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ABSTRACT 

Protein-protein complexes play an important role in the physiology and the pathology of cellular functions, and there- 
fore are attractive therapeutic targets. A small subset of residues known as “hot spots”, accounts for most of the pro- 
tein-protein binding free energy. Computational methods play a critical role in identifying the hotspots on the protein- 
protein interface. In this paper, we use a computational alanine scanning method with all-atom force fields for predict- 
ing hotspots for 313 mutations in 16 protein complexes of known structures. We studied the effect of force fields, solva- 
tion models, and conformational sampling on the hotspot predictions. We compared the calculated change in the pro- 
tein-protein interaction energies upon mutation of the residues in and near the protein-protein interface, to the experi- 
mental change in free energies. The AMBER force field (FF) predicted 86% of the hotspots among the three commonly 
used FF for proteins, namely, AMBER FF, Charmm27 FF, and OPLS-2005 FF. However, AMBER FF also showed a 
high rate of false positives, while the Charmm27 FF yielded 74% correct predictions of the hotspot residues with low 
false positives. Van der Waals and hydrogen bonding energy show the largest energy contribution with a high rate of 
prediction accuracy, while the desolvation energy was found to contribute little to improve the hot spot prediction. Using 
a conformational ensemble including limited backbone movement instead of one static structure leads to better predict- 
tion of hotpsots. 
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 1. Introduction 

Protein-protein complexes are involved in various physio- 
logical processes and are also challenging targets for 
various pathological conditions. Protein-protein interac- 
tion surfaces are large and hence designing small mole- 
cule inhibitors that would disrupt the complex formation 
is a major challenge. It is known that a small subset of 
residues known as “hot spots” accounts for most of the 
protein-protein binding free energy [1]. Hot spots are 
shown to be surrounded by energetically less important 
residues forming a “hydrophobic O-ring” responsible for 
bulk solvent exclusion [2]. Identification of hotspots in 
protein-protein complexes is still challenging both ex-
perimentally and computationally, yet important to un-
derstand protein-protein binding and complex stability. It 
has been found that hot spots cannot be unequivocally 
defined by any single attribute such as location of the 
residue in the protein complex, charge, protein shape, or 
hydrophobicity [3-6]. Experimentally, alanine scanning 

mutagenesis has been used successfully on few protein- 
protein complexes to probe the effect of these mutations 
on the stability of the protein-protein complexes to iden- 
tify hot spots [7-11]. But alanine scanning mutagenesis is 
both laborious and expensive because hundreds of mu-
tants need to be analyzed by biophysical methods [12]. 
Moreover, there are hotspots that are not in the protein- 
protein interface. Such “allosteric hotspots” are more 
tedious to locate using experimental techniques. Therefore 
computational alanine scanning methods that can reliably 
predict hotspots and quantify the binding free energy is 
desirable [13-16]. 

In the past decade, a number of computational alanine 
scanning methods have been developed to identify hot 
spots. Simple empirical energy-based computational 
methods [17,18], linear interaction energy methods [19], 
Monte Carlo methods [20], and FOLDEF whose energy 
terms are derived for predicting protein stability [21] are 
computationally feasible, while still providing good pre- 
diction for more than 70% of the mutants. All these 
methods use a single protein-protein complex conforma- *Corresponding authors. 
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tion from the crystal structure and empirical energy terms 
to calculate the change in protein-protein binding energy 
upon mutation. Protein-protein complexes are particu-
larly dynamic and it is important to account for this 
flexibility while calculating the possible hotspots [22]. 
The protein-protein binding free-energy calculation using 
an all-atom forcefield (FF) combined with molecular 
dynamics simulations, has been used to improve the pre-
diction of hot spots [16,23-26]. These methods provide 
good qualitative prediction of results, but they are still 
computationally intensive for many large protein-protein 
complexes [15]. There is change in binding free energy 
measured for several single point mutants in sixteen pro-
tein-protein complexes with known crystal structures of 
the complexes [17]. This serves as a gold standard for 
validating any computational method to predict hotspots. 

