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ABSTRACT 

When realistic mathematical models of whole body metabolism eventually become available, they are likely to add en-
tirely new dimensions to the understanding of the integrated physiological function of the organism, in particular the 
mechanisms governing the regulation of transitions between different physiological states, like fed-fasted, exercise-rest 
and normal-diseased. So far the strategy for whole body modelling has primarily been a bottom-up approach where the 
central problem is an apparently insurmountable barrier of complexity involved in defining and optimising the huge 
number of parameters. Here we follow a top-down strategy and present a complete mathematical framework for realis-
tic whole body model development. The approach proposed is modular and hierarchical and whole body metabolism is 
taken as the top level. Next are the organs, where the sum of the contributions from the individual organs must equal the 
top level metabolism. This hierarchy can be extended to lower levels of organisation, i.e. clusters of cells, individual 
cells, organelle and individual pathways. Exploiting this hierarchy, metabolism at each level forms an absolute con-
straint on the contributions from lower level. Importantly, these constraints can in many ways be defined experimentally 
through mass balance and flux data. Furthermore, the constrained approach allows the lower level models to be deve- 
loped independently and subsequently adapted to the whole body model. The paper describes the process of whole body 
modelling in practical terms, centred on a mathematical framework, devised to allow whole-body models of any com-
plexity to be developed. Furthermore, an example of sub-model incorporation in the whole-body framework is illus-
trated by adapting an existing erythrocyte model to the whole body constraints. Finally, we illustrate the operation of 
the system by including two sets of whole-body data from humans, reflecting two different physiological states. 
 
Keywords: Whole Body Metabolic Modelling; Organ Interaction; Mathematical Modelling 

1. Introduction 

The development of mathematical models that can de- 
scribe the overall metabolism of a human will not only 
be a milestone for biosimulation but is also likely to add 
completely new dimensions to the understanding of the 
dynamics of the integrated metabolic and physiological 
function in health and disease. 

The human and other mammalian organisms are na- 
turally compartmentalised, composed of a number of or-
gans with specialised physiological and metabolic func-
tions. Similarly, the organs are composed of several types 
of cells, often with sub-populations which are specialised 
to perform specific tasks, like the perivenous hepatocytes, 
which exclusively perform the glutamine synthesis of the 
liver [1]. Thus, from a modelling point of view, it is im-
portant to realize that the body and the organs work in a 
modular, but concerted, manner. A well-known example 
of concerted action at the organ level is the interplay be-  

tween the liver and muscle, termed the Cori cycle, where 
the muscle delivers lactate and alanine to the liver, which 
converts lactate to glucose and alanine to urea plus glu- 
cose. Subsequently, the glucose may return to the muscle 
as energy substrate [2]. Another more recently observed 
organ-organ interaction is the functional coupling be- 
tween brain and muscle, where lactate derived from the 
muscles during intense exercise is used extensively by the 
brain as a supplement to the normal substrate, glucose [3]. 
Analogously, during fasting the liver produces significant 
amounts of ketone-bodies which are excellent substrates 
for the brain and heart [4,5]. 

The key outcome of whole-body metabolism model- 
ling will be the piecing together of fragmented bio- 
chemical and physiological information to an integrated 
understanding of the overall metabolic function, and in 
particular the possibility to interrogate the model about 
dynamic aspects of metabolism, which for practical rea- 
sons are very difficult or impossible to approach experi- 
mentally. Thus, whole-body models will allow testing of  
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hypotheses about the complicated regulatory mechanisms 
that govern metabolic flows, and allow the study of tran- 
sitions occurring when the body switches from one mode 
of operation (a physiological state) to another, e.g. during 
the transition from rest to exercise, from the fed to the 
starved state, and indeed from a normal to a diseased 
state. In particular, this can be expected to provide cru- 
cial information about dysmetabolic conditions such as 
type 2 diabetes [6,7] and the intimate involvement of 
mitochondrial metabolism of this disease [8]. 

Mathematical models of metabolism have so far main- 
ly been targeted at relatively small sub-networks in the 
individual cells, like for example erythrocyte metabo- 
lism [9,10] or the cell cycle machinery [11]. Even at this 
intracellular level there is extensive modularity in the 
form of subcompartments like the mitochondria, the 
nucleus, the Golgi apparatus, the endoplasmic reticulum, 
etc. This modularity has been observed and utilized ex- 
tensively by researchers working to establish models of 
the individual cells, or analyse their behaviour. Exam- 
ples of such modular approaches are modular kinetic 
analysis [12-14] and modular control analysis [15-17]. It 
is very likely that the application of these methods could 
provide a good basis for guiding modelling and experi- 
mentation, also in the context of whole-body modelling. 
There are some examples of modelling at the whole- 
body level like pharmacokinetic studies describing the 
uptake, conversion, and excretion of drugs [18] and 
pharmacokinetic modelling where drug metabolism at 
the whole-body level was elucidated [19,20]. Several 
models of type 2 diabetes, of varying complexity, have 
also been developed [21,22], and multi-organ models 
have been used in the study of amino acid metabolism 
[23,24]. Also, minimal whole-body models have proven 
useful for interpreting the result of glucose tolerance 
tests, but are of a very abstract character, often contain- 
ing no more than a few variables [25]. A recent ap- 
proach exploits the fact that glucose and insulin flux 
estimates can be obtained from experiments using mini- 
mal modelling in conjunction with isotope labelled glu- 
cose [26]. These flux estimates can be used to perform 
parameter estimation on submodules of the whole sys- 
tem using a forcing approach [27]. Another purely 
top-down approach to modelling of whole-body metabo- 
lism has been attempted recently [28]. Models of the 
heart have been constructed bridging several levels of 
complexity [29]. While these models have been suc- 
cessful in describing the pumping function of the heart, 
their integration in a whole-body context is lacking. 

