16) 

S2) If 1 ≤ S0< S2 then  

  2 0
01

2 1
S

S S
S

S


S





     0 1

02
2 1

S

S S
S

S S






 

       
 

0 0 03 4 6

07
             0

S S S

S

S S S

S

  



  

 
   (17) 

05S S

3) If S2 ≤ S0< S3 then  

         0 05 76
0SS S0 0 01 4S S S SS S S        

  3 0
02

3 2
S

S S
S

S S






     0 2

03
3 2

S

S S
S

S S






        (18) 

4) If S3 ≤ S0< S4 then  

         0 0 0 0 05 71 2 6
0S S S S SS S S S S         

  4 0
03

4 3
S

S S
S

S S



     0 3

0
 4

4 3
S

S S
S

S S






        (19) 

5) If S4 ≤ S0< S5 then  

         0 00 0 0 0 71 2 3 6S S S S SS S S S S          

  5 0
04

5 4
S S

S S


S S   0 4
05

5 4
S

S S
S

S S






 





          (20) 

6) If S5 ≤ S0< S6 then  

         0 0 0 0 01 2 3 4
0S S SS S S S S    

7S S      

  6 0
05

6 5
S S

S S


S S   0 5
06

6 5
S

S S
S

S S






 





          (21) 

7) If S6 ≤ S0< S7 then  

         0 0 0 0 051 2 3 4
0S S S S SS S S S S         
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Table 4. Compari nd estimated spindle motor current. 

Estimated current (m

son of measured a

A) 
T ) (S0)

(S1) (S2) (S3) (S4) (S5) (S6) ( 7

est Measured current (mA
S ) 

1 

2 

3 

4 

6 

7 

9 

997 

968 

956 

801 

1227 

814 

1123 

997.7 

965.6 

957.6 

800.1 

1098.1 

792.2 

965.6 

1089.6 

982.6 

793.8 

1178.9 

795.7 

982.6 

1

1127.

1028.1 

1003.2 

834.4 

1226.1 

809.5 

1028.1 

1

1042.5 

1026.7 

843.3 

1248.2 

1

9.2 

1088.1 

1042.8 

878.1 

1287.7 

9 

1 

1

1188.6 

1104.2 

1067.8 

884.1 

1311.6 

1338.3 

847.7 

1104.2 

1

1237.1 

1158.3 

1119.2 

911.7 

1380.0 

1408.4 

872.6 

1158.3 

1

2 1149.5 116

984.4 

5 1173 

1122.7 1222.1 1256.5 1284.7 1308.4 

127.2 

1161.7 

834.4 

1226.1 

1098.1 

968.0 

1226.1 

968.0 

869.6 

1028.1 

1127.2 

1028.1 

1003.2 

827.5 

1042.5 

832.

1088.

149.5 

1184.2 

843.3 

1248.2 

1127.2 

985.0 

1248.2 

985.0 

885.0 

1042.5 

1149.5 

1042.5 

1026.7 

169.2 

1217.0 

878.1 

1287.7 

1134.3 

1007.0 

1287.7 

1007.0 

914.0 

1088.1 

1169.2 

1088.1 

1042.8 

188.6 

1241.2 

884.1 

1311.6 

1165.0 

1021.0 

1311.6 

1021.0 

930.9 

1104.2 

1188.6 

1104.2 

1067.8 

237.1 

1304.6 

911.7 

1380.0 

1223.0 

1058.0 

1380.0 

1058.0 

972.9 

1158.3 

1237.1 

1158.3 

1119.2 

8 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

1027 

1189 

846 

1249 

1136 

1007 

1293 

1021 

934 

1104 

1232 

1163 

1116 

089.6 

1122.7 

793.8 

1178.9 

1083.8 

934.0 

1178.9 

934.0 

844.2 

982.6 

1089.6 

982.6 

984.4 

997.7 

1057.5 

800.1 

1098.1 

1022.8 

892.0 

1098.1 

892.0 

865.8 

965.6 

997.7 

965.6 

957.6 

 

  7S 0
06

6
S

S
S

S





  
7S

   0 6
0S  

7
7

S

S S

S S





22) 

f S0 > Si ) then 

0S

                23) 

where  is the membership degree of current 
the ith tool  state.  

