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ABSTRACT 

A carrier wave in a 5-dimensional wave group is examined for information on electromagnetic waves and on particle 
probability amplitudes. Simulations by Maxwell’s equations show that the phase and group velocities in electromag-
netic waves are equal, both in vacuo and in dielectric media. By contrast, particle probability amplitudes in wave packet 
motion are more complicated. A dependence of rest mass on relative phase and group velocities is derived by consis-
tency. Occurrences that are simultaneous and connected on wave fronts in the rest frame, appear separated when ob-
served in moving frames. Uncertainties in space and time are linked by the probability amplitude wave group. 
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Principle 

1. Introduction 

Contrary to the claim by Von Neumann that hidden va- 
riables are incompatible with quantum mechanics1, Ein- 
stein et al. “were led to conclude that the description of 
reality as given by a wave function is not complete” [1]. 
Their conclusion depended on an analysis of extended 
plane waves due to more than one particle, and their sup- 
position of entanglement at a distance has been sup- 
ported by studies on hidden variables [2,3]. Further sup- 
port has come recently from experimental applications 
directed at communications [4-6]. In these applications, 
electron spin up or down, is a digital memory marker that 
is accessible by optics. Spin is ‘remembered’ by photons 
after time delay. Since entanglement occurs, it is natural 
to consider further details of the propagation in both the 
photons and the particles. Other doubts about the com- 
pleteness of quantum mechanics have arisen through 
recent experiments by Faipour et al. [7] on “weak mea- 
surements” of photon momentum. There have moreover 
been theoretical developments in wave equations for the 
electron including a treatment of wave packets [8]. Here 
we consider, by means of a wave group, a variable that, 
while predictable in wave mechanics is unmeasurable in 
principle, though having explanatory power. The prob- 
lem is significant for electron beam interactions in trans- 
mission electron microscopy when modeled by track 
structure methods [9], where the location of atomic spe- 
cies depends on impact parameters. These are unobserv- 

able in the Bethe theory that is usually used to calculate 
cross-sections.  

Quantum mechanics has had fundamental successes in 
innumerable ways. Early on, it provided explanations for 
spin and magnetic moment from the relativistic Hamilto- 
nian and it provided many details in atomic spectra in- 
cluding the Lamb shift in hydrogen. Continued develop- 
ments have been core to understanding quantum electro- 
dynamics, nuclear interactions and high energy physics. 
Nevertheless, there are important features that remain 
mysterious. Whereas the origin of the wave function in 
electromagnetism is firmly based in Maxwell’s equations, 
the nature of mass and its probability amplitude contains 
undefined oscillations. Added to these are chronic dis- 
agreements about determinism [10-14]. Such shortcom- 
ings justify returning sometimes to basics to review what 
might have been discarded because not needed at the 
time.  

In particular there are anomalies in Dirac’s formal 
treatment of quantum mechanics [15]. For example, he 
derives a mean velocity for the free electron equal to the 
speed of light, which he acknowledges to be experimen- 
tally unphysical. He goes on to show that there are two 
velocities, one “oscillatory part” with high frequency; the 
other a “constant part” with lower frequency. These are 
the two frequencies that we will examine in detail. Oth- 
ers have commented on this anomaly and attempted to 
find a resolution by a double frequency wavepacket [8]. 
We consider how a continuous wave group provides a 
more consistent description of the complicated velocities 

1Von Neumann, J. see references [3] below, including Bell’s references 
[9,10]. 
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that Dirac tried to describe. We will see that the treat- 
ment has further implications for uncertainty in mea- 
surement. 

In quantum mechanics, the wave vector k in the wave 
function of a photon or free particle is, typically, a real 
and measurable number and so also is the angular fre- 
quency . The first depends, through the De Broglie hy- 
pothesis, on momentum, and is fundamental to optical, 
neutron and electron diffraction spectrometries. Where 
there is wavelength, there must also be frequency. What 
is it? In the photoelectric effect, energy is related to fre- 
quency through Planck’s law, E = hv, where h is Planck’s 
constant. Meanwhile, the eigenvalue for Schroedinger’s 
equation operating on the hydrogen atom gives a ground 
state binding energy of 13.6 eV. So when an electron is 
photo-ionized the photon frequency corresponds to the 
change in frequency of the ionized electron, and is con- 
sistent with Schroedinger’s time dependent equation, 

ˆi t H   

2 2 2 2 4
0E p c m c 

2 2 2 2 4
0k c m c 

p k 

 , where = h/2. In order to match the 
energy equation for a free particle in special relativity,  

,             (1) 

corresponds with: 
2 2  .           (2) 

where c is the speed of light, m0 is the electron rest mass 
and momentum . The mass energy is added to 
binding energy. In a free particle, the ratio of energy to 
momentum, k  , is the phase velocity, both vari-
ables being conserved quantities. In the Hamiltonian for 
the wave equation, the operators for  and k commute, so 
their eigenvalues are independently measurable. Turning 
from electromagnetism to particles, vp =/k is faster than 
the speed of light which is one reason why, following the 
theory of relativity, this velocity can neither transfer en-
ergy nor be directly measured. The velocities that we are 
familiar with in macroscopic physics are the group ve-
locities [16,17], vg = d/dk, including the velocity de-
pendence of magnetic forces. What reality, then, can the 
ratio of two real and measurable numbers have?  

