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ABSTRACT 

The governing equations of an initially stressed rotating orthotropic dissipative medium are solved analytically to obtain 
the velocity equation which indicates the existence of two quasi-planar waves. The appropriate particular solutions in 
the half-space satisfy the required boundary conditions at the stress-free surface to obtain the expressions of the reflec-
tion coefficients of the reflected quasi-P (qP) and reflected quasi-SV (qSV) waves in closed form for the incidence of 
qP and qSV waves. A particular model is chosen for numerical computation of these reflection coefficients for a certain 
range of the angle of incidence. The numerical values of these reflection coefficients are shown graphically against the 
angle of incidence for different values of initial stress parameter and rotation parameter. The impact of initial stress and 
rotation parameters on the reflection coefficients is observed significantly. 
 
Keywords: Orthotropic; Dissipative Medium; Initial Stress; Rotation; Plane Waves; Reflection; Reflection Coefficients 

1. Introduction 

The Earth is considered as an elastic body with various 
additional parameters, e.g. porosity, initial stress, viscos-
ity, dissipation, temperature, voids, diffusion, etc. Initial 
stresses in a medium are caused by various reasons such 
as creep, gravity, external forces, difference in tempera-
tures, etc. The reflection of plane waves at free surface, 
interface and layers is important in estimating the correct 
arrival times of plane waves from the source. Various 
researchers studied the reflection and transmission prob-
lems at free surface, interfaces and in layered media [1- 
12]. The study of the reflection of plane waves in the 
presence of initial stresses and dissipation finds signifi-
cant applications in various engineering fields. Following 
Biot [13] theory of incremental deformation, Selim [14] 
studied the reflection of plane waves at a free surface of 
an initially stressed dissipative medium. Recently, Singh 
and Arora [15] studied the reflection of plane waves from 
a free surface of an initially stressed transversely iso-
tropic dissipative medium. 

In the present paper, we studied the problem on reflec-
tion of plane waves at a stress-free surface of an initially 
stressed rotating orthotropic dissipative solid half-space. 
The reflection coefficients of reflected waves are com-
puted numerically to observe the effects of initial stress 
and rotation. 

2. Formulation of the Problem and Solution 

We consider an initially stressed orthotropic half-space 
rotating about y-axis  with 0, ,0    u,0,wu . 
Following Biot [13] and Schoenberg and Censor [16], the 
basic dynamical equations of motion in x-z plane for an 
infinite, initially stressed and rotating medium, in the 
absence of external body forces are,  
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where  is the density, 
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component, sij (i, j = 1, 3) are incremental stress compo-
nents, u and w are the displacement comp　 onents.  

Following Biot [13], the stress-strain relations are: 
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where Cij are the incremental elastic coefficients. 
For dissipative medium, elastic coefficients are re-

placed by the complex constants: 
R I R I
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where, i 1  ,  
are real. Following Fung [17], the stress and strain com-
ponents in dissipative medium are, 
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where (i, j = 1, 3) and   being the angular frequency. 
With the help of Equations (4) and (5), the Equation (3) 

becomes, 
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The displacement vector  is given 
by  where (n) assigns an arbitrary direc- 
tion of propagation of waves,  
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is the phase factor, in which  is the unit 
propagation vector, cn is the velocity of propagation, 

, and kn is corresponding wave number, which 
is related to the angular frequency by 
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Making use of Equations (6) and (7) into the Equations 
(1) and (2), we obtain a system of two homogeneous 
equations, which has non-trivial solution if  
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correspond to quasi-P (qP) waves and quasi-SV (qSV) 
waves respectively. These two roots give the square of 
velocities of propagation as well as damping. Real parts 
of the right hand sides correspond to phase velocities and 
the respective imaginary parts correspond to damping 
velocities of qP and qSV waves, respectively. It is ob-
served that both  and  depend on initial stresses, 
rotation, damping and direction of propagation 

2
1c 2

2c
n . In 

the absence of initial stresses, rotation and damping, the 
above analysis corresponds to the case of orthotropic 
elastic solid. 

3. Reflection of Plane Waves from Free  
Surface 

We consider an initially stressed rotating orthotropic dis-
sipative half-space occupying the region z > 0 (Figure 1). 
In this section, we shall drive the closed form expres-
sions for the reflection coefficients for incident qP or 
qSV waves. 