The key to the fusion of tool wear states is the selec- 
tio ate shape zy membership function 
for process variables based on experimental results. Fig- 
ure 8 shows the trapezoidal membership function of tool 
wear states. The reason for choosing trapezoidal shape 
for tool wear states is that it is difficult to quantify an 
exact wear value. 

g a wide

6

   (

8) I  ( ,7i 1, 

     
  

0 01 2 3 4

0 06
            0

S S S S

S

S S S

S S

   







0  
 

5S


 

 07S S 1           (

 0Si
S

associated with wear

n of appropri s of fuz  

Figure 8. Fuzzy memberships of tool wear state. 

where  w  is the fuzzy membership value for tool 
wear states, and a, b, k and l are constants for different 
fuzzy sets. The constants of 
wear conditions under the A, B, C, D, E, F and G classi- 
fication are shown in Table 5. 

The outputs of the inference are still fuzzy values and 
they need to be defuzzified. Basically defuzzification is a 
mapping from a space of fuzzy values into that of the 
non-fuzzy universe. At present there are several strate- 
gies that can be used to perform the defuzzification proc-  

fuzzy membership of tool Usin r range avoids defining an exact wear 
value for a certain level of linguistic variable of tool wear. 
This will also allow an easy knowledge acquisition when 
developing a set of fuzzy rules for fuzzy inference. Based 
on the classification of tool wear states, the trapezoidal 
function is defined as follows [16].  

   w aw b   , k < w < l          (24) 
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Table 5. Constants of fuzzy membership functions for tool 
wear condition. 

Constants of fuzzy functions for tool wear conditionTool wear  
classification a B K l 

A 
0 

–20 
1 
6 

0 
0.25 

0.25 
0.3 

B 
20 
0 

–20 

–5 
1 
8 

0.25 
0.3 
0.35 

0.3 
0.35 
0.4 

C 
20 
0 

–20 

–7 
1 
10 

0.35 
0.4 
0.45 

0.4 
0.45 
0.5 

D 
20 –9 0.45 5 

0.75 0.8 

0 
–20 

1 
12 

0.5 
0.55 

0.55 
0.6 

0.

E 
20 
0 

–20 

–11 
1 
14 

0.55 
0.6 
0.65 

0.6 
0.65 
0.7 

F 
20 
0 

–20 

–13 
1 
16 

0.65 
0.7 

0.7 
0.75 

G 
20 
0 

–15 
1 

0.75 
0.8 

0.8 
0.9 

 
ess. The most commonly used method is centroid method 

 of defuzzification which produces the center of area of 

the possibility distribution of inference output. 
Therefore the defuzzified tool wear states can be ob- 

tained by using the formula 

 

 

d

Wear
d

w

w

w w w

w w








          (25) 

where wear represents the numerical value of tool wear 
states and fuzzy membership degree fused by fuzzy in- 
ference. 

The membership degree of tool wear state with spindle 
current Si(w) where A, B Gi    is calculated using 
fuzzy classification method. The membership degrees of 
tool wear states are shown in Table 6.  

4. Results and Discussion 

A total of 55 tool wear cutting tests were conducted un- 
der various cutting conditions. 35 samples were randomly 
picked as learning samples and 21 samples were used as 
the test samples in the classification phase. The above 
method is used to estimate the tool wear value. The 
membership degrees of present tool states under different 
tool wear classification are calculated which is used by 
fuzzy inference. 

Based on studies, it is suggested that the effects of tool  

Table 6. Membership degrees of tool wear states (test cases). 

p degree Membershi
Sl. No. 

1S
Estimated wear value 

(mm)  
2S  

3S  
4S  

5S  
6S  

7S  

1 

2 

4 

5 

7 

8 

10 

12 

13 

15 

16 

17 

18 

21 

 

0.

