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ABSTRACT 

The temperature dependence of the bending loss light energy in multimode optical fibers is reported and analyzed. The 
work described in this paper aims to extend an initial previous analysis concerning planar optical waveguides, light en-
ergy loss, to circular optical waveguides. The paper also presents a novel intrinsic fiber optic sensing device base on this 
study allowing to measure temperatures parameters. The simulation results are validated theoretically in the case of sil-
ica/silicone optical fiber. A comparison is done between results obtained with an optical fiber and the results obtained 
from the previous curved optical planar waveguide study. It is showed that the bending losses and the temperature 
measurement range depend on the curvature radius of an optical fiber or waveguide and the kind of the optical wave- 
guide on which the sensing process is implemented. 
 
Keywords: Optical Fiber; Losses; Curvature; Sensor; Temperature; Micro Technology 

1. Introduction 

A curvature effect is easily reached with optical fibers; 
therefore many laboratories have investigated the effects 
of curvatures on optical fiber measuring responses. Grat- 
ings implemented in optical fibers provide measuring 
performances related to bending that were also investi- 
gated [1-12]. Therefore, the power attenuation coefficient 
of bent fibers is one of the parameters that must be de-
termined for using the fiber as a transducer.  

In previous paper [1], we described a geometrical me- 
thod to determine the local numerical aperture and the 
light output power attenuation with the bending of an 
optical waveguide. We showed that this method can be 
applied only when the optical waveguide is curved dur- 
ing the manufacturing at a temperature close to glass 
melting. In this case, the core and the cladding refractive 
index are modified by temperature effects independently 
of the curvature radius. 

In this a previous work [1], we described a set of 
methods for using a flat optical waveguide as a trans-
ducer for measuring temperature by bending, in which 
only some transmitted light intensity effects are involved. 
We also investigated previously some photonic effects 
allowing using a multimode integrated optical waveguide 
as an intrinsic temperature sensor operating by light in-

tensity modulation at the output of the sensor.  
The purpose of this new work is to extend the analysis 

of the planar optical waveguide response to the tempera-
ture [1], to a circular optical waveguide. 

An optical fiber is a good example of cylindrical opti-
cal waveguide. The optical fiber bending loss phenomena 
is used as a transduction effect in some types of intrinsic 
optical fiber sensors (temperature, displacement, strain…) 
[1,2,13-20]. 

The step-index optical fiber that we use is curved dur-
ing its manufacturing at a high temperature. A geometri-
cal modeling is used to describe the light propagation in 
the optical fiber and to determine the light power at-
tenuation at the output of the fiber due to the fiber bend-
ing. In this case the geometrical approach is similar to the 
one presented for the planar waveguide sensing model-
ing. 

2. Analysis If the Power Attenuation with the  
Bending of an Optical Fiber  

The guidance of the core rays in a straigth step-index 
optical fiber is achieved by ensuring that the propagation 
angle , satisfies the condition: 0 c   , where the 
critical angle, c, and the critical angle, c, are given re- 
spectively, at room-temperature (T0 = 20˚C) by:  
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1
2 1cosc n n    and 1

2 1sinc n n   . The numeri- 
cal aperture (NA) is given at T0 by:  

 1 22 2
1 1 2sinNA n n n   . n1 and n2 are the core and the  

cladding refractive index respectively [1]. 
When the optical fiber is bent with a curvature radius 

R (Figure 1), the local numerical aperture at a given lo-
cation of the optical fiber curved part will be changed. In 
a meridional-plane of the optical fiber, when the position 
angle at the beginning of the bend is   = 0˚ or 180˚, the 
optical fiber behavior becomes iden al to the one an 
optical planar waveguide [1], and the local numerical 
aperture 1NA  is given, at T0, by:  

tic
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, sin 1l
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  (1) 

where  is the fiber core radius and  0r R  
perture wher

 is the 
abscissa on the input optical fiber a e the 
origin is “O”. “0” will satisfy the relation: 0     . 
However, in all others optical fiber planes, when  0  

e cal-
 

and 180˚, the local numerical aperture, lNA , can  
culated by using Equation (1), where the quantity  
 0 cosR

b

   replaces  0R   and “ 0 ” to satisfy 

00the relation:    , the local numerical 
aperture of a cu ndex optical fiber is given by:   

. Finally
-irved step

 
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NA R n
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   (2) 

where  is required to satisfy the relation: 0 2π  . 
Equation (2) becomes identical to equation:  

 1 22 2A n n   when R is infinite (straight o
omes identical to Equation (1) when  = 