In this paper, we have used alanine scanning method 
with all-atom forcefields (FF) and conformational sampling, 
for identifying hotspots in 16 different protein-protein 
complexes. We have compared the performance of various 
commonly used FF such as Charmm27 [27], AMBER9 
(ff03) [28], and OPLS (2005) [29], towards prediction of 
hotspots in 16 protein-protein complexes with known 
crystal structures. We have also studied the role of im-
plicit solvation methods such as Delphi [30], and Adap-
tive Poisson-Boltzman solvation APBS [31], in the hot-
spot predictions. Protein-Protein complex interfaces are 
dynamic and hence conformational sampling could play 
an important role in identifying hotspots. To keep the 
conformational sampling procedure computationally vi-
able, we used a fast conformational sampling method 
based on geometric constraints Concoord [32], and studied 
the effect of sampling on the calculated protein-protein 
binding energies. Our results show that the Charmm27 
FF predicts 74% of correct positives with a low percent- 
age of false positives, while the AMBER force field (FF) 
performed better for the hot spot prediction (86% correct 
out of a total of 115 mutations), while showing a high 
rate of false positives. Desolvation energy was found to 
contribute little to improve the hot spot prediction effi- 
ciency. This is understandable given that most of the 
hotspots are dominated by small and hydrophobic resi- 
dues [33]. Conformational sampling with Concoord im- 
proves the prediction efficiency of hot spots from 85% to 
90%. 

2. Computational Methods 

2.1. Datasets 

Datasets of single mutations and mutational data for 16 
chosen protein complexes were taken from reference [17] 
and references therein, www.rtc.riken.go.jp/jouhou/pro 
therm/protherm.html, and http://mullinslab.ussf.edu/kurt 
/hotspot/index.php. The 16 protein complexes are shown 
in Table S1 of the supporting information. 

2.2. Preparation of the Protein-Protein 
Complexes and Mutations 

The coordinates of the 16 protein-protein complexes (shown 
in Table S1) were downloaded from the PDB databank. 
The program VMD [34] was used to add hydrogens. The 
potential energy of each protein-protein complex was 
minimized for 500 steps using conjugate gradient method 
in NAMD [35] (with Charmm force field [27]) and then 
annealed to 300K temperature. The annealed structures 
were minimized for 200 steps of conjugate gradient 
method in AMBER [28], Maestro 7.5 [36] upon which 
the minimization converged. 

2.3. Methods for Calculating Protein-Protein 
Binding Free Energy and Alanine Scanning 
Mutations 

We have calculated the protein-protein binding free en-
ergy using [24] 

 binding complex partner A partner BΔG ΔG ΔG ΔG     (1) 

where 
ΔG = Egas + ΔGsolvation 
Egas = Einternal + Eelectrostaic + Evdw 
Einternal = Ebond + Eangle + Etorsion 

The Ebond, Eangle, Etorsion are contributions to the internal 
energy from the bonds, angles, torsion angles. The Eelectro-

static, Evdw are the electrostatic and van der Waals interac-
tion energies, respectively. Egas was calculated using 
NAMD energy plugin in VMD [34] (for the Charmm FF 
[27]), MM_PBSA for the AMBER 9 FF (ff03 force field) 
[28], and Maestro 7.5 [36] for the OPLS2005 FF [29]). 
ΔGsolvation is the polar contribution to the solvation energy 
and was calculated using two methods, Delphi [30] (with 
0.5 Å spacing grid, 1000 iterations, a dielectric constant 
of 2 for solute, 80 for exterior medium), and Adaptive 
Poisson-Boltzman Solvation APBS [31] (with 0.5 Å 
spacing grid, 1000 iterations, a dielectric constant of 2 
for solute, 80 for exterior medium). Mutations were 
modeled using a mutation plugin in VMD [34]. And no 
more further optimization was performed [26]. 

The change in binding energy of the two monomers of 
a protein-protein complex, due to mutation to alanine is 
given by 

  mut wt
bindingΔΔG ΔG binding ΔG binding     (2) 

where “mut” represents mutants, WT represents wild 
type structures. Gbinding is the change in binding energy 
of the two monomers upon mutation of a single residue 
in the complex to alanine. 