In principle, a whole-body model could be constructed 
simply by assembling models of all the individual pro- 
cesses involved. This is often the modelling strategy pur- 
sued in engineering, like for example robotics [30]. How- 
ever, the reality of biochemical systems is that most quan-  

titative aspects of the processes and regulatory systems 
are unknown at the molecular level, as is also the exact 
conditions in vivo under which they are operating. This 
makes modelling of whole-body function according to a 
strict bottom-up approach impractical. Even if enough 
information was available about relevant individual path- 
ways, the assembling of the necessary, very large amounts 
of data is not likely to produce a whole-body model that 
mimics the actual observed overall human physiology. It 
would seem that this was the lesson learned from the “sili- 
con cell” approach, where models constructed according 
to this approach could not be made to work appropriately 
[31-34]—as examined in [33] one is often required to 
change in vitro enzyme activities many fold in order to 
mimick in vivo behaviour of yeast glycolytic fluxes. One 
likely reason for these difficulties is the inevitable accu-
mulation of errors, which will arise during the measure-
ment of the individual parts of the system. Another poten-
tial source of problems is the transferability of in vitro 
measurements to in vivo conditions [35-37]. One might 
plan on improving the performance by extensive para- 
meter optimisation. However, as illustrated in Figure 1, 
the huge number of parts and parameters in such a model 
will lead to a combinatorial explosion that will render the 
task of parameter fitting very difficult, if not impossible. 
On the other hand, the silicon-cell approach has the great 
advantage of building directly on a vast amount of bio-
chemical knowledge. This sets out a straight-forward, 
rational, method for formulating biochemically realistic 
model structures. It also allows the modeller to apply 
standard biochemical methods and data that would have 
to be discarded with a strict top-down modelling strategy. 
Consequently, an optimal modelling strategy would com- 
bine the best sides of the top-down and silicon cell ap-
proaches, and lend from the developments of modular 
approaches already utilized in the modelling community, 
in for example engineering where hierarchical modelling 
has been applied successfully for years [30,38,39]; the 
purpose of the present paper is to propose such a stra- 
tegy. 

One of the top-down aspects of our strategy is that 
each dynamic organ model is constrained by net meta- 
bolic changes across the organ as defined by arterioven-
ous differences observed experimentally. Another is that 
the sum of the model outputs of all organs must equal the 
total turn over of the whole body. Similarly, the indivi- 
dual organ model can form absolute constraints for the 
modelling of the cells making up the organ. This princi-
ple of constraint can be applied recursively to indivi- 
dual organelles within cells as illustrated in Figure 1. 
This procedure complements the silicon-cell approach by 
circumventing the problems of error accumulation en- 
countered here, and ensures an over all realistic model 
behaviour in the predefined physiological state. The bot- 
tom-up aspect of the strategy is that the complexity of the  
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Figure 1. Hierarchical organisation of the body. The number of distinct components increases exponentially when a descrip-
tion of the body is made at lower levels of organisation: celltypes organs10n n  ; organelles cell types5n n  ; . 

Hence, complexity increases and the functional relevance of each component decreases accordingly. 
metabolites organelles30n n 

 
individual organ models can be chosen at will, so that 
any available silicon-cell model can be included in the 
metabolic whole body model. In essence, the top-down 
constraints act like “the cement” that combines indivi- 
dual silicon-cell building blocks. 

In practical terms, the modelling strategy developed in 
this communication, exploits the natural compartmenta- 
tion into organs to facilitate parameter estimation: The 
integrated function of each individual organ can in prin- 
ciple be studied in vivo by applying the Fick principle 
[40] by multiplying arterio-venous concentration differ- 
ences with blood flow across the organ. This experimen-
tal approach has been applied extensively in the study of 
organ physiology in the past and more recently also to 
study of brain energy metabolism as well as muscle-brain 
interactions providing data on the global metabolism of 
the human brain in vivo [41-43] at a time resolution of 
less than five seconds [44]. Combined with stable isotope 
infusion to the subject during the experiment yet another 
level of information on the dynamics of metabolism may 
be obtained [45]. 

In this paper a formalism that allows this kind of modu- 
lar, constrained metabolic whole-body modelling to be 
performed, is presented. Its use is illustrated on meta- 
bolic data describing two well-defined physiological states, 
fed and fasted. Finally, the mathematical tools for adapting 
specific organ models as modules of the whole-body 
model are presented. 

2. The Modelling Framework 

The whole-body model is a set of ordinary differential 
equations describing the dynamics of a large number of 
metabolite concentrations in many different, specific lo- 
cations of the body. The whole-body model consists of 
dynamic modules, the organ models, which are connected 
metabolically by connecting compartments, typically the 
blood and the interstitial compartments. The modules are 
the anatomical entities, heart, liver, brain, kidney etc, but 
also more disperse structures like the erythrocytes are 
treated as an organ. The connecting compartments are 
assumed to be metabolically inert, although this may not 
be strictly correct. An example of how a whole-body 
model may be structured is shown in Figure 2(d). 

Below we introduce the nomenclature, the mathemati- 

cal structure of the model, and the specific constraints on 
both level 0 (whole organism; cf. Figure 1) and level -1 
(individual organs). 

2.1. Definitions 

For each of the organ models, the chemical amounts in- 
side organ i is denoted by the vector mi. The time evo- 
lution of chemical amounts in organ model i is described 
by the set of ordinary differential equations, d di it m f . 
An example of the organs that could be described by fi 
and mi is given in Figure 2(a). 

The organ models interact through the connecting 
compartments as illustrated by ellipses in Figure 2(b). 
The chemical amounts in these connecting compartments 
are denoted by the matrix n. Rows correspond to chemi- 
cal substances, columns to compartments. Chemical sub- 
stances can be everything from ions, over metabolites to 
signalling molecules; in the remainder of the article, we 
will refer to this broad class of substances as “metabo- 
lites”. The dimension of n is M C , where M is the 
number of metabolites that are present in the connecting 
compartments, and C the number of such compartments. 
The constant matrix tD n  has the same structure, and 
contains the experimentally determined rates of change 
of metabolite m in the connecting compartment c in the 
physiological state . 