0˚ or 180˚ (bent step-index optical planar waveguide 
case). We used the silica/silicone step-index optical fiber 
with the following characteristics at T0, for a wavelength 
 = 633 nm: n1 = 1.4570, n2 = 1401, 2 = 200 µm and 

A = 0.4000. 
In Figure 2, we pl

1 2N ptical fi- 
ber case) and bec

N
ot the local numerical aperture, at T0 

for various values of R, as a function of the position “0” 
with a value of . It is clearly seen that the local numeri-
cal aperture increase with the increase of the values of R  
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Figure 2. Local numerical aperture according to the pos
tion “ ” for several values of R with  = 135˚. 

l aperture is 
btained when the angle  is equal to 180˚. 
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and 0. The maximum of the local numerica
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3. An Approach of the Description of the 
Light Propagation in a Bent Optical Fiber 

The ray paths in the core of a step index fiber are straight 
but the geometrical description is more compli-

cated than in a planar waveguide, that we analyzed pre- 
viously [1], due to the presence of the skew rays and of 
the depending on when the optical fiber is curved. In the 
bent planar waveguide [1], the angle of incidence of a ray 
on the outer core-cladding interface remains the same 
along a given ray path, and this property is true for all the 
ray paths. However, in the bent optical fiber, only the 
rays entering the bent part of the fiber in the meridional- 
plane containing this bent part behave in this manner. For 
the skew rays entering this plane, the subsequent reflec- 
tions within the core do not follow a simple repeatable 
pattern because of the asymmetry introduced by bending 
the fiber. The complicated form of the ray invariants [3] 
and the differential equations describing the ray path 
offer no possibility of a simplification. We therefore pro- 
pose a numerical technique for tracing each ray sepa- 
rately along the bent fiber. 

In the Figure 3, we consider an arbitrary incident ray 
entering the bent section of

oss section X'X at point “P” at the beginning of the bent 
part ( = 0). The bent part of optical fiber forms a torus 
portion by the revolution of the circular cross section 
about the origin “O” with a radius R. The axis system 
OXYZ has an axis OX pointing directly into the paper. A 
local coordinate system ox'y'z' with oz' pointing into the 
paper is also indicated at P. An arbitrary ray, incident at 
“P”, has its direction cosines  
( cos ,cos cos ,cos cosx i z    ) relative to ox'y'z'. The 

Figure 1. Schematic presentation of a section of a fiber ben
with an arc of radius R. 

t 
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From the point of the first reflection “ 1Q ” on the opti-
cal fiber torus, the optical ray is reflected to another point 
on the surface of the torus (core-cladding interface) 
around the bend.  
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After the first reflection all solutions for the distance 
“L” to the next reflection are given as solutions of the 
cubic problem. For obtaining the cubic equation, we must 
replace 0 by  in the quadratic equation. 

L

Some simple coordinates rotations and translations 
simplify the calculation of the incident and the reflected 
ray angles at each reflection point [2]. The reflected ray 
direction cosines at “ 1Q ” are given by multiplying a ma-
trix transformation “M” by the direction cosines a “P” 
where: 

 C

y  x  

Z

Z
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1
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at cos
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i
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



   
    
   
      

      (7) 

 

Figure 3. Schematic presentation of a section of a fiber bent 
with the curvature following an arc having a radius R. 



With: (see Equation (8)). 

 
vector OP is given by: 

 0 00, cos , sinR     OP         (3) 

where the distance of the point “P” from th
is 0, if we let r be a point along the ray dis

 Y

(4) 

If the ray meets the torus at “ ” then we can write 

e fiber center 
tant “L” from 

A rotation around “ 1 ” will bring the local x-axis tan-
gential to the surface of the torus at 1 . This rotation is 
. All the others parameters were defined previously.  

Q
Q

Having determined the geometry of the ray path, we 
can then calculate the fractional power loss at each re-
flection point along a given path by using the following 
equation:  

“P” then: 

ˆcos cosL Xr     0 expP P                (9) 


 

0
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z
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





   

    

where  is the attenuation coefficient of each ray, which 
varies from one reflection to the next one along the bent 
optical fiber, it is given by:  

1 1
Δ

N N

ii i
T i 

 
               (10) 

1Q

1PQL , where ” is the position of the first ref
tio

“ 1Q lec- where Δ  is the angular separation between two suc-
cessive reflections and N is the total number of reflec-
tions. We can then use the Generalized Fresnel’s Law to 
calculate the transmission coefficient  at each reflec-
tion point along a given path. 

iT

n. At “ 1Q ”, we have: 

ˆ ˆsin cosR X R Y    r         (5) 