2.4. Hydrogen Bonding Energy 

Since none of the FF tested here have an explicit hydro-
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gen bond term, we have examined the effect of hydrogen 
bonding potential on the protein-protein binding energy, 
using a stand alone hydrogen bond potential [37]. The 
hydrogen bond potential we have used is given by: 

       
hbond

6 4 4
D-A D-A 0 D A

E

R R cos SW Rε σ σ θ θ 
    

(3) 

where ε is a weight of the hydrogen bond interaction; σ is 

2.5. Concoord Conformational Sampling 

oncoord 

3. Results and Discussion 

rgy (interaction energy 

protein-protein interactions. Neutral residues do not af-

elds 

 

of Hotspots 

rce fields and solvation models for hot spot prediction. 

)

given by  = 1.73R0, R0 is the optimal distance between 
hydrogen donor D and acceptor A at minimal potential, 
Emin; θ and θ0 are the D-A-AA and target D-A-AA angles, 
respectively (D indicates donor; A , acceptor; AA, ac-
ceptor antecendent). SW is a switching function [38] to 
smoothly decrease Ehond to zero beyond a cut-off dis-
tance. 

Conformational sampling was performed using C
[32], a method that starting from a crystal structure, gen-
erates protein conformations that fulfill a set of upper and 
lower interatomic distance limits which depends on dis-
tances measured in experimental structures and the 
strength of the interatomic interactions. For each wild 
type protein complex structure, we generated 60 con-
formers [from reference 39, 60 is a reasonable number of 
conformers for convergence] and then performed alanine 
scanning mutation for each of the 60 conformers. For 
each conformer, mutations were modeled using a muta-
tion plugin in VMD [34]. And no more further optimiza-
tion was performed [26]. The binding energy was calcu-
lated as the average of all the binding energy for each 
conformation in the ensemble. 

The change in binding free ene
between partners of protein complex + desolvation en-
ergy) as defined in the methods section was calculated 
for a total of 313 mutations in 16 protein-protein com-
plexes. This test set was chosen due to availability of the 
experimentally measured change in binding free energies 
upon several alanine mutations. Additionally, these 16 
protein complexes have known crystal structures. In our 
calculations, hot spots are defined as residues that show a 
change in calculated or observed binding affinities of 
more than 1 kcal/mol upon alanine replacement, and 
“neutral residues” are those positions which upon muta-
tion to alanine show less than 1 kcal/mol difference in 
predicted or observed protein-protein binding affinities 
[17]. The number of total hotspots is a combination of 
those hotspots present in the protein-protein interaction 
interface, and the hotspots that have allosteric effect on 

fect the protein-protein interaction upon mutation. 

3.1. Comparison between Different Force Fi

Table 1 shows the % correct predictions for various FF
and also the various energy components in each of these 
FF. The first three rows of Table 1 shows the percentage 
of hotspots and neutral residues predicted correctly with 
various all-atom FF. The AMBER FF performed better 
among the three, with 86% correct prediction of total 
hotspots and 93% for the hotspots in the interface, while 
showing a high percentage of false positives or low per-
centage of correct prediction of neutral residues as shown 
in Figure 1. The Charmm27 FF on the other hand shows 
good prediction for both hotspots (74%) and for neutral 
residues (61%) and the OPLS force field predicted the 
least number of hot spots among the three FF. All of the 
three force fields predicted more than 60% of the hot 
spots. Interfacial hot spots have higher percentage of 
correct prediction than the allosteric ones. 

3.2. Effect of Solvation on Prediction 

Two continuum solvent methods solving the Poisson- 
Boltzman equations, namely the Adaptive Poisson-Bol- 
tzman solvation (APBS) [31] and Delphi [30] were tested 
in the prediction of hot spots. From Table 1, it is seen 
that inclusion of solvation effects using Delphi improved 
 
Table 1. Comparison of the performance of different all-atom 
fo

Force Field +  
desolvation 

Neutral residues 
(%) 

Total hot 
spots (%) 

