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ABSTRACT 

The Singular Integral Operators Method (S.I.O.M.) is applied to the determination of the free-surface profile of an un-
steady flow over a spillway, which defines a classical hydraulics problem in open channel flow. Thus, with a known 
flow rate Q, then the velocities and the elevations are computed on the free surface of the spillway flow. For the nu-
merical evaluation of the singular integral equations both constant and linear elements are used. An application is fi-
nally given to the determination of the free-surface profile of a special spillway and comparing the numerical results 
with corresponding results by the Boundary Integral Equation Method (B.I.E.M.) and by using experiments. 
 
Keywords: Unsteady Flows; Spillway; Free-Surface; Open Channel Hydraulics; Singular Integral Operators Method 

(S.I.O.M.); Constant & Linear Elements; Potential Flows 

1. Introduction 

Gravity driven free-surface flows, belonging to a major 
field of classical hydraulics problems, were not solved 
accurately and efficiently in the past, because of several 
design and measurement purposes. The difficulty for 
solving such hydrodynamics problems is due not only 
because of the nonlinear character of the boundary con-
ditions, but from the fact that the boundary of the free- 
surface flow is not known from the beginning, as well. 

Generally the spillway solutions are considerably more 
difficult to be determined than of the corresponding usual 
free-surface hydraulics problems, in open channel flow. 
The basic parameters of the spillway flows, such as dis-
charge, free surfaces and speeds are very important for 
the design of the hydraulic structures. Over the past years 
the above parameters were mainly obtained through ex-
periments. On the other hand, the rapid development of 
computer techniques in hydraulics problems during the 
recent years, made efficient the possibility to obtain such 
data by using numerical techniques.  

As a beginning, R. V. Southwell and G. Vaisey [1] used 
finite differences for the investigation of the free water- 
fall. The finite difference method was further success-
fully applied by J. S. Mc Nown, E. Y. Hsu & C. S. Yih [2] 
and by J. J. Cassidy [3] for the calculation of the flow 
over a spillway.  

Furthermore, the study of hydraulics problems by us-
ing finite elements, was as a start proposed by J. A. Mc 
Corquodale and C. Y. Li [4], by investigating sluice gate 

flows. The finite element method was further applied by 
S. T. K. Chan, B. E. Larock and L. R. Hermann [5] for 
the solution of the surface fluid flows and M. Ikegawa 
and K. Washizu [6] for the investigation of a flow over a 
spillway crest. 

In addition the finite element method was improved by 
L. T. Isaacs [7,8] for solving potential flow problems and 
sluice gate flows. Also by using finite elements B. E. 
Larock [9] studied spillway flows and H.J. Diersch, A. 
Schirmer and K. F. Bush [10] investigated several gener-
alized hydraulics problems. At the same time E. Varog- 
lou and W. D. L. Finn [11] and P. L. Betts [12] applied 
the finite element method for the solution of free surface 
gravity flows. 

On the other hand, several open channel hydraulics 
problems and especially those involved to the determina-
tion of a free surface under non-linear boundary condi- 
tions were solved by J. A. Ligget [13] and A. H.-D. Cheng, 
J. A. Liggett and P. L.-F. Liu [14] by using the Boundary 
Element Method (B.E.M.). 

The complex variable function theory was further used 
for the solution of free surface potential flow problems. 
This method was applied in the specific cases where the 
geometry of the solid boundary consists of straight seg-
ments and the effort of gravity is neglected. T.S. Strelkoff 
[15] used a numerical method based on the complex vari- 
able function theory for the computation of the sharp- 
crested weir flows. By using a corresponding method T. 
S. Strelkoff and M. S. Moayeri [16] studied the waterfall 
from a flat channel with horizontal and vertical walls. 
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Furthermore, Y. Guo et al. [17] proposed a numerical 
method for the determination of the spillway flow with 
free drop an initially unknown discharge. 

Over the past years E.G. Ladopoulos [18-26] and E.G. 
Ladopoulos et al. [27,28] introduced and investigated 
linear and non-linear singular integral equation methods 
for the solution of fluid mechanics problems. In the pre-
sent research the above methods will be extended to the 
solution of potential and unsteady flows problems over 
spillways. Thus, the Singular Integral Operators Method 
(S.I.O.M.) [23-38] is applied to the determination of the 
free-surface profile of a spillway. For the numerical 
evaluation of the singular integral equations both con-
stant and linear elements are used. An application is fi-
nally given to the determination of the free-surface pro-
file of a spillway and comparing the outprints with cor-
responding results by the Boundary Integral Equation 
Method (B.I.E.M.) and by using experiments. 

The S.I.O.M. offers many advantages over the B.I.E.M. 
or Boundary Element Method (B.E.M.), as uses very 
specific algorithms and code written in Visual Basic in 
order to run faster and much more accurately. 

Whenever the S.I.O.M. was compared to the B.I.E.M. 
for the solution of problems where closed form solutions 
were available, then the S.I.O.M. gave solutions much 
more close to the exact solutions. 