And this gives the angular distance  ar
of the bent optical fiber curvature: 

ound the axis 
An algebraic expression for the transmission coeffi-

cient of the refracted rays ( ), is given by [3,11,12]: 1V ˆ ˆtan X Y  r r                 (6) 
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


               (11) 1POQ  1 corresponds to angl
we deduce an equation which wil
of he in

e. From Equation (6), 
l provide, as a function 

the position “L”, t tersection of the optical ray 
with the bent optical fiber core-cladding interface. The 
smallest real positive solution of the equation represents 
the distance “L1”. 

where 
1y

K   and 
2yK   are given by: 

1 1 cosy iK k    and  

 2

1 22 2
1 sin sinc iyK k      and: 1 12πk n  . 
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For tunneling rays when , the transmission coef-
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1V 

nt of the ra c  is given by: 

 
1 2

1 2

3
y yK K 

 

where the parameter “V” is given by:  
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The parameter c  is the radius of curvature of the 
core-cladding in  in the incidence plane at “0”. It is 
defined by the normal to the interface and 
ray direction. It is given by [3,11,12]: 

terface
the incident 

2

2 2

sin

cos cos
x z i

c
x z z x

  

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


         (14) 

where x    and cosz R     . 

When , the transmission coefficient is given
by: 

0V 

2

1

cos 1
3.18i 2

2π sin
cT

n

 

c c 


 
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         (15) 

re are s  
dence angles close to 

But the ome optical rays that reach the interface
with inci c . 

at theFinally, the total intensity  end
length “

 of the angular 
 ” of the bent part of the optical waveguide is 

fo
f

und by a quadruple summation of Equation (9) across 
the cross-sectional area (r,) o  the optical fiber at X'X 
and the distribution of the ray angle (,) [3,11,12]: 

   2π 2π

0 0 0 0 0
d d cos sin d d expc

sP P r r


          


 

(16) 

We plot in Figure 4 the normalized power attenuation 
against the normalized distance (z/) along the bent fib  
axis for a step index optical fiber. Where “z” is the cur- 
vature length (z = R·). Each curve shows the same 
ac

th  

er

char- 
teristics. Initially, there is the transition region, having 

a rapid power loss. This region dominated by the re- 
fracted rays and tunnel rays with the largest attenuation 
coefficient. The behavior of the bent part of the fiber is 
similar to the planar waveguide bent part [1], but the loss 
of power in the transition region is not as important, 
since only a few rays close the meridional plane have 
large losses. 

In Figure 5, we plot the normalized power attenuation 
against normalized distance (z/) along the bent planar 
waveguide and along the bent optical fiber for the same 
curvature radius (R = 2 mm). Beyond the transient region, 
the loss of power for a bent optical fiber case is higher 

an for the bent planar waveguide. This is because the 

 

Figure 4. Intensity attenuation according to the ratio (z/) in 
the step profile optical fiber for several values of R. 
 

 

Figure 5. Intensity attenuation comparison between a bent 
planar waveguide and the bent optical fiber for the same 
curvature radius (R = 2 mm). 
 
skews rays can pass through the regions of high attenua- 
tion, although they may initially have a low attenuation. 

4. Temperatures Measurements Principle by  
Using a Bent Optical Fiber as a  
Transducer 

itive element is the curved 
art of the fiber (Figure 6). This sensor principle is based 

light energy losses induced by the bending effect of the 

eff ty is modu-
lat mperature variations.     

The optical fiber sensor that we propose is an intrinsic 
optical fiber sensor; the sens
p
on the variations of the sensing fiber output light inten-
sity according to the fiber temperature variations. The 

fiber will be compensated dynamically by the thermal 
ect; consequently, the output signal intensi
ed only by the te
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Figure 6. Temperature sensor general diagram. 
 
5. The Temperature Effect on a Local  

Numerical Aperture inside a Bent Optical  
Fiber 

or a given radius (R = R0) of the op
 in-

pe

F tical fiber curvature 
and from Equation (2), the local numerical aperture
side this bent portion of the fiber according to the tem-

rature is written in the following way: 

 

   
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1 222
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, , ,

,
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n R T

Rn R T
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
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  
     

  (17) 

 

where the core refractive index and the cladding refrac-
tive index are written according to the temperature 
the following way [1]. 