Hot spots in 
interface (%

Charmm 61 74 80 

OPLS 60 61 63 

AMBER 39 86 93 

Charm

OPL

Charm

Charm

Charm 0

m + delphi 64 79 82 

S + delphi 55 55 59 

AMBER + delphi 42 83 85 

m + APBS 61 48 52 

OPLS + APBS 64 37 40 

AMBER + APBS 51 73 81 

Charmm-vdw 68 76 82 

Charmm-diel-4.0 66 80 90 

m-vdw + Hbond 61 81 88 

m-concoord-4. 50 85 95 

C alculat nding affinit s using van als 
om Ch m force fiel harmm-die epre-

harmm-vdw represents c ed bi ie der Wa
interaction energy only fr arm d; C l-4.0 r
sents prediction from Charmm force field with a dielectric constant of 4.0; 
Charmm-vdw + Hbond represents prediction from Charmm van der Waals 
interaction plus hydrogen bonding interaction; Charmm-concoord-4.0 repre-
sents prediction from Charmm force field using concoord conformational 
sampling with a dielectric constant of 4.0. 
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Figure 1. Pie chart of the prediction of hot spots and neutral residues for different force fields. TP is the true positive, neutral 

t of Electrostatics and Van Der Waals 

To u ponents 

ted using just the van der 

residues are true negative (TN). FP represents false positive, and FN represents false negative. 
 

oth the hotspot (from 74% to 79%) and neutral residue of mutation residues predicb
(from 61% to 64%) predictions for the Charmm force 
field. For other forcefields, inclusion of the solvation 
energies, decreased the percentage of hotspot residues 
predicted. Overall the effect of solvation is minor on 
hotspot predictions since most of the residues in the in-
terface are hydrophobic and hence burial desolvation 
penalty is low. This is consistent with the analysis of the 
nature of residues in the interface of protein-protein com-
plexes [33] and the O-ring hypothesis [2] that most of the 
hot spot residues are small and hydrophobic or that the 
hot spot residues are surrounded by hydrophobic residues 
(form an O-ring) to block the interactions between hot 
spot and solvent. 

We have further analyzed the effect of solvation on 
prediction of mutation of polar versus non-polar residue 
hotspots. Tables S2-S4 of the supplementary material shows 
this data. It is seen that Amber FF performed the best 
with 85% of polar mutants and 88% of non-polar mutants 
for hotspots predicted correctly. This percentage is not 
affected substantially by inclusion of solvation. This is 
because the polar residues still stay partially solvated 
even upon formation of protein-protein interface. The 
protein-protein interface is dynamic and has a substantial 
solvent exposed surface area. Charmm FF with Delphi 
solvation predicted 68% of true positives with 73% of 
polar hot spots, and 84% of non-polar hot spots. The pre- 
diction of hotspots worsened by including solvation with 
OPLS force field. From this section onwards we have 
pursued further analysis with Charmm FF only, since 
Charmm FF with solvation showed the best prediction of 
hotspots. 

3.3. Effec
Interactions on Hot Spot Predictions 

nderstand the role of various energy com
such as electrostatics and van der Waals interactions in 
the protein-protein interface, we separated the van der 
Waals interaction energies and calculated the percentage 

Waals and electrostatic interactions. As seen in Table 1, 
using van der Waals interactions alone we find that the 
Charmm FF predicts about 2% more hotspots than using 
the complete energy function in Charmm. This indicates 
that the van der Waals interaction is critical to the pro-
tein-protein interface interactions. The study of protein- 
protein interactions by other groups have shown that van 
der Waals interactions are important [39,40] in hot spot 
predictions. From Table S5, including Delphi solvation 
energy with Charmm-VDW reduced the prediction of 
hotspots dramatically. This indicated that solvation en-
ergy compliments the electrostatic interaction, and should 
not be included if the electrostatics are omitted [26,39]. 

Baker and coworkers showed that [17], hydrogen 
bonding term provides a better description of polar in-
teractions in protein interfaces than electrostatics with a 
prediction of 76% over 56% [17]. Accurate calculation of 
electrostatics is notoriously difficult and the protein in-
ternal dielectric constant has been shown to be important 
in binding energy prediction [26,39]. This is a tricky pa-
rameter when it comes to calculating protein-protein in-
teraction energies since these surfaces could be solvent 
exposed. Therefore we studied the effect of a range of 
internal dielectric constant varying from 1 to 80 for the 
calculation of electrostatic energies. We use the muta-
tions available for the protein-protein complex (1JCK) as 
an example to optimize the internal dielectric constant to 
be used for the hot spot predictions. We chose this sys-
tem since there are only nine mutants including 8 hot 
spots with polar, non-polar, charged amino acids. Figure 
2 shows the variation of the calculated change in binding 
energy as a function of the dielectric constant and it 
shows that the electrostatic energy difference and the 
binding energy difference become stable when the di-
electric constant is greater than 4. We examined the ef-
fect of electrostatic interactions on hotspot predictions 
with dielectric 4.0 in Charmm FF. From Table 1, we can 
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Figure 2. Effect of the dielectric constant on the difference 
in the total binding energy and electrostatic energy. 
 
