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ABSTRACT 

Finding Nearest Neighbors efficiently is crucial to the design of any nearest neighbor classifier. This paper shows how 
Layered Range Trees (LRT) could be utilized for efficient nearest neighbor classification. The presented algorithm is 
robust and finds the nearest neighbor in a logarithmic order. The proposed algorithm reports the nearest neighbor in 

, where k is a very small constant when compared with the dataset size n and d is the number 

of dimensions. Experimental results demonstrate the efficiency of the proposed algorithm. 

 1log logdO d n n kd 2
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1. Introduction 

Nearest Neighbor Classifiers enjoy good popularity, and 
have been widely used since their introduction in 1967, 
[1]. The simplest form of Nearest Neighbor (NN) classi- 
fication works as follows: Given a set of labeled training 
examples, a query instance is given the same label as that 
of the most similar example(s) in the training set. It has 
been shown in [1] that nearest neighbor classification pro- 
duces correct results with an error rate that is less than twice 
the error of the most sophisticated classification technique 
given the same information. This simple error bound, as 
well as the overall simplicity of the method, its intuitive- 
ness, and its capability of learning complex functions 
without the need of any training are mainly what have 
made it an attractive classification technique. 

One of the most important difficulties that face NN 
classification is the classification speed. That is, the time 
the classifier takes to find the nearest neighbor(s) to the 
query instance. A naive NN finding algorithm would iterate 
through all of the dataset, measure the distance between 
the query instance and every other instance in the data set, 
and then determine the nearest neighbor(s) accordingly. 
Clearly this requires O (dn) time, where n is the number 
of records in the dataset and d is the number of attributes 
(dimensions) in each record. As mentioned before, this is 
time consuming and may be intractable when n is large 
and d is high. Recent works such as adopting mutual 
nearest neighbors instead of k nearest neighbors to clas- 
sify unknown instances lead to better performance [2,3]. 

In order to overcome the slow execution speed and high 
storage requirements (when dealing with large datasets), 
several recent research attempts were reported in the lit- 
erature such as assigning weights to training instances [4] 
and using probabilistic variant of the partial distance search- 
ing in low dimensions [5]. Using the condense approach 
[6] to remove patterns that are more of a computational 
burden to lead to better classification accuracy. 

Finding nearest neighbors is not only a classification 
problem but it is related to many diverse fields, and there- 
fore the performance bottleneck is an issue. Thus, consider- 
able work has been done and is still going on for efficient 
NN finding techniques. Such techniques could be grouped 
into a number of broad range categories, the most relevant 
of which is the category of techniques which are based 
on space partitioning. 

An example of such techniques is the use of Voronoi 
Diagrams. Finding the nearest neighbor based on a Vo- 
ronoi Diagram can be done in logarithmic time, however, 
constructing and storing a Voronoi Diagram grows ex- 
ponentially with the number of dimensions, [7]. 

Other more relevant examples of space partitioning tech- 
niques include the use of K-d Trees [8] and R-Trees [9]. 
The K-d Tree is a multidimensional data structure that parti- 
tions the space to support geometric queries like range 
queries efficiently. It partitions the space by repeatedly 
bisecting it according to one dimension every time. Sev- 
eral algorithms were proposed which showed that answer- 
ing NN queries using K-d Trees can be done in logarith- 
mic time on average [10]. R-Trees on the other hand are 
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similar to K-d Trees and have a similar NN performance. 
However, they address some of the problems inherent in 
K-d Trees. R-Trees are optimized for I/O access, their space 
partitioning suits multimedia applications, and their per- 
formance does not deteriorate after performing updates. 

The Layered Range Tree (LRT) [11,12] is another space 
partitioning data structure, which supports Orthogonal 

Range Queries in  1logdO n k   time, where d, is the 

number of dimensions, n is the number of points, and k is 
the number of reported points. This outmatches the per- 
formance of the other main-memory range querying data 
structures like the K-d Tree. This paper shows how the 
LRT can be used as a classifier that finds nearest neighbors 
in a logarithmic order. 

The remainder of this paper is organized as follows: Sec- 
tion 2 describes the layered range tree and its basic con- 
struction and range querying algorithms. Section 3 ex- 
plains the LRT nearest neighbor classification algorithm 
and Section 4 discusses and analyzes its complexity and 
shows some results. Finally, conclusions and future work 
directions are outlined in Section 5. 

2. The Layered Range Tree 

The LRT was first described by Willard [12] and Lueker 
[12]. It is a multi-dimensional data structure that supports 
multidimensional Orthogonal Range Queries in 

 1logdO n k   time, where d is the number of dimen- 

sions, n is the number of points, and k is the number of 
reported points. 

To understand the LRT, we first describe the Range 
Tree. A 2d range tree is a binary search tree (BST), where 
every node in the tree has an associated structure con-
nected to it. This tree is said to have two levels. The first 
level is the first main BST, and the second level is the 
associated structures that are connected to the nodes of 
the first level. Hence, a range tree for a set of 3-dimen- 
sional points would have three levels, where the third 
level is made up of associated structures that are con- 
nected to every node in every associated structure in the 
second level. 