To keep track of the connections between organ mod- 
els and connecting compartments, we introduce Di, the 
 1C C   exchange matrix. This matrix is constructed 
from the identity matrix; diagonal elements, which cor- 
respond to compartments that have no physical contact to 
organ i, are changed to zeros. The matrix is finally aug- 
mented with a single row of zeros, to eliminate the stor- 
age subset of b (see below). These connections between 
organ models and connecting compartments are illus- 
trated in Figure 2(c). The definition of connectivity is 
purely technical in nature; it is only taken into account 
during the construction of the organ models. The actual 
mass flows between organ model i and the connecting 
compartments is contained in the  matrix 
function bi. The elements of bi are the transport and stor-
age subset of fi, i.e. a reordering of the elements corre-
sponding to reactions crossing the boundary between  

 1M C  
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organ and connecting compartment. The extra compart- 
ment column keeps track of the build up or depletion of 
storage compounds in the organ model. The constraints 
on the fluxes that the functions bi have to fulfil are given 
in i

b , of identical dimension.  refers to a specific 
physiological state. 

Due to the anatomical organisation of in- and out-flow 
to an organ there can be no uptake from the venous 
compartment and, likewise, no excretion to the arterial 
compartment. Blood flow directions thus create another 
technical constraint to be taken into account during the 
construction of an organ model. This direction of flow is 
shown as arrow heads in Figure 2(d). The information is 
contained in , the  flux direction matrix.  iD  1C  

The matrix has the same structure as Di, but both re- 
versible reactions and missing reactions have a zero di- 
agonal element. If there is only inflow from a compart- 
ment, the diagonal element is changed to –1, if there is 
only outflow it is left unchanged. Example 1 in the dis- 
cussion illustrates the definitions introduced above. 

2.2. Model 

A whole-body model takes the form of a set of ordinary 
differential equations, ODEs, describing both the time 
evolution of the chemical amounts of the metabolites be- 
ing exchanged between the organs and/or the surround- 
ings through the connecting compartments, as well as 
nternal conversions inside individual organs: i C
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Figure 2. Structure of a whole-body model with classes of structural elements being added from a to d. Boxes indicate organ 
models (a)-(d), ellipses indicate connecting compartments (b)-(d), lines between boxes and ellipses indicate connections (c)-(d), 
and arrows indicates mass flow directions (d). The dynamics of each organ is described by a kinetic model, and these organ 
models are coupled via the connecting compartments. GI tract, gastrointestinal tract; Port. V., portal vein; RBC, red blood 
cells; WBC, white blood cells. 
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Thus, a whole-body model is composed of a set of sub- 
models, each describing the metabolic function of an 
organ. The whole-body model is obtained by describing 
the interactions between these organ models via the con- 

necting compartments. The dynamics of the body’s over- 
all metabolism is simulated by numerical integration of 
Equation 1. 

2.3. Constraints 

In order to insure that the whole-body model yields phy-
siologically realistic simulations of a chosen physio- 
logical state , we establish the following constraint on 
the model at level 0: 
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In other words, the concentrations of the metabolites in 
the connecting compartments (the ellipses in Figure 2) 
should change at fixed rates that match the experimental 
observations in the physiological state . 

In addition, it is required that the functions of the indi- 
vidual organ models match reality. This means that their 
input-output relations must fit the experimental determi- 
nations. These functional organ constraints are given by 

 ,i i i
 b b m n               (3) 

i.e. there should exist an mi such that the rates of metabo-
lite transport and storage buildup match the measured val-
ues in the physiological state . An example of func- 
tional organ constraints is given in Section 3.4, Example 2. 

In addition to these nontrivial constraints on the be- 
haviour of the individual organ models, we impose the 
following technical constraints on i

b  and  ,i ib m n , 
which are based on blood flow direction and spatial orga- 
nisation of the organs in the blood circulation. Uptake by 
an organ can only occur from the in-flowing blood and 
vice versa for the out-flowing blood,  

i i
 b D 0                        (4) 

 , for alli i i ib m n D 0 m n ,

,

.      (5) 

Also, no organ model should exchange metabolites with 
connecting compartments, with which it is not physically 
connected:  

 i i
  b I D 0                       (6) 

   , for  alli i i i b m n I D 0 m n.     (7) 

2.4. The Process of Model Development 

The two main tasks of whole-body model construction are 
the experimental determination of functional organ con- 
straints i

b , and the adaptation of organ models fi to 
these functional organ constraints. Once an organ model 
has been adapted to the functional organ constraints, it 
can be plugged into the corresponding whole-body model, 
and the whole-body model is operational when all the 
organ models specified in the whole-body model structure 
have been plugged in. 

As indicated above, the functional organ constraints 
are calculated from simultaneous measurements of the 
blood flow and the concentration differences between 
arterial and venous blood across an organ in each of the 
specific physiological states . For each of these states, 
the resulting functional organ constraints must be inter- 
nally consistent in terms of mass balances, i.e. Equation 
2 should be fulfilled. 

The adaptation of an organ model to measured metabo- 
lite fluxes is a non-trivial problem of constrained optimi- 
sation, where the constraints are given by Equation 3. We 
demonstrate the feasibility of this crucial step in the fol- 
lowing section, where we give two explicit suggestions 
for adaptation of organ models to functional organ con- 
straints. Our approach is related to that of [46] and [34]. 