see that the prediction of hot spots increased by 4%, and

.4. Effect of Hydrogen Bond Energy on Hot 

tein 
tion 

to ex liminate the electrostatic com-

g 
tional 

ome 
case nformational changes. Here 

 

(see Table S1 of sup-
po

 
the prediction of interfacial hot spots increased by 10%. 

3
Spot Predictions 

Since the electrostatic energies are notoriously difficult 
to calculate accurately especially at the protein-pro
interface, we added an explicit hydrogen bond func

amine if we could e
ponent of the energy. Moreover, the all-atom forcefields 
tested in this study do not have an explicit hydrogen bond 
term in the potential energy function. To be able to test 
the influence of the hydrogen bonds on protein-protein 
interactions we used an explicit hydrogen bond function 
described in detail in the Methods section (Section 2.4). 
We calculated the hydrogen bond energy using this func-
tion and added the van der Waals energy from Charmm 
FF. It is seen from Table 1, that the hot spot prediction 
improves by 5% upon inclusion of hydrogen bond ener-
gies, compared to using only van del Waals energies. 
This correlates with the fact that residues that most fre-
quently form a hot spot are tryptophan (21%), arginine 
(13%), and tyrosine (12%) [15], those show both hydro-
gen bonding as well hydrophobic interaction with other 
residues. If hydrogen bonding energy alone was used to 
predict the hot spot, only 9.8% of the hot spots (data not 
shown in the table) were predicted correctly. This indi-

cates that hydrogen bonding energy is important in pre-
dicting hotspots, but is not as important as van der Waals 
energy. Since the intermolecular electrostatic and polar 
solvation free energies cancel each other upon protein- 
protein binding [26,41], one needs only hydrogen bond- 
ing and van der Waals energies to predict the hot spots. 

3.5. Effect of Conformational Sampling on  
Hotspot Predictions 

Because protein-protein interface is dynamic, makin
mutations in the interface could lead to conforma
changes in the neighborhood of the mutations or in s

s even show allosteric co
we have examined the effect of including conformational 
sampling (both backbone and side chains) in the predic-
tion of hotspots. For faster computations, we have used a 
distance constraints based method, known as Concoord 
[32]. It has been shown that the sampling done by Con-
coord method is equivalent to MD simulations [32]. We 
have used Concoord method to generate a conforma-
tional ensemble for each of the 15 protein-protein com-
plexes. One of the 16 protein-protein complexes was omit-
ted because it is a multimer and not feasible with Conco-
ord. The RMSD in coordinates of the Cα atoms in the 
ensemble of conformations generated by Concoord for 
the various protein complexes, varies from 1.8 Å to 6.0 Å.
The variation in conformations in the ensemble for each 
protein comes mostly from the loop regions. The RMSD 
spread in the protein-protein interface is between 0.6Å 
and 2.6 Å. Compared to the entire proteins, the pro-
tein-protein interface is more rigid. Figure 3(a) shows 
the fluctuation of the interfacial residues for 60 conform-
ers of protein 1JCK and Figure 3(b) shows the RMSD 
by residues (RMSF) of the protein. Figure 3 shows that 
the conformations generated by Concoord [32] show 
variability in the interface. The RMSF figure shows that 
the interfacial residues are more rigid than the rest resi-
dues of the proteins (see Figure S2 for RMSF of other 
proteins). From Table 1 it is clear that including confor-
mational sampling for the protein-protein complexes 
leads to 85% correct prediction of the hotspots and 95% 
of interfacial hot spots predicted which is a substantial 
increase compared to using single static conformation. 
3.6 Comparison of calculated change in binding energy 
to the experimental values. 