 ,
 

(T) in 

    1 0 1 0 1 0,n R T n T K T T  

     2 0 2 0 2 0,n R T n T K T T  
        (18)

The coefficient 1 d d1K n T  and 2 2d dK n T  are 
respectively the thermo-optic coefficient of core the re-
fractive index and the thermo-optic coeff
ding the refractive index. K1 = –3.78 × 10
1.7744 × 10−5/˚C. 

lymers poss ique set of p

s [22-26]. 

icient of clad-
−4/˚C and K2 = 

Silicone-based po ess a un rop-
erties that makes them highly suitable for optical applica-
tions. The excellent thermal stability (−115˚C to 260˚C) 
allows this material to be useful for high temperature 
sensing application

In this optical fiber the small positive thermo-optic 
coefficient effect in inorganic glass waveguides used as 
the core is canceled out by using the negative thermo- 
optic coefficient of polymers used to constitute the clad-
ding. 

For an applied temperature T, we plot in Figure 7 the 
local numerical apertures in an optical fiber according to 
the value of “ 0 ”. We observe that the local numerical 
aperture increases when the applied temperature in-
creases. Consequently, an optical ray unguided at room 

6. Bent Optical Fiber Temperature Response  
as a Sensor 

alyze the effect of the temperature 
 propagation in a curved optical 

en

out  end of the transducer bent part of the 

temperature becomes guided at temperature greater than 
T0. 

fiber. We pres t the effects of the curvature radius on 
the optical fiber temperature response. For this analysis, 
the curvature radius R and the length of the bent part of 
the optical fiber () are given. The refractive index of the 
core and the cladding of the optical fiber depend on the 

In this section, we an
variations on the light

temperature. The geometrical model is used to evaluate 
the light output power according to the temperature. The 

put power at the
fiber is given by:  

 

  

2π

0 0 0 0 0

π

0

2

0

, d d co

             

s s

    

in d

d exp , 

c

sP R T P r r

R T


   

  





  





   (19) 

For a given curvature length ( = 2R0), we plot in 
Figure 8 the normalized output light intensity response 
of the sensor to the temperature variations for several 
values of R0. 

The response curve of the optical fiber operating as a 
 

 

 

Figure 7. Local numerical aperture according to the posi-
tion “0” for several applied temperature, with R0 = 4 mm 
and  = 135˚. 
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Figure 8. Transmission rate according to the temperature 
for various curvature radiuses. 
 
temperature sensor that we propose in Figure 8 is similar 
to the one of a planar waveguide temperature sensor [1]. 
For this first approach we have not considered errors 
measuring protocols. We note that the transmission rate 
(P/P0) increases when the local numerical aperture is 
increasing up to a saturation level. Each curve is corre-
sponding to the recovery of the losses induced by the 
refracted optical rays and the recovery of the losses in-
duced by the tunnel effect, up to saturation. We can say 
that the temperature sensing range of the temperature 
optical fiber that we propose depends on the curvature 
radius of the optical fiber.  

We deduce from Figure 8 the following statements: 
 The part of the response curve between Tc1 and T0 is 

corresponding to intensity losses caused only by the 

rve between T0 and Tc2 is 
corresponding to intensity losses caused only by the 

temperature effect. 
 The part of the response cu

optical fiber curvature. 
 The linear region of the optical fiber temperature sen- 

sor response is increasing when the curvature radius 
of the bent fiber is decreasing.  

The sensor sensitivity is given by: 

 0d ,

d

P R T
S

T
               (20) 

where P(R0,T) is the output intensity. We deduce from 
Figure 8 that the sensitivity of the temperature sensor is 
inversely proportional to the curvature radius. 

Figure 9 shows the temperature response curve fitting 
fo C, 

 

r R  = 2 mm. In the liner zone between 20˚C and 180˚0

this sensor has a sensitivity of 0.004˚C−1. 

7. Conclusion 

The response to temperature variations on the bending 

 

Figure 9. The temperature response curve fitting for R0 = 2 

light power loss of a multimode optical fiber with differ-
ent bent fiber curvature radii have been analyzed. It has 
been found that the bending losses due to the internal 
optical fiber numerical aperture variations increase when 
the fiber bending angle increase. The more important 
losses are caused by refraction and tunnel effects. We 
have shown that a bent optical fiber can be used as a 
temperature transducer. The use of an optical fiber curved 
during its manufacturing at high temperature allows to 
minimize some residual mechanical effects, and allows 
to use rigorously the geometrical approach to describe 
the light propagation, to evaluate the losses in light 
power output values and to calibrate the temperature sen- 
sor. We have shown that if we use, for example a silica/ 
silicone fiber as a transducer, we can obtain good per- 

ermo-optic effect value on 

mm between 20˚C and 180˚C. 
 

formances with an excellent sensitivity and an excellent 
linearity associated to a large temperature measurement 
ange, mainly because the thr

the silicone is negative and important. 
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