2. Basic Formulation for Potential Flow 
Problems 

Consider a homogeneous, incompressible and inviscid 
fluid, which flows over a spillway. As the flow is irrota-
tional, then for the stream function f, with f f , is 
valid [26]: 

0x f                (2.1) 

Furthermore, because of the conservation of mass for 
an incompressible fluid, then one has: 

0 f                (2.2) 

By using (2.1) and (2.2.) we obtain the equation of  
 

Laplace which is the governing equation in the domain Ω: 

2 0f                 (2.3) 

The boundary conditions corresponding to this prob-
lem are: 

1) Essential conditions of the type: f = 0 on the lower 
boundary and on the spillway wall and f = Q on the free 
surface                                    (2.4) 
where Q denotes the flow rate per unit width. 

2) Natural conditions of the following type: 

v f n                     (2.5) 

in which v is the velocity and n the unit normal from the 
free surface. 

Furthermore, on the free surface the dynamic bound-
ary condition is valid: 

Hy
g

v


2

2

                (2.6) 

where g is the acceleration of gravity, y the free surface 
elevation and H the design load (see Figure 1). 

Thus, because of (2.6) the natural condition (2.5) takes 
the form: 

)(2 yHg
n

f





            (2.7) 

In the current problem of the flow over a spillway, the 
flow rate Q is known, while the design load H is required 
as part of the solution. When the flow rate Q is changed 
per time, then the flow becomes unsteady. In this case 
the behavior of the flow over the spillway becomes more 
complicated.  

The spillway flow extend to , but for the purposes 
of the numerical solution the inflow and outflow streams 
are cut at right angles to the primary velocity. Hence, on 
the cut portions the following boundary condition is 
valid: 

0


n

f
                 (2.8) 

 

Figure 1. Free-surface profile of a spillway. 
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By condition (2.8) follows that there is no velocity 

normal to the main flow. Although this condition is ap-
proximate, it is applied enough far from the spillway 
crest and thus any small error does not affect the inter-
esting part of the flow. 

So, with a known flow rate Q, the position of the 
free-surface boundary is assumed and then the problem is 
solved by using the above described boundary conditions. 
Then, by Equation (2.6) the hydraulic load H is calcu-
lated on the free surface. Thus, if H is the same for all 
free-surface points, then the problem is solved. Other-
wise, the assumed free surface is changed, so that the 
hydraulic load H becomes constant at all points. 

3. Potential Flow Analysis by the Singular 
Integral Operators Method 

A weighting function f* is introduced, so that it has con-
tinuous first derivatives. Then, the function f* produces 
the following weighted residual statement [29-38]: 











 



 


d)(d)(
*

**2

12
n

f
ffdfv

n

f
ff  (3.1) 

where by (-) are meant average values and Γ1, Γ2 are the 
boundaries in which the essential and the natural condi-
tions are affected, respectively. 

Beyond the above, integrating by parts the left hand 
side of Equation (3.1) follows: 
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 (3.2) 

By integrating again the left hand side of Equation (3.2) 
one obtains: 

2 2 1 1

2 *
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 (3.3) 

In order to find a solution satisfying the Laplace equa-
tion, then the governing equation is: 

2 * Δ 0if                (3.4) 

where Δi is the Dirac delta function 
The solution of Equation (3.4) is called the fundamen-

tal solution and has the property such that: 

ii fffff  


dd)( *2*2     (3.5) 

in which i  is the value of the unknown function at the 
point “i” where a concentrated load is acting. 

f

Thus, if Equation (3.4) is satisfied by the fundamental 
solution, then one has 




 ifff d)( *2            (3.6) 

By using (3.6), then Equation (3.3) takes the form: 


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Furthermore, by taking the point “I” on the boundary, 
then the term fi in Equation (3.7) must be multiplied by 
1/2 for a smooth boundary. On the other hand, if the 
boundary is not smooth at the point “I” then the number 
1/2 must be replaced by a constant which can be deter-
mined from constant potential considerations. 

Then Equation (3.7) takes the form: 









 


dd *
*

f
n

f

n

f
ffc ii        (3.8) 

where Γ = Γ1 + Γ2  and has been assumed that f =f on 
Γ1 and f n v v     on Γ2. Also, the constant ci can be 
determined by the relation: 

2πic


                (3.9) 

in which Θ denotes the internal angle of the corner in rad. 
1) Constant Elements 
For the numerical evaluation of Equation (3.8) by us-

ing constant elements, then the above equation may be 
written as:  
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Beyond the above, Equation (3.10) can be further writ- 
ten as: 
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where            *
ij ijA A , when i  j  
*

ij ij iA A c  , when i = j       (3.12) 

Hence, Equation (3.11) takes the form:  


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j
jij n

f
BfA
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           (3.13) 

or in matrix form may be written as: 

Af Bv                (3.14) 

On the other hand, by reordering the above equation so 
that all the unknows are on the left hand side, then one 
has: 

CX D                (3.15) 

where X is the vector of unknows f and v. 
Thus, once the values of f and v on the whole bound-

ary are known, then f can be calculated at any interior 
point: 
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The integrals Bij and *
ijA  can be calculated by using 

4-point Gauss quadrature rule for the case . On the 
other hand, for the case i = j, because of the singularity 
needs a more accurate integration. Thus, for this case can 
be used higher-order integration or logarithmic formula. 

ji 

2) Linear Elements 
For the numerical evaluation of Equation (3.8) by us-

ing linear elements, then the above equation can be writ-
ten as: 
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In this case, in contrary to Equation (3.10), the vari-
ables fj and jf n   cannot be taken out of the integral 
as they vary linearly within the element. 