2.5. Matching the Fluxes of an Organ Model to a  
Specific Physiological State 

We propose a flux-matching strategy based on the for- 
malism of extreme currents, which provides an efficient 
way of describing all possible steady state fluxes in a 
chemical reaction system. See chapter II, Section C in 
[47] for details. The kinetics of a chemical reaction sys- 
tem is generally given by d dt   m f ν v , where  
is the stoichiometric matrix of the reaction network, and 

 is the velocity vector, which indicates the velocities 
of each of the reactions in the network. As before, f is the 
organ model and m is the vector denoting the chemical 
amounts inside the organ. (Note that the organ-denoting 
indices i have been left out, as we here deal with a single 
organ at a time.) The possible steady states of the reac- 
tion network can be found as the null space of v, i.e. the 
space of all vectors v for which . We will 
match the organ model to the flux matrix 

ν

v

  f ν v 0
b  at such a 

steady state; this steady-state constraint is more restric- 
tive than the constraint imposed by Equation 4, since 
strict stationarity is required for all non-storage metabo- 
lites in the organ. 

Geometrically, the part of velocity space where 
 ν v 0  is a polygonal cone (colloquially: an inverted 

pyramid of infinite height) extending from origo, and it is 
generally of lower dimension than the velocity space. 
This steady-state part of velocity space is known as the 
current cone, and the velocity vectors defining the edges 
of the cone are known as the extreme currents (“current” 
is short for steady-state velocity). Any steady state veloc- 
ity vector  can be represented by a point in the current 
cone and expressed as a “convex combination”, or linear 
combination with non-negative coefficients jk, of the ex-
treme currents Ek:  

v

.k k
k

j v E                  (8) 

This representation need not be unique, however. 
The functional organ constraints in the matrix b  

only define the input-output relations of the organ model, 
so many different steady-state flux distributions v will 
match. For each reaction r in v matching an element of 

b , the combined steady state and functional organ con- 
straints are given by: 

,r k
k

b j E  k r                (9) 
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where ,k r  are the elements of Ek. If the constraint 
cannot be met, then this implies that the reaction network 
(the “stoichiometry”) of the organ model makes it im- 
possible to have a steady state with the input-output rela- 
tions imposed by the functional organ constraints, and 
the network must be changed accordingly. 

E

The constraint is linear. If a quadratic optimisation cri- 
terion is given, then the efficient method of convex qua- 
dratic programming can be used to find a global optimum 
[48]. The optimisation criterion  would typically ex- 
press how close the steady-state flux v of the modified 
organ model is to that of a particular steady-state flux w  



in the original organ model, e.g. 
2

1k
k

k

v
K

w

 
 


  


  

with . If K is included in the parameter optimisa- 
tion, then this objective function defines the optimal 
steady-state as the one with the smallest relative flux 
changes compared to the original model, i.e. the flux dis-
tribution pattern is preserved while the flux magnitudes 
are allowed to change. If, on the other hand, K is fixed at 

0K 

1K  , then the optimal steady state is the one with the 
smallest absolute flux changes compared to the original 
model. Example 2 in the discussion illustrates the use of 
the flux-matching strategy presented above. 

2.6. Fixing an Organ Model at Its Optimal  
Steady-State Flux 

Once an optimal steady-state flux has been found, it must 
be ensured that the kinetics of the organ model allows it 
to operate at this steady-state flux. This can be done in 
several ways; we will now indicate a particularly simple 
one [46]. 

The rate of a chemical reaction r can be written as 
 where r  is the velocity parameter of 

the reaction, Kr is a vector containing the intrinsic pa- 
rameters of the reaction (i.e. all remaining parameters), 
and c is the concentration vector given by m and n. The 
splitting of the parameters into velocity parameters and 
intrinsic parameters makes it straight forward to fix a 
model at a particular steady-state flux v and a particular 
set of concentrations c, which we want to become steady- 
state concentrations of the modified organ model. For 
each reaction, the velocity parameter is now given by 

 ,r r r rv g c K









,r r r r . Operationally, this corresponds to 
adjusting the enzyme activities ( maxV  values) of the organ 
model, so as to meet the fluxes of the optimal steady state. 
The use of the method is exemplified in 3.4, Example 2. 

v g  c K

2.7. Adapting an Organ Model to Multiple  
Physiological States 

For multiple physiological states, the problem is essen- 
tially the same as above, only now, instead of a single set 

of transport matrices, we use several sets of b . In the 
different states, internal chemical amounts mi will in 
general be different, but parameters  and Kr are re-
quired to be the same between states. 

r

With several physiological states the problem can, in 
general, no longer be solved by adjusting only the velo- 
city parameters r , so the method must be expanded to 
include all parameters p and concentrations c  in the 
system. 

As before, each state, , gives a set of constraints on 
the convex coefficients in the corresponding state: 

,       0r k k r k
k

b j E j               (10) 

for all states,  , and elements of b, br. In addition, the in- 
dividual rate expressions must match the flux-distribution:  

  ,,r k
k

v j .k rEσc p              (11) 

The optimisation would typically be done using the ob-
jective function  

22

par met
,,orig ,orig

1 1k k

k kk k

p c
C C

p c






  
         

  ，     (12) 

where ,origk  are the reference parameters,  are 
the reference concentrations, and 

p ,origkc

par  and met  is a 
set of user-defined weights that determines the relative 
importance of the different classes of data. 

C C

Equations 11 are now nonlinear, and this might render 
the optimisation problem computationally very demand- 
ing. It is, however, possible to reduce the optimisation 
problem to a polynomial programming problem if certain 
parameters are not included in the optimisation—in the 
typical case, Hill coefficients would need to be excluded 
from the optimisation, but maxV  parameters, KM pa- 
rameters and c  vectors could be included. If the opti- 
misation is performed in this way, the global optimum 
can always be found [49,50]. 