Given a set of points S, the first (main) BST in the 
LRT is built using the x-coordinate of S. This allows 
doing binary searches for points in S using the x-coordi- 
nate only. The associated structure to any node in the 
main BST contains all points that lie under that node in 
the tree, but sorted using the second dimension, the y-coor- 
dinate. Therefore, the associated structure of the root 
node (of the first BST) contains all points in S sorted 
according to y. Figure 1 depicts a 2d range tree. Both the 
shaded areas represent trees that have the same set of 
points. However, the one in the main tree is sorted ac- 
cording to x whereas the associated tree is sorted based 
on y. Each node in the main tree has such an associated tree. 

The LRT goes one step further than the range tree by 
applying the technique known as fractional cascading 
[13], which speeds up the search process by eliminating 
binary searches that should be done at level d (e.g., at 
level 2 in a 2-dimensional set of points). Figure 2 illus-
trates the LRT with its second level structures connected 
using fractional cascading. 

When an array is connected to another array using frac- 
tional cascading, every node in the first array is connected 
to the first node in the second array that is greater than or 
equal to it. If there is no such node, the link is nullified. 
For illustration, consider Figure 2, every node in the associ- 
ated array of v is connected to at most two nodes that are 
larger than or equal to it; one from the associated array of 
L and the other from the associated array of R. 

Given an LRT and two points (x1, y1) and (x2, y2), an- 
swering the range query [x1: x2] × [y1 : y2] proceeds as fol- 
lows. A binary search is first carried out on the main tree 
to find the node whose x value lies between x1 and x2. 
This node is called the split node. Next, another binary 
search is repeated for y1 at the associated structure of the 
split node. As descending the main tree, to search for points 
that lie between x1 and x2, the associated arrays are de- 
scended following the pointers. For example, if the left 
child of the split node is visited, the pointer between y1 in 
the associated tree of the split node and the associated 
array of the left child of the split node is traversed. If a node 
which lies in the [x1: x2] range is reached then there is no 
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Figure 1. A 2d range tree. 
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Figure 2. A 2d layered range tree. 
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need to do a binary search for y1 in its’ associated tree as 
it was traced while descending. A walk from y1 to y2 is 
then performed to report the points. 

In NN classification as well as in other applications, 
search may not have to proceed in all dimensions. With 
the current structure of the LRT, stopping at a dimension 
that is less than d means that we will not be able to make 
use of fractional cascading in improving the query time. 
Therefore, the LRT can be built such that fractional cas- 
cading links are built for all dimensions rather than just 
the last one. Furthermore, in order to enable walking in 
the associated trees, all leaves in every tree should be con- 
nected using pointers (Figure 3). 

3. Classifying Using the LRT 

In a dataset, instances with d attributes could be looked at 
as points in d dimensional space. When searching for near- 
est neighbors to a query point q, it would be effective if 
we could search only points that surround q, and avoid 
searching parts of the space that are far from q. The idea 
of the discussed algorithm is simply to reduce the NN find- 
ing problem to a range query that returns a relatively small 
set of points (instances) that surround q. This small set 
can then be searched for the nearest neighbor quickly using 
brute force. 

Since a range query using the LRT is known to be ef- 
ficient, the key issue becomes to find a suitable range query 
interval that contains only points that are adjacent to q 
and that are likely to have the nearest neighbor. The less 
the number of these points is, the better the performance 
is, and the larger it is the closer the performance becomes 
to exhaustive search. 

Figure 4 illustrates the idea of the algorithm in a 2d 
space. The algorithm first finds a suitable  and uses it to 
build a query range [limit1: limit2] around q. After choosing 

, the interval [limit1: limit2] could be built (for example) 
as follows: 





,  
ddq    

,  +
ddq   




1 21 ,  ,d dlimit q q     

1 22 + ,  + ,d dlimit q q    

Next, the LRT can be used to retrieve all points that lie 
within that range, and then do an exhaustive search for 
the nearest neighbor among these retrieved points. 

In order to achieve efficient results, the number of points 
retrieved from the range query must be small when com- 
pared to the number of points in the dataset. If the num- 
ber of retrieved points is large, there would be no con- 
siderable benefit over using exhaustive search. Therefore, 
$/epsilon$ must be chosen carefully since it is what de-
fines the range around q. 

There are several ways to determine . A probabilistic 
method is presented in [14] to find  in constant time. 
In our implementation of the algorithm, we have used a 

 

Figure 3. A multidimensional layered range tree. 
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Figure 4. An example of q and in a 2d space. 
 

logarithmic-time heuristic to approximate . This heu- 
ristic gives a good approximation for , on average and 
guarantees that there will always be at least one point in 
the retrieved set. 