2. Electromagnetic Waves 

In electromagnetic waves, where m0 = 0, Equation (2) 
yields, in the direction of propagation: 

2.
d p gv v c

k k

d
.

 
                (3) 

where the speed of light in vacuo is calculated from 
Maxwell’s equations, e.g. [18]. It is a physical property, 
invariant in all inertial reference frames. In a medium of 
refractive index n = 1.47, we find in Figure 1 that the 
transmission from left to right through a glass block pro-
ceeds with the centre of the wave group phase locked. 
The four examples at different moments in time are se- 

 

Figure 1. Simulation examples, at four moments in time, of 
vertically polarized electromagnetic wave group, after trans- 
mission (right of vertical line) and reflection from the sur-
face of a glass block. The wave length shortens in the block. 
Alternating colors signify alternating signs of amplitude. 
The phase of the carrier wave and peak of the group pro- 
gress in unison with equal velocities. Separation of reflected 
wave (left) and transmitted wave (right) increases with 
time. 
 
lected from hundreds. Notice that the reflected wave 
proceeds backwards and that the progress of time is 
marked by increasing separation from the transmitted 
wave group. The simulation, by finite difference time 
domain methods encoded in the MEEP program [19], 
shows that vp = vn and 

2

2

d

d

c

k k n

 
                (4) 

Equation (4) is consistent with Foucault’s experiment 
which showed the speed of light is slower in water than 
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in air [16]. At the time of its demonstration, this fact 
seemed to confirm Huygen’s wave theory of light and 
disprove Newton’s corpuscular theory. As is now well 
known, the wave group combines elements of both theo- 
ries and further details are examined below. 
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Meanwhile, several interesting anomalies arise and we 

mention three: firstly, when wave fronts of light intersect 
at an angle, their intersection travels faster than c. If the 
angle between propagation vectors is 90˚, the intersection 
of the waves moves at the speed 21/2c. The intersection 
cannot be observed because of quantization: energy is 
carried by the respective wave packets (Section 4) at 
speed g , so the transport of energy remains within 
rules determined by special relativity [20]. The high 
speed at the intersection is an example of a physical de- 
scription not of an “event”, because energy is not trans- 
ferred. Secondly when n < 1, as in the x-ray region of the 
radiation spectrum, vg > c but transport is limited by ab- 
sorption. Likewise and thirdly, when d/dk is greater 
than c, as happens, for example, in the incidence of ul- 
traviolet light near the fundamental edge of ionic solids 
such as the alkali halides or PbF2 [21,22]. Again vg > c, 
but absorption is also high and this again limits the 
transport of information, where the mean free path is ~10 
m deep or 50 wave lengths.  

m0=0

v c

Whether or not the rule that information is not trans- 
ported at speeds greater than c is broken, the physical 
laws remain invariant in all inertial reference frames. The 
relationships become more complicated for a different 
wave with rest mass m0 > 0, i.e. the probability amplitude 
for particles. Electrons in transmission microscopy dif- 
fract like light waves, but a comparison of the two wave 
velocities is illustrated in Figure 2 using units = c = 1.  

For any particle with rest mass m0, since 2 2
0m k   ,  

the lower trace in Figure 2(a) shows  dependence when 
m0 = 0, i.e. for light. The upper trace shows the depen- 
dence for a particle with m0 = 1. Meanwhile in Figure  

2(b) when m0 = 1, since , k mv 21v k k g , then  

vp = 1/vg. 

3. Probability Amplitudes 

Following Equations (1) and (3) and knowing that group 
velocities are the classical velocities of particles, their 
phase velocities, vp = c2/vg, are faster than c. Whereas in 
electromagnetism both vg and vp are in principle measur-
able, in particles only vg is directly accessible. However, 
the phase velocity vp can be calculated as the product of 
known or assumed frequencies with corresponding wave 
lengths measured in electron microscopy. One conse-
quence for Equation (3) is that the phase and group ve-
locities have the same sign and so travel in the same di-
rection. 
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Figure 2. (a) Putting  

k  gv c pv c

.0k 

, plots of angular frequency 
 versus wave vector k compared for electromagnetism 
(lower line), where m0 = 0, with cases where rest mass m0 = 
1 (upper trace); (b) When m0 =1, lower trace shows group 
velocity, where, as ,  meeting . 