3. Discussions 

We have developed a mathematical formalism that allows 
for realistic modelling of whole-body metabolism of any 
complexity. The formalism takes the form of a modelling 
framework, where models are established by a top-down 
approach designed to encompass detailed biochemical 
sub-models, which are typically constructed by a bot- 
tom-up silicon-cell like process [31-34]. A key feature of 
our approach is the exploitation of the natural modular 
structure (individual organs) of the body, which commu- 
nicates in terms of chemical mass flux via connecting 
compartments, primarily the blood. The mass flux be- 
tween organs is considered in terms of uptake, release 
and storage of substrates and products of metabolism, 
including inorganic ions. Other humorally transmitted  
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substances like hormones and other signaling molecules 
can also be included on the same level as other sub- 
stances. This structure of the framework also provides a 
realistic means of collecting the necessary experimental 
data at the organ level as arterio-venous concentration 
differences. To complete the experimental data sets it is 
also necessary to have organ blood flow information in 
order to quantify the net mass balance across the organ as 
well as tissue biopsies to quantify the balance of organ 
mass storage. For humans such data already exists for 
skeletal muscle [51-53] and brain [54,55] However, for 
the human brain, biopsy data is normally not available in 
vivo, albeit they may be obtained in special cases [56]. In 
addition, similar data sets may be generated by the use of 
non-radioactive, stable isotope technique [45,53,57]. In 
animal studies it will be possible to obtain complete data 
sets for all major organ systems, using also radioactive 
tracer techniques, albeit multi-organ data from the same 
animal will be technically very demanding. 

While it is mathematically straightforward to expand 
this modular approach to more detailed structures, like 
cell types within an organ, or indeed the organelles of the 
cell, the major challenge in this direction will be to col- 
lect the necessary data. In contrast to the methodology 
proposed here for whole organs, the experimental tech- 
niques for probing input-output relations at the cellular or 
subcellular level will be highly dependent on the system 
studied. Even if no data can be obtained, the individual 
submodules would of course still be subject to whole- 
organ constraints. The modular nature of the approach 
would make it natural to adapt many of the modular 
techniques already in use in systems biology for con- 
straining the individual submodules [12-17]. 

3.1. Limitations 

One major assumption of the modelling framework as it 
is presented here is that the connecting compartments are 
biochemically inert. Biochemical processes do indeed 
occur in blood plasma, and some enzyme activities are 
present, but we expect that the overall metabolic activity 
is negligible compared to that of the organs. If this as-
sumption proves wrong in special cases, we suggest that 
models of the unexplained metabolic activity can be de- 
scribed as a new organ model connected to the compart- 
ment in question. 

While we have chosen to focus the description on well 
defined physiological states, a natural extension of the 
proposed strategy would be to collect metabolite concen- 
tration and flux data during transitions from one physio- 
logical state to another, like rest to exercise, fed to fasted 
or normal to diseased states. Experimentally, this would 
involve time series sampled at a suitable time resolution. 
This data can serve as additional input to the organ model 
adaptation step, for example by using a forcing approach 

to ensure a more realistic behaviour of the full model. 
At this stage our framework does not include model-

ling of the blood circulation. However, during transitions 
between states, e.g. rest to exercise, there are major flow 
changes. Such changes could, however, be modelled 
based upon experimental monitoring of blood flow by 
ultrasound Doppler sonography [44]. 

3.2. The Process of Generating Whole-Body  
Models 

The workflow associated with the construction of the full 
model, applying the formalism detailed above, is illus- 
trated in Figure 3. As shown the assembly and formula- 
tion is associated with a number of work processes. We 
suggest some tools needed for these work processes in 
the methods section. In the supplementary material the 
use of the formalism is exemplified by steady state data 
sets for human metabolism in the fed and the fasted state, 
and the adaptation of existing silicon-cell organ models 
to these data sets is exemplified with an existing eryth- 
rocyte model [9,10]. 

The formats necessary for the collaborative process are 
described in detail in Supplementary material. In short, 
whole-body model structures are represented in custom 
XML files with a hierarchical structure of physiological 
states, organs, connecting compartments and transported 
or stored metabolites. Organ models are represented in 
SBML [58] with additional identifiers that denote the 
name of the organ, and list the reactions that correspond 
to transport in and out of connecting compartments. 

To make the proposed whole-body modelling approach 
operational, and add-on package to the SBtoolbox2 [59], 
that can perform the processes indicated by circles in 
Figure 3 would solve the problem. The construction of 
whole-body models is, however, entirely implementation 
specific, and the standardised file formats will allow al-
ternative tools to be constructed. 

3.3. Example 1: A Simple Whole-Body Model  
Structure 

To illustrate the structures of the constraint and flow di- 
rection matrices introduced above, we introduce the sim-
ple model of the Cori cycle given in Figure 4. The model 
keeps track of extracellular glucose and lactate as well as 
glycogen storage, in that order. The connecting compart-
ments are ordered as {arterial plasma, venous plasma}. 
The organs are ordered as: {muscle, liver, IO}. 

The exchange matrices for this system become: 

muscle liver IO

1 0

0 1 .

0 0

 
   
 
 

D D D 
         (13) 

The flux direction matrices become:  
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Figure 3. Workflow for the construction of whole-body models. Ellipses represent work processes, squares information or 
data structures. Greyed shapes indicate application or researcher specific processes/data structures; white represent data 
structures that requires a fixed format for collaboration. 
 

 

Figure 4. Simple Cori cycle whole-body model structure. 
 

muscle liver IO

1 0 1 0

0 1 , 0 1 .

0 0 0 0

   
       
   
   

D D D   





  (14) 

The amount matrix for the system in a given state could 
be:  

A,glucose V,glucose

A,lactate V,lactate

0 0

n n

n n

 
 
 
 

n             (15) 

where A and V denotes arterial and venous plasma, re-

spectively. 
The functional organ constraint matrix for an organ 

has the following structure: 

A,glucose V,glucose glucose

liver A,lactate V,lactate lactate

A,glycogen V,glycogen glycogen

t t s

t t s

t t s



 
 

  
 
 

b      (16) 

where t denotes the amount transported per time to or 
from a compartment, and s storage per time in the organ. 
The matrix function liver  has the same structure, only 
with functions instead of specific numbers. 

b

3.4. Example 2: Functional Organ Constraints  
and Adaptation of an Organ Model 

3.4.1. Functional Organ Constraints 
An example of a more detailed whole-body model struc- 
ture is shown in Figure 5. Tables 1 and 2 show estimates 
of the corresponding organ input-output relations in two 
physiological states, i.e. the tables provide functional 
organ constraints ( i

b  matrices) for construction of or-
gan models that match the two physiological states. One 
of the states is the early post-absorptive state, where 
glycogen is being synthesized in liver and skeletal mus- 
cle, triglycerides are being stored in adipose tissue, and 
protein is being build up in skeletal muscle. The other  
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Figure 5. The whole-body model structure of Tables 1 and 2. Organs 5 - 10 = {muscle, fat, brain, heart, kidney, other}. Port V. 
is the portal vein, and the RBC organ is the erythrocytes. 
 