Thus, by using linear elements then Equation (3.17) 
can be further written as:  

ij

n

j

j
ij

n

j
jii B

n

f
Affc 

 




1

*

1

        (3.18) 

By the same way, as for Equation (3.13), the above 
equation takes the form: 
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and in matrix form: 
Af Bv                (3.20) 

Finally, by using either constant or linear elements 
then the velocities v = f/n are computed on the free sur- 
face of the spillway flow. 

Also, the free surface elevations y, are further com-
puted by the formula: 

y Q v                 (3.21) 

and thus the free-surface profile is fully determined. 

4. Application to the Determination of the 
Free-Surface Profile of a Spillway 

As an application of the previous outlined theory, the 
free-surface profile will be determined over a spillway of 
height h = 7.55 m, designed for a flow rate of 5.5 
m3/sec/m of width. The same problem has been previ-
ously solved by A. H. D. Cheng, J. A. Liggett and P. L. F. 
Liu [14] by using the Boundary Integral Equation 
Method (B.I.E.M.) and by V. T. Chow [39] by using ex-
perimental results. Thus, a comparison will be made be-
tween the results of the Singular Integral Operators 
Method (S.I.O.M.), the B.I.E.M. and the experimental 
results. Furthermore, the flow rate Q can be changed as a 
function of time (Q = Q(t)) because of the unsteady flow, 
and for any different Q, then a different curve over the  

spillway occurs. 
The problem has been solved by using both constant 

and linear elements. Hence, as it can be seen from Figure 2 
the results of the linear elements by using the S.I.O.M., 
are in fair agreement with the coresponding results of the 
B.I.E.M. and the experimental curve. On the other hand, 
there is a small disagreement between the results of the 
constant elements of the S.I.O.M. and the corresponding 
methods. This is mainly explained by the fact that the 
constant elements are not well fitted in the zone of un-
certainty of the flow over the spillway. 

On the other hand, when the flow rate is changed per 
unit time, for the cases of a general uniform flow over the 
spillway, then different curves occur. Thus, there are no 
limits on the dimension of the flow problem that can be 
solved by the S.I.O.M. In these cases although the flows 
over the spillway are more complicated, the S.I.O.M. is 
well applied. 

Although the Boundary Element Method has been 
used once in the past [14] for solving such a problem, the 
S.I.O.M. gives more accurate results with more compli-
cated algorithms, which in any case are faster and more 
exact. 

5. Conclusions 

The Singular Integral Operators Method was applied to 
the determination of the free-surface profile of the un-
steady flow over a spillway. This is very important prob-
lem of classical hydraulics and especially in open chan-
nel flow. Thus there are some basic parameters of the 
unsteady spillway flows, like the discharge, the free sur-
faces and speeds which are necessary for the design of 
the spillways. In the past such parameters were obtained 
through experiments, but the rapid development of the 
numerical techniques in hydraulics problems, made effi-
cient the possibility of obtaining such parameters through 
computational methods. 
 

 

Figure 2. Surface Profile for a Spillway with Q = 5.5 m3/sec/m 
width. 
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The governing equation for solving potential flow 
problems is the equation of Laplace. So by using the 
Laplacean and choosing the proper boundary conditions, 
then the unsteady flows over a spillway are calculated by 
using a numerical techique based on the singular integral 
equations. For the numerical evaluation of the singular 
integral equations were used both constant and linear 
elements. An application was given to the determination 
of the free-surface profile of a special spillway and the 
results were compared with corresponding numerical re- 
sults by the boundary elements and by using experi- 
ments. 

Finally the proposed method by using the equation of 
Laplace for solving potential problems can be applied in 
several other hydraulics problems of open channel flows. 
Thus, in future special attention should be given to the 
research and application of the integral equation methods 
to the solution of several important problems of open 
channel hydraulics.  
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Nomenclature 

f  stream function; 
Q  flow rate per unit width; 
v  velocity; 
n  unit normal from the free surface; 
g  acceleration of gravity; 
y  free surface elevation; 
H  design load; 

 

f*  weighting function;  
Γ1  boundary in which the essential conditions are af-
fected; 
Γ2  boundary in which the natural conditions are affected; 
Δi  dirac delta function; 
Θ internal angle of the corner in rad. 
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