Although Charmm FF function with dielectric constant 
4.0 predicted 90% of the interfacial hotspots correctly, 
the accuracy of the predictions for different protein in-
terfaces range from 50% to 100% 

rting material). The change in binding energy calcu-
lated using Charmm FF function with dielectric constant 
4.0 for the proteins 1VFB, 1AHW are shown in Figure 4. 
We have chosen these proteins since they have a wide 
range of mutations showing both neutral residues and 
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(a)                                                                 (b) 

Figure 3. (a) Overlay of the donor-acceptor interfaces  conformers of protein 1JCK. Pink represents the surface of the 
interface of one monomer, and pale cyan represents surface of the other monomer. The interfacial residues are repr
sented in trace representa each residue averaged 60 

 of 60
the e-

tion and each color represents one conformer; (b) RMSF of Cα atoms for 
conformers for protein 1JCK. Black solid line represents all residues, and red dots are residues in the interface. 
 

3.6. Comparison of Performance of All-Atom 
Forcefield with Other Methods 

 

 

Figure 4. Correlation between the experimentally measured 
free energies of binding of the monomers in protein-protein 
complex 1AHW, and the calculated free energies of binding

nergy ranges from 0.7 to 0.8. For 1VFB, Figure S1 of 

the correlation is poor with a coefficient of 0.3. 

 the 
m-

ber es (TN), false 

etter among the three widely used force 
 predictions (86% correct prediction), 
igh rate of false positives since the 

ing a single conformation. 

. 
 
hotspots. The correlation coefficient between the ex-
perimental free energies and calculated change in binding 
e
supporting material shows the correlation for the neutral 
and hotspot residues separately. The correlation coeffi-
cient for the hotspots is 0.7 while for the neutral residues, 

Table 2 shows comparison of our results with Robetta 
that uses a knowledge based forcefield for alanine scan-
ning [17]. The performance of Charmm force field with 
dielectric constant 4.0 and inclusion of hydrogen bonds is 
similar to that of Robetta method. We have calculated
sensitivity and accuracy of the prediction from the nu

of true positives (TP), true negativ
positives (FP) and false negatives (FN). The following 
terms are defined as sensitivity = TP/(TP + FN); precision 
precision = TP/(TP + FP); accuracy = (TP + TN)/(TP + 
FP + TN + FN) and Specificity = TN/(TN + FP). Other 
methods such as FOLDEF and KFC perform similar to 
Robetta [42,43]. 

4. Conclusions 
In summary, we studied different factors that affect the 
prediction efficiency of computational alanine scanning 
methods, including type of force fields, solvation models, 
and conformational sampling. The AMBER force field 
(FF) performed b
fields for hot spot
while showing a h
percentage of neutral residues correctly predicted was 
low with AMBER FF. The Charmm FF however showed 
an evenly balanced prediction of both hot spots and neu-
tral residues. Dielectric constant of 4.0 for electrostatic 
interaction calculation improves the hot spot prediction 
efficiency dramatically. Among all the energy terms, van 
der Waals energy seems to play a critical role followed 
by the hydrogen bond energy. Conformational sampling 
with Concoord also predicts the hot spots better than us-
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Table 2. Comparison of the current all-atom forcefields 
with ROBETTA method that uses knowledge based force-
fields. 

Method Sensitivity Precision Specificity Accuracy F1

Charmm 0.74 0.54 0.61 0.66 0.62

Charmm-diel-4.0 0.80 0.59 0.66 0.71 0.68

Charmm-vdw + Hbond 0.81 0.56 0.61 0.68 0.66

Robetta 0.70 0.73 0.84 0.79 0.71

Sensitivity = TP/(TP + FN); precision=TP/(TP + FP); accuracy = (TP + 
TN)/(TP+ FP + TN + FN); Specificity = TN/(TN + FP); F1 = 2Xsensitivity
Xprecision/(sensitivity + precision) 
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Appendix 
 
Table S1. Pred

harmm forc
icted hot spot and neutral residues for 16 proteins studied experimentally by alanine scanning , For calculation, 

e field is used and dielectric constant is 4 (Charmm-diel-4.0). 