Table 1. Functional organ constraints for the early post-absorptive phase ( = pap). 

 
pap

liverb  
(μmol/min) (μmol/min)

pap

muscleb  
 

pap

fatb  
(μmol/min) 

pap

brainb  
(μmol/min) 

pap

heartb

(μmol/min)

pap

kidneyb

(μmol/min)

pap

RBCb

(μmol/min)

pap

gutb

(μmol/min)

pap

otherb

(μmol/min) 

pap

lungsb  
(μmol/min) 

pap

Ac  
(mM) 

pap

PVc

(mM)

pap

Vc

(mM)

glucose –724 –840 –646 –452 –103 –90 –155 3140 –129 0 5.7 9.3  

lactate –116 0 –194 0 0 0 310 0 0 0 0.9 0.9  

FA 26 –278 0 0 –32 –14 0 311 –13 0 8 8.4  

AA –827 –1292 0 0 0 0 0 2119 0 0 1.6 4.3  

urea 414 0 0 0 0 –414 0 0 0 0 5 5  

KB 0 0 0 0 0 0 0 0 0 0 0.1 0.1  

O2 –2623 –7224 –246 –2714 –1460 –912 0 –1551 –1111 17840 8.0 6.0 4.3

CO2 2416 5001 1512 2714 1202 799 0 1551 1008 –16202 20 22 23

glycogen 646 840 0 0 0 0 0 0 0 0    

TG 0 0 52 0 0 0 0 0 0 0    

protein 0 1292 0 0 0 0 0 0 0 0    

 
pap

liverJ  
(mL/min) 

pap

muscleJ  
(mL/min) 

pap

fatJ  
(mL/min) 

pap

brainJ  
(mL/min) 

pap

heartJ  
(mL/min)

pap

kidneyJ

(mL/min)

pap

RBCJ  
(mL/min)

pap

gutJ  
(mL/min)

pap

otherJ  
(mL/min) 

pap

lungsJ  
(mL/min) 

   

 325+800 1000 250 600 200 800 - 800 1025 5000    

σ
iJ  is the blood flow through organ i [63],  denotes the net rate of uptake of the corresponding organ, and Δ σ

ib cσA , , and  denote the concentra-

tions in the arterial, venous, and portal vein connecting compartments, respectively. Concentrations, which are irrelevant for the functional organ constraints, 
are not included. AA is quantified as alanine, FA as C18H36O2, glycogen as glucose residues, KB as β-hydroxybutyrate, TG as C57H110O6, and protein as 
alanine residues. A total blood volume of 5 L is assumed, and the blood distribution is 20% arterial, 70% venous and 10% other [64]. Abbreviations: AA, amino 
acids; FA, fatty acids; KB, ketone bodies; RBC, red blood cells (erythrocytes); TG, triglycerides. 

cσV cσPV
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Table 2. Functional organ constraints for 36 hours of starvation ( = stv). The cardiac output has been scaled to match the 
reduced energy turnover [65]. See Table 1 for additional details and explanations. 

 
stv

liverb  

(μmol/min) (μmol/min) 

stv

muscleb  stv

fatb  

(μmol/min) 

stv

brainb  

(μmol/min) 

stv

heartb

(μmol/min)

stv

kidneyb

(μmol/min)

stv

RBCb

(μmol/min)

stv

gutb  

(μmol/min)

stv

otherb

(μmol/min) 

stv

lungsb  

(μmol/min) 

stv

Ac  

(mM) 

stv

PVc

(mM)

stv

Vc

(mM)

glucose 613 –44 0 –298 –18 –61 –105 0 –88 0 4.6 4.6  

lactate –210 0 0 0 0 0 210 0 0 0 0.9 0.9  

FA –57 –118 232 0 –13 0 0 0 –44 0 10 10  

AA –1016 1016 0 0 0 0 0 0 0 0 2.1 2.1  

urea 508 0 0 0 0 –508 0 0 0 0 10 10  

KB 22 0 0 –9 –13 0 0 0 0 0 2 2  

O2 –1381 –3336 –271 –1826 –506 –368 0 0 –1664 9352 8 8 4.3

CO2 429 2391 232 1821 394 368 0 0 1314 –6949 20 20 23 

glycogen 0 0 0 0 0 0 0 0 0 0    

TG 0 0 –77 0 0 0 0 0 0 0    

protein 0 –1016 0 0 0 0 0 0 0 0    

 
stv

liverJ  

(mL/min) 

stv

muscleJ  

(mL/min) 

stv

fatJ  

(mL/min) 

stv

brainJ  

(mL/min) 

stv

heartJ  

(mL/min)

stv

kidneyJ  

(mL/min)

stv

RBCJ  

(mL/min)

stv

gutJ  

(mL/min)

stv

otherJ  

(mL/min) 

stv

lungsJ  

(mL/min) 
   

 163 + 400 425 125 300 100 475 - 400 512 2500    

 
state is the 36 h starved state where glycogen has been 
used up, and the organism is living off its own energy 
reserves, including breakdown of triglycerides for energy 
production and the use of muscle protein as substrate for 
the necessary hepatic gluconeogenesis, fueling brain, 
erythrocytes and other tissues needing glucose. 