Phase velocities (upper trace) for the particle vary with 
wave vector k, being faster than c, and asymptotically 
reaching infinity as  
 

Meanwhile, rest mass, m0, is a kind of fifth dimension as 
implied by both Equation (1), and by Dirac’s relativistic 
equation for the electron 2 2 2 2 2 2 0p m c p p p 

0 0 1 2 3
    , 

[15] where p0 is the operator for energy and p1, p2 and p3 
are momentum operators. Relativistic mass, 2m c  , 
varies continuously since it includes kinetic energy; but 
m0 has discrete values as in the standard model for ele-
mentary particles [23], or atomic nuclei. Changes in the 
rest mass correspond to heat released in nuclear reactions. 
The five dimensions are represented on two independent 
graphs in Figure 3(a), where the momentum is the resul-
tant of the first graph and this resultant is included in the 
second graph. We include energies for antimatter [15], 
but leave aside the prediction of embedded dimensions 
supposed in string theory [24]. 

With this view, conservation of energy implies con- 
servation of frequencies summed over all particles in- 
cluding photons, phonons etc. Likewise, conservation of  
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(a) 

 
(b) 

Figure 3. (a) Five dimensions in two graphs: (left) resultant 
of three spatial dimensions; and (right) the constraint of 
time through angular frequency ω on the momentum vector. 
The illustration is local for a particle in free-fall, or for an 
antiparticle represented by negative mass [16] at right; (b) 
Dimensions for a particle in an accelerating field (left) that 
produces increased energy and momentum. In a bound 
state (right), ω is reduced but partly compensated by the 
mean kinetic energy in k

k

 d
B

A

 given by the virial theorem. 

 
momentum implies conserved sums of individual wave 
vector components, 

, , ii o
with dimensional i = 1, 2, 3 

and summed over all particles o. Assuming the conserva- 
tion laws determine the wave mechanical variables, then 
entanglement of particle phases is, in principle, as likely 
as has been observed with photons. In this way, phase  

information at a time B,  f tt B , may be “re-  

membered” after an event at A; and—in case of thermal 
isolation and absenting secondary disturbance—may not 
be lost entirely upon measurement as in conventional 
quantum theory. 

Moreover, relative phase and group velocities define 
mass: 

2 42 2
0

m

m cp c

E pE

2 2

d

dp g

E p
v v

k k p

Em p E

pm p

 
    

 
  



 

    (5) 

This equation is consistent with the fact that m0 = 0 in 
electromagnetism when  and k follow Maxwell’s equa- 
tions. The relative speed separation, vp – vg, in the labo-
ratory frame; translates to  and pv  in the 
particle rest frame. Then, within the particle wave group, 
time becomes Newtonian. 

0gv 

Beyond this definition of mass, phase velocity allows a 
solution to the following problem. Consider, in the trans- 

mission electron microscope, a single electron that inter-
acts with a foil oriented to a two beam Bragg condition. 
Let the microscope be selected for diffraction mode so 
that the electron must strike the photo receptor in one of 
two positions, A or B. If the electron creates an event in A, 
how is the information passed to position B, with speed 
less than c, so that it does not create a second event with 
multiplication of the electron and with failure of mass 
conservation? It is not necessary to posit a hidden condi-
tion to ensure compliance, since the above working in-
cludes another reason. The apparently instantaneous trans- 
port of information is a consequence of alternative refer-
ence frames: in the rest frame of the electron, vp, on the 
horizontal plane, is infinite, so that the wave front of the 
electron probability amplitude arrives instantaneously 
and connects A with B. By conservation, energy which is 
deposited in an event at A is not simultaneously available 
at B, and vice versa. In the electron rest frame the two 
beams at the plane of detection are contemporaneous 
where the reduction of the wave packet occurs in phase 
space; whereas in the laboratory rest frame the two loca-
tions are separated in time. 

4. Velocity in a Symmetric Wave Group 

A wave group in which the wave function is represented 
by: 

2

2
exp

2

X
A iXX


 

   
 

        (6) 

where the argument, X = k·r – t, with precise mean wave 
vector k' and with precise mean angular frequency '. 
The real part of exp(iX) peaks when k'·r = 't, and the 
carrier wave velocity vp = '/|k'|. Here σ which deter-
mines the width of the Gaussian distribution, is written as 
single valued in the direction of wave propagation, 
though it is typically four dimensional. Because X de-
scribes a phase it is, by default, Lorentz invariant. Next 
normalize the equation for a single particle. Then for the 
simplest one-dimensional example in the direction of 
propagation [25]:  

 πx
A k               (7) 