The heuristic estimates  by doing a binary search in 
the data set for q in every dimension. That is, a search for 
q is firstly done using d1, then another binary search is 
done using d2, and so on. As the binary search proceeds, 
the distance between any visited point and q is measured 
and  is updated to hold the minimum distance found so 
far. The reason behind adopting this strategy is that on the 
search path for q, close points to q are likely to be visited. 
The closer the search gets to q in one dimension the 
smaller the upper bound for the distance to the nearest 
neighbor is made. How effective is this method? This is 
discussed in details in the next section. 

4. Algorithm Analysis and Discussion 

Constructing the LRT can be done in  

time and it requires  1logdO n n

 

storage. On the other 
hand, issuing a range query on an LRT is of order 

 1logdO n n , [15]. 
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The proposed algorithm is made up of three parts: 
finding , issuing the range query, and searching the 
retrieved points. The overall complexity of the algorithm 
if the aforementioned heuristic is used is: 



 d 1log n kd 

2 logd n


logd n

d 1log n

logd n k

2 logO d n , where k is a number that is 

small on average and that is more likely to be larger if 
the number of dimensions is large. 

The  term is due to the binary searches done 
to find . The heuristic does d binary searches; every 
binary search costs in the worst case  since com- 
paring two instances constitutes comparing d attributes. 
The  part comes from the range query done using 
the LRT as described before. Finally, the kd term is the 
number of distance measures done in the last brute force 
step done on the points retrieved from the range query. 
Therefore, the total number of distance measures done is 

 compared to n if brute force was used. 
To test the performance of the algorithm and see how 

large k is on average for every dimension, we performed 
two tests. The first was done on randomly generated 
datasets for dimensions 1 - 7. The size of every data set 
was 100, and for each data set the NN query was re- 
peated 100 times and the average finding time was re- 
corded for every dimension. Since 100 is relatively small, 
the test was repeated 100 times and the average of these 
100 repetitions was recorded for both the LRT and the 
brute force algorithms. The results are depicted in Fig-
ures 5 and 6. 

The second test was done on 4 standard datasets: The 
 

 

Figure 5. Performance in time between LRT NN and BF 
algorithms on the synthetic dataset. 

 

 

Figure 6. Performance in comparisons between LRT NN 
and BF algorithms on the synthetic dataset. 

Banana dataset1, Titanic dataset2, Iris dataset3 and Thy- 
roid dataset4. Table 1 shows the dimension of every 
dataset, its size and shows how the proposed algorithm 
performs on it compared to exhaustive search. Figure 7 
depicts the significant overall gain in time performance 
of LRT over BF.  

Looking at Figures 5 and 6 in addition to Table 1, it is 
clear that the algorithm performs very well in dimensions 
less than 7. Testing with dimensions more than 7 was not 
easy due to memory constraints, since the implemented 
LRT loads all records into memory. When the data set is 
large and when the number of dimensions is high, load- 
ing the whole data set to memory is not possible, and 
since we are dealing with data mining problems, it is very 
likely to have huge datasets. Therefore, converting the 
LRT into an index structure becomes a normal procedure. 
The question that poses itself is: will the LRT perform 
equally good when converted to an index structure? 

In main memory, the most expensive operation was 
the distance measure, and therefore, we considered it in 
our tests. However, when the records are all in a file, the 
most expensive operation becomes the I/O done to access 
a record. Therefore, the performance measure is changed. 

 
Table 1. The performance of the LRT NN algorithm on four 
datasets. 

Dataset Banana Titanic Iris Thyroid

Dimensions 2 3 4 5 

Size 4900 2051 118 850 

Test records 4900 150 32 140 

LRT Avg Time (ms) 0.056681 0.111753 0.101966 0.117203

BF Avg Time (ms) 0.549257 1.708598 0.190559 1.10646

LRT Avg Dist. Measures 23 41 34 54 

BF Avg Dist. Measures 4900 2051 118 850 

 

 

Figure 7. LRT gain in time performance. 

1http://ida.first.fraunhofer.de/projects/bench/benchmarks.html 
2http://www.cs.toronto.edu/~delve/data/titanic/desc.html 
3http://mlearn.ics.uci.edu/databases/iris/ 
4http://mlearn.ics.uci.edu/databases/thyroid-disease/ 
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1logd n

 1ogd n kd 

logd n k

After changing the LRT to an index structure, it showed 
that it no more performed as well as it used to do in main 
memory since  became the dominant term. One 
way to overcome this is to convert the Binary Search 
Trees in the LRT to B-Trees, which are optimized for I/O 
access. 

5. Conclusion and Future Work 

In this paper, a simple and efficient algorithm for nearest 
neighbor classification was presented. The algorithm is 
based on the Layered Range Trees. It converts the near- 
est neighbor query into a range query that is answered 
efficiently, and that returns a small number of instances 
that are searched for the nearest neighbor. The presented 
algorithm finds the nearest neighbor in 

2 log lO d n , where k is a number that is 

small on average and that is more likely to be larger if 
the number of dimensions is large. The number of dis- 
tance measures done by the algorithm is  . 
Future work will focus on optimizing the way the nearest 
neighbor query is converted to a range query, as well as 
optimizing the algorithm to handle large datasets and 
high dimensional data. 
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