The displacement components of incident and re-
flected waves are as, 
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Figure 1. Geometry of the problem. 
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Here, subscripts 1, 2, 3 and 4 correspond to incident qP 
wave, incident qSV wave, reflected qP wave and re-
flected qSV wave, respectively. 

In the x-z plane, the displacement and stress components 
due to the incident qP wave  
are written as  
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In the x-z plane, the displacement and stress components 
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In the x-z plane, the displacement and stress components 
due to the reflected qSV wave   
are written as  
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The boundary conditions required to be satisfied at the 
free surface z = 0,  
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The Equations (11) to (14) will satisfy the boundary 
conditions (16), if the following Snell’s law holds 
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and 1L Q P 2  . 
For incident qP wave (A2 = 0), we obtain from equa-

tions (18) and (19), 
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For incident qSV wave (A1 = 0), we obtain from equa-
tions (18) and (19), 
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For isotropic case, B11 = λ + 2μ + P, B13 = λ + P, B33 = λ 
+ 2μ, Q = μ, P = –S11, Ω = 0, then the above theoretical 
derivations reduce to those obtained by Selim [14] 

4. Numerical Example 

For numerical purpose, a particular example of the mate-
rial (Zinc) is chosen with the following physical con-
stants, 

R 10
11B 1.628 10 N m 2   , R 10

33B 1.562 10 N m 2   , 
R 10
13B 0.508 10 N m 2   , R 10Q 0.385 10 N m 2   , 
I 10
11B 1.025 10 N m 2   , I 10

33B 0.250 10 N m 2   ,  
I 10
13B 0.225 10 N m 2   , I 10Q 0.125 10 N m 2   , 

3 27.14 10 N m    . 

From Equations (21) and (22), the reflection coeffi-
cients of reflected qP and qSV waves are computed for 
the incident qP and qSV waves. The numerical values of 
the reflection coefficients of reflected qP and qSV waves 
are shown graphically in Figures 2 and 3 for incident qP 
wave and in Figures 4 and 5 for incident qSV wave.  

In Figure 2, from comparison of solid line with 
dashed lines, it is observed that the reflection coefficients 
of qP and qSV waves change due to the presence of ini-
tial stresses at each angle of incidence of qP wave except 
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Figure 2. Effect of initial stresses on the reflection coefficients of qP and qSV waves for incidence of qP wave. 
 

 

Figure 3. Effect of rotation parameter on the reflection coefficients of qP and qSV waves for incidence of qP wave. 
 

 

Figure 4. Effect of initial stresses on the reflection coefficients of qP and qSV waves for incidence of qSV wave. 
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Figure 5. Effect of dissipation on the reflection coefficients of qP and qSV waves for incidence of qSV wave. 
 
grazing incidence. The effect of initial stresses is ob-
served maximum in the range 45˚ < e1 < 90˚. 

From Figure 3, it is observed that the reflection coef-
ficients of qP and qSV waves change due to the presence 
of rotation in the medium at each angle of incidence of 
qP wave except grazing incidence. 

In Figure 4, from comparison of solid line with 
dashed lines, it is observed that the reflection coefficients 
of qP and qSV waves change due to the presence of ini-
tial stresses in the medium at each angle of incidence of 
qSV wave except grazing incidence. 

From Figure 5, it is observed that the reflection coef-
ficients of qP and qSV waves change due to the presence 
of dissipation in the medium at each angle of incidence 
of qSV wave. 

5. Conclusions 

The reflection from the stress-free surface of an initially 
stressed rotating orthotropic dissipative medium is con-
sidered. The expressions for the reflection coefficients of 
reflected qP and qSV waves are obtained in closed form 
for the incidence of qP and qSV waves. For a particular 
material, these coefficients are computed and depicted 
graphically against the angle of incidence for different 
values of initial stress and rotation parameters. From the 
figures, it observed that 1) the initial stresses affect sig-
nificantly the reflection coefficients of reflected qP and 
qSV waves; 2) the rotation parameter also affects sig- 
nificantly the reflection coefficients of qP and qSV waves; 
3) Reflection coefficients are also affected due to the 
presence of dissipation. 
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