The estimates are constructed by considering the nor- 
mal physiological functions of the organs in these two 
states [60-62], while also imposing a number of level 0 
constraints. The major constraints are energy consump- 
tions of 3000 kcal/24 h in the post-absorptive state and 
1500 kcal/24 h in the starved state (this applies for a nor- 
mal, young human) and the corresponding O2 and CO2 
exchange rates in the lungs. We also impose mass balance 
and a whole-body steady-state criterium, Equation 2 in 
the main text with t . For simplicity, all protein 
is represented as poly-alanine, all amino acids as alanine, 
all carbohydrate as glucose and glycogen, all fatty acids 
as stearic acid and all triglyceride as glycerol-tri-stearyl. 
The energy consumption of the biosynthesis reactions 
included in the tables are not accounted for, but the over-
all oxidation of all the substrates involved, including the 
storage molecules, is accounted for by standard mass 
equations of oxidation, e.g. CH3(CH2)16COOH + 26O2 

 18CO2 + 18H2O for the oxidation of stearic acid and 
28C6H12O6 + 5O2  2C57H110O6 + 54CO2 + 58H2O for 
the synthesis of glycerol-tri-stearyl from glucose. 

D  n 0




Functional organ constraints are given by i
b  matri- 

ces; these are presented in a condensed form in Table 1 
and Table 2: For all organs except the erythrocytes 
(RBC), i

b  is defined by the specific, constant blood 
flow through organ i, iJ  , and by its net metabolite up- 

take rates i
b . For the RBC, there is no blood flow 

through the organ, and RBC  is the net metabolite up- 
take rate. The Dj and  matrices are given implicitly 
by Figure 5. 

b

iD

3.4.2. Adaptation of an Organ Model to Functional  
Organ Constraints 

We have applied the flux matching method and the model 
adjustment procedure to adjust the erythrocyte model 
described by Mulquiney and Kuchel [9] to the functional 
organ constraints described in Table 1. The erythrocyte 
model includes all major aspects of the erythrocyte’s me-
tabolism: the pentose phosphate pathway (PPP), glycoly-
sis and the 2,3-bisphosphoglycerate shunt (2,3-BGP 
shunt). The reaction network consists of 59 net reactions 
and 63 metabolites and other substances. After flux- 
matching, the model is left with four active net extreme 
currents. One of these is glycolysis, another is glycolysis 
where the phosphoglycerate kinase reaction is bypassed 
by the 2,3-BPG shunt. In addition, two net extreme cur- 
rents related to the 2,3-BPG synthase/phosphatase com- 
plex are active, albeit with very low net fluxes. Solution 
of the quadratic programming problem (cf. Matching the 
fluxes of an organ model to a specific physiological state 
above) yields the optimal distribution of flux between 
these four extreme currents, and dictates that all other 
parts of the reaction network must have zero net flux. 
Biochemically, this corresponds to closing down the PPP 
because no CO2 production and no pyruvate consumption 
is allowed by the functional organ constraint RBC . This 
results in a 6% relative decrease of the hexokinase flux, a 
relative flux increase of 2% - 4% from phosphoglucoi-

b
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somerase to aldolase, and in less than 1% relative flux 
decrease in the lower part of glycolysis. The 2,3-BPG 
shunt has almost unaltered relative flux, and the relative 
increase of the ATPase flux is 1%. To fix the model at 
this optimal steady-state flux, all  values are changed 
proportionally. 

maxV
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Supplementary Material: Data representation 

Representation of Whole-Body Models and Their Components 

Representation of Entities by Identifiers 
Unambiguous definitions of all entities are insured by the use of unique identifiers in the model descriptions. A unique 
identifier is a name (an NC name data type in XML Schema) and a Uniform Resource Identifier (URI). The URI serves 
as a name space for the identifier, pointing to the source of the original definition of the name. For large projects a list 
of identifiers should be maintained at the project website—this database will include additional information about the 
species like the CAS number or number of carbon, nitrogen, and oxygen atoms if available. The identifiers facilitate 
collaboration by making it possible for individual research groups to use their own local names for entities. The inclu-
sion of a URI serves to allow different groups of researchers to define their own sets of identifiers without having to 
worry about potential naming collisions. This scheme obviates the need for a central authority to issue unique identifi-
ers. 

The identifiers make it possible for individual research groups to use their own local names for entities, while still fa-
cilitating collaboration by including unique identifiers. The inclusion of a URI serves to allow different groups of re-
searchers to avoid the headache of avoiding naming collision. In this scheme there is no need for a central authority for 
assigning unique identifiers. 

Entities represented by identifiers are chemical species, organs, connecting compartments, physiological states and 
organ connections (identifying specific in- and out-flows from the organs). These identifiers are referenced in both the 
organ and whole-body files, providing a means to connect the individual organs. 

Identifiers can be left out if the modelling framework is used for smaller projects. In this case, the entity is referenced 
by using the local name in the XML file. The author is then advised to include contact information and a description of 
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the entity in the XML document. 

The Whole-Body Model Structure 
The model structure file format has several types: the WBM_MODEL_INSTANCE, WBM_MODEL_CONSTRAINTS 
and WBM_MODEL_STRUCTURE, each with different restrictions on content. 

The top of the document specifies the document type, then follows a set of fields: Model information, list of physio-
logical states, list of compartments, list of species and, finally, a list of organs. 

 
<?xml version="1.0"?> 
<wbms type="WBM_MODEL_INSTANCE" xmlns=" http://HuMMproject.org/wbm/v0/structure"> 

... 
</wbms> 

Model Information 
Contains an author name and model notes. Author information is required in all file sub-types. Notes are always op-
tional. 

 
<name> 

WBM Structure example 
</name> 
<notes> 

A Simple test case of a whole body model structure instance. 
</notes> 
<id>test_i</id> 

List of Physiological States 
The list of physiological states references a number of physiological states, which the organ models are required to ful-
fill. Each physiological state has a local name and a list of IDs, containing the URI of the state definition. 