Protein complex 

C

Neutral Residues Hot spot residue Hot spot residues 
In the interface 

Fraction Fraction Fraction No Mut No Mut 

Total Correct Total Correct T  
PDB Code Part A 

In In  otal Correct
Part B 

 part A  part B

50 70 15 53 11 73    0.   0.   0.  1a22 hGH hGHbp 29 36

3 0.67 5 0.20 1 1.00 1ahw TF-Fab Fab 5G9 

Angiogenin RNase Inh 

1

1 Chym  

1.  

Pr  

Protein G 

45 Gp120 49 

T  

Int  γ 

Ne  

Tr

1 HYHE  

194 119 102 

8 - 

22 0.50 6 1.00 6 1.00 1a4y 14 14 

3 1.00 11 0.73 9 0.89 1brs barnase barstar 8 6 

20 0.75 0 0.8 9 0.89 1bxi Im9 E9 DNase 30 - 

7 0.86 1 1.00 1 1.00 cbw BPTI otrpsin 8 - 

0 0.00 5 00 5 1.00 1dn2 IgG peptide 3 2 

1 0.00 2 1.00 2 1.00 1fc2 otein A IgG 3 - 

3 0.67 5 1.00 5 1.00 1fcc IgG 8 - 

0.78 4 0.25 2 0.50 1gc1 CD4 - 

1 1.00 8 1.00 8 1.00 1jck SEC3 CR Vβ 9 - 

13 0.38 17 0.94 16 1.00 1jrh erferon A6 11 19 

0 0.00 1 1.00 1 1.00 1nmb uronminid NC 10 - 1 

18 0.50 10 0.80 8 0.88 1vfb D1.3 HEL 16 12 

0 0.00 1 1.00 1 1.00 2ptc BPTI ypsin 1 - 

8 0.40 18 0.89 7 0.88 3hfm HEL L-10 13 13 

0.66 0.80 0.90 All     

 
Tabl ffec predi of pola d non-pola  residues (Cha lphi). 

 l 

e S2. Solvent e t on ction r an r rmm + De

Polar Residues Non-polar residues Tota

With Solv Without With Solv Without With Solv Without 
Fraction 

69 61 68 63  74 68 

 
Hot Spot Hot spot not in the interface 

Polar residues Non-polar residues Polar residues Non-polar residues  

With Solv Without ith Solv Without With Solv Without W Without With Solv 

Fraction Correct 73 74 84 81 42 50 67 17 

 
Ta 3. Solven ect on pre pola d non-pol esidues (O S + Delph

 otal 

ble S t eff diction of r an ar r PL i). 

Polar Residues Non-polar residues T

With Solv ithout With Solv With Solv Without W Without 
Fraction 

53 63 51 47 53 61 

 
Hot Spot Hot spot not in the interface 

Polar residues Non-polar residues Polar residues Non-polar residues  

With Solv Without W Solv Without With Solv Without ith Without With Solv 

Fraction Correct (%) 38 64 66 50 50 50 83 50 
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Table S eff edic lar -po es (A  De

Polar Residues polar resid tal 

4. Solvent ect on pr tion of po  and Non lar residu mber + lphi). 

 Non- ues To

With Solv Without With Solv Without With Solv Without 
Fraction Correct (%) 

57 55 64 64 61 66 

 
Hot Spot Hot spot not in the interface 

Polar residues Non-polar residues Polar residues Non-polar residues  

With Solv Witho Solv Without With Solv Without ut With Without With Solv 

Fraction Correct (%) 8  5  3 85 88 88 0 42 83 50 

 
ent effect on prediction of polar and Non-polar residues (Charmm-vdw + Delphi). 

 Polar Residues Non-polar residues Total 

Table S5. Solv

With Solv Without With Solv Without With Solv Without 
Fraction Correct (%) 

55 71 72 77 58 71 

 
Hot Spot Hot spot not in the interface 

Polar residues Non-polar residues Polar residues Non-polar residues  

With Solv Witho Solv Without With Solv Without ut With Without With Solv 

Fraction Correct (%) 4  4  4 77 84 72 2 25 67 17 

 

  
(a)                                                    (b) 

Figure S1. Correlation between experimental observable and culated values for proteins 1VFB. (a) Hot spot; (b) Neu al 
residues. 
 

 cal tr
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Figure S2 RMSF for the 14 proteins. 