1. 0 

0  

0 

0 

27 

24 

11 

0 

0 

0 

0 

0 

142 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.250 

0 

0 

853 

0.922 

0.979 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.146 

0.077 

0.020 

0.944 

1.000 

0.778 

0 

0 

0.0124 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.055 

0 

0.221 

1.000 

0.926 

0.987 

0.105 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.073 

0 

0.894 

1.000 

0.937 

0.300 

0.314 

0.300 

0.417 

0.392 

0.414 

0.525 

0.497 

0.488 

0.614 

0.607 

0.602 

0.705 

0.700 

0.722 

0.800 

0.807 

0.798 

0.889 

0.900 

0.893 

3 

6 

9 

11 

14 

19 

20 

0 

0 

0 

0 

0 

0 

0 

0 

1.000

858 

00

0 

.073

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.141 

0 

0.822 

0.9

0.857 

0 

0.0

0.1

0 

0 

0 

0 

0 

0 

0 

0 

0 0 0 0 0.062 

0.177 

0.

0.750 

0.975 

0.888 

0.

Copyright © 2012 SciRes.                                                                              MNSMS 



V. KALAICHELVI  ET  AL. 35

Table 7. C wear in turning. 

B C D E F 

lassification of tool 

Classification A G 

Tool ar value (m 0 - 0.3 0.25 - 0. 0.35 - 0. 0.45 - 0.6 0.55 - 65 - 0.8 - 0.9 we m) 4 5   0.7 0. 0.75 

 
wear indle sp eed rate and depth of t should 
taken o accou n modeling current  In th  
prese work, th  wear v re divi nto A, B  
C, D, E, F & G ificatio hown i ble 7. O
of th ain objectives of de g the t ar state 
to ob in a basis for replacing tools. D  practical 
application a noticeable cha of the tool wear st
has b n examined. Accordi he est  tool wear 
state decision n be made if the tool should be r
placed. The above method gi  the tool ar state
cording to previo ly collecte ata and t  results. 
turni operation onitoring n be con cted by 
culating the mem rship grad f the curre servatio  
The  replacem  made when the grade 
wear in the curre observation exceeds a rtain thres
old a .9. For th resent study, the rule for replaceme
is suggested as follows: 

“If the grade of membershi Si for the indle mot
current is greater than 0.9 m  then repl e the tool
Figure  shows the comparison between measured and 
predicted values o ool wear

5. Conclusion 

T we  cutti ete
indle motor is analyzed. The model which shows the 

, sp eed, f
nt whe

 cu be 
 in t signals.

d i
e

nt e tool
 class

alues a
n as s

de
 T

,
ne n a

ool wee m tectin is 
ta uring

nges ates 
ee ng to t imated

, a ca e- 
ves we  ac- 

us d d est For 
ng , m  ca du cal- 

be e o nt ob n.
tool ent decision is of 

nt ce h- 
s 0 e p nt 

p  sp or 
m ac ”. 

 9
f T .  

he effects of tool ar and ng param rs on the 
sp
relationship between the current signals and cutting pa- 
rameters for different tool wear states (0.3 to 0.9) are 
established through experimental study and regression 
analysis. The membership function concept has been 
successfully used to calculate the grade of membership 
for given wear states and applied to the monitoring of 
tool wear state. The grade of membership associated with  

 

Figure 9. Comparis
ues of tool wear using fu

on between measured and predicted val- 
zzy classification method.  

the relevant flank ear is always very clo nity 
based  the established models. This indicates that the 
method is acceptable. The cont of tool re ent 
requires the recognition of the tool wear state associated 
with the cutting parameter including spindle speed and 
feed rate, which y change according to ontrol 
strategies. The use of the grades of member or the 
tool wear state pro des a scie basis for olling 
the t eplacem he me d is applic o the 
choi  desi hreshold f wear acco  the 
quality standard adopted. 
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