 
<listOfPhysiologicalStates> 

<physstate localname="pas"> 
<id source="http://HuMMproject.org/ns/wbm/v0/states">post_absorptive_state</id> 
<compartment name="Art" volume="2"> 

<species name="A" concentration="2.15"/> 
</compartment> 

</physstate> 
</listOfPhysiologicalStates> 

List of Compartments 
List of Compartments contains a list of connecting compartments. Each compartment has an optional attribute specify-
ing the initial volume, and a list of IDs. Finally, if physiological states have been defined, a volume must be specified 
for each state (referencing the local name of the state). 

 
<listOfOompartments> 

<compartment localname="Art" volume="1.1"> 
<id source="http://HuMMproject.org/ns/wbm/v0/compartments">arteries</id> 

</compartment> 
<compartment localname="Ven" volume="2.3"> 

<id source="http://HuMMproject.org/ns/wbm/v0/compartments" >veins</id> 
</compartment> 

</listOfCompartments> 

List of Species 
The list of species contains a list of the species present in the connecting compartments. Each of these species contain a 
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list of IDs as well as the initial concentration in each connecting compartment. Finally, each species contains a list of 
concentrations in each compartment for each defined physiological state. Initial conditions are required only for the 
model instance, and the physiological state concentrations are required only for the model constraints. 

 
<listOfSpecies> 

<species localname="A"> 
<id source="http://HuMMproject.org/ns/wbm/v0/metabolites">Aex</id> 
<initialconcentration compartment="Art" value="2.3"/> 
<initialconcentration compartment="Ven" value="4.5"/> 

</species> 
 

<species localname="B"> 
<id source="http://HuMMproject.org/ns/wbm/v0/metabolites">Bex</id> 
<notes>Some notes for species B...</notes> 
<initialconcentration compartment="Art" value="1.2"/> 
<initialconcentration compartment="Ven" value="3.4"/> 

</species> 
</listOfSpecies> 

List of Organs 
The list of organs introduces the organs of the model and their connections to the connecting compartments. Each organ 
contains a list of IDs, and a list of connections. The connection specifies the name of the flow direction, and a previ-
ously defined connecting compartment. The connection also contains an ID, specifying the type of connection (used 
internally in the organ model). If physiological states have been defined, the model contains a list of input-output rela-
tions for each state. 

 
<listOfOrgans> 

<organ localname="liver" file="OrganExample1.xml"> 
<id source="http://HuMMproject.org/ns/wbm/v0/organs">liver2</id> 
<connection localname="input1" direction="in" compartment="Art"> 

<id source="http://HuMMproject.org/ns/wbm/v0/connections">primary_input</id> 
</connection> 
<connection localname="output1" direction="out" compartment="Ven"> 

<id source="http://HuMMproject.org/ns/wbm/v0/connections">primary_output</id> 
</connection> 

</organ> 
 

<organ localname="muscle" file="OrganExample2.xml"> 
<id source="http://HuMMproject.org/ns/wbm/v0/organs">muscle1</id> 
<connection localname="output1" direction="out" compartment="Art"> 

<id source="http://HuMMproject.org/ns/wbm/v0/connections">primary_output</id> 
</connection> 
<connection localname="input1" direction="in" compartment="Ven"> 

<id source="http://HuMMproject.org/ns/wbm/v0/connections">primary_input</id> 
</connection> 

</organ> 
</listOfOrgans> 

Organ Models 
Organ models are SBML files that can be integrated in a whole-body model. An example organ model file can be found 
on the project website. All entities in SBML files such as compartments, species, and whole models have an optional 
annotation field. The model itself has an annotation field denoting the organ being modelled, and the physiological 
states it fulfills. 
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<annotation xmlns:wms="http://HuMMproject.org/wbm/v0/structure"> 
<wms:id wms:source="http://HuMMproject.org/ns/wbm/v0/organs">liver2</wms:id> 
<wms:listOfPhysiologicalStates> 

<wms:physstate wms:localname="pas"> 
<wms:id wms:source="http://HuMMproject.org/ns/wbm/v0/states">post_absorptive_state</wms:id> 

</wms:physstate> 
<wms:physstate wms:localname="starv"> 

<wms:id wms:source="http://HuMMproject.org/ns/wbm/v0/states">starved_state</wms:id> 
</wms:physstate> 

</wms:listOfPhysiologicalStates> 
</annotation> 
 
The identifiers of the physiological states and organ type can be cross referenced with the whole-body model descrip-

tion, allowing the model construction to fail at an early point if incompatible models are being combined. 
All compartments in the model also include annotation containing information about the compartment volume in the 

defined physiological states. Connecting compartments also include an identifier (unless the compartment is represented 
solely by its local name): 

 
<annotation xmlns:wms="http://HuMMproject.org/wbm/v0/structure"> 

<wms:id wms:source="http://HuMMproject.org/ns/wbm/v0/connections">primary_input</wms:id> 
<wms:physvol wms:ref="pas">1.1</wms:physvol> 
<wms:physvol wms:ref="starv">1.2</wms:physvol> 

</annotation> 
 
All species contain information about their physiological state concentrations. Species located in the connecting 

compartments are also represented by their identifier: 
 
<annotation xmlns:wms="http://HuMMproject.org/wbm/v0/structure"> 

<wms:id wms:source="http://HuMMproject.org/ns/wbm/v0/metabolites">B</wms:id> 
<wms:type>internal</wms:type> 
<wms:physconc wms:ref="pas">1.13</wms:physconc> 
<wms:physconc wms:ref="starv">1.23</wms:physconc> 

</annotation> 
 
The type has three possible settings storage, external and internal (default value). All species in the connecting (ex-

ternal) compartments are constant in the organ models, and have the boundary condition field set to true. 
The storage and external identifiers serve the purpose of linking storage compounds and metabolites in the connect-

ing compartments to their referencing species in the organ model. The organ identifier makes it possible to check that 
the individual organ models fit the role they are given in the whole body model. 

 