Meanwhile, the expected energy * i
t
   


  

as in Planck’s law, while * xki
x

    gives  




expected momentum in one dimension, consistent with 
the De Broglie hypothesis. The symmetric wave packet 
envelope is selected for simplicity. The Gaussian func- 
tion is typical for random or spontaneous events, but 
others such as the defined electric pulse that produces 
synchrotron radiation [17,26], can be applied instead. 
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The envelope includes uncertainty in measurement. 
Letting t = 0 in Equation (4), and taking the direction of 
propagation x, the Fourier transform 2 2 4

, 0

*
nm nm

nm
g

n m

i
x

v
k m c

 
 

 




0,k  0v 

h
pv

 

 
2 2

2
2
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exp d

exp
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2

exp dxA ik x x

A k

kk

 



 

 






 
  

 
 

    



      (8) 

By adopting a definition, 2 xx k  
   

 where 

x x   falls to 1/e of its maximum, and likewise 
2k kx   1x k  

1t

, the product, , as in the Heisen- 
berg Uncertainty principle. By the same argument, at x = 
0,     for a free particle as before. By contrast, 
the Heisenberg uncertainty principle applies equally to 
bound and free-particle states, though the present treat-
ment can be easily extended. A second significant dif-
ference lies in extended uncertainties involving both t 
and along with associated emission constants i A 
third difference is that the phase information in Equation 
(6) is retained in isolated systems, e.g. at low tempera-
tures. As these differences hold, uncertainty depends on 
the probability amplitude. 

5. Discrete Representation 

So far, the wave function has been treated as continuous; 
but it could also be represented as a sum of discrete states. 
These states could be quantized bound states in an atom 
or they might be high energy electrons elastically scat-
tered as Bloch waves in a crystal. For a free particle, k 
and  are constants of motion so its wave function may 
be written: 

 , ,n m n mk
,n m

               (9) 

and phase velocity defined by a combined operation 

* nm
p

nm

v 



nm nm

nm

i
t

i
x

 

 

 






       (10) 

Calculation of the combined expected value for group 
velocity is only a little more complicated. One route is  

based on the relativistic equation 2 2
0k m c  , so 

that 2 2
0m cd dk k k  . When, in one dimension,  

eigenvalues are derived from the operator: 

,nm n mk
x

  nm i 



 

       (11) 

As  g , as expected. An alternate deri- 
vation, using continuous wave functions, rather than dis- 
crete states, might seem simpler. However, an electron 
emitted from the gun of a transmission electron micro- 
scope occupies the single state before being diffracted by 
a crystalline foil, when it adopts discrete Bloch wave 
states.  

After the transmission, the wave packet is reduced by 
an exposure event at the resist. While the vertical com-
ponents of both the group and phase velocities approach 
c (depending on the potential of the vertical electron mi-
croscope gun column), the horizontal component of the 
phase velocity   0h

gv , when , i.e. in the electron 
rest frame. 

6. Bound States 

Equation (4) in electromagnetism and the consequences 
of Equation (6) represent two results. The wave group is 
represented graphically in Figure 4 for the context of 
particle-particle interactions as between electrons in a 
transmission electron microscope. The wave group due 
to a travelling particle passes a second bound electron. 
The group and carrier wave, as drawn, maximize with 
specific phase relationships as a special case. The group 
and carrier waves need not be in phase as they pass the 
bound electron. Meanwhile, in electron beam interactions, 
fast electrons lose energy to atomic core electrons in spe- 
cimens. The fast electrons spread in both energy and an- 
gle of deflection. The latter is related to momentum dis- 
tribution of bound electrons in atomic orbits [27] and, 
with this constraint, scattering is random in individual 
events. However, the illustration in Figure 4(b), shows 
how the momentum transferred to the wave group de- 
pends on the phase of the bound electron at a given mo- 
ment of time at the core of the interaction. It appears that 
the deflection of the fast electron would be predictable, 
in individual cases at low temperatures, if the relative 
phases of both electrons were continuous and previously 
known by a mechanism of entanglement.  

7. Conclusion 

Computing simulations add clarity to the wave perspec- 
tive. The phase velocity is measured in electromagnetism, 
and is known but unmeasurable in particles with mass > 
0. If the fact of entanglement at a distance implies in- 
completeness in quantum theory, then a dependence of 
mass on relative velocities adds information. Further- 
more, when a laser beam is truncated in time, its fre- 
quency bandwidth increases and this is consistent with  
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Figure 4. (Left) Wave group for an incident electron that contains real and imaginary parts within an envelope function. The 
trajectory is approximately linear. The scattering atomic electron lies on the central horizontal line. The real part of the car-
rier wave (dark oscillation) is in phase with the peak of the envelope, though this is not necessary. (Right) Phase in a bound 
state on plane of carrier wave at the moment when the real part at left peaks. 
 
the Uncertainty principle. But the spatial extents of the 
beams are also truncated along with increases in their 
respective spreads of momenta. Following Equation (6) 
the four properties are mutually dependent. This is pre-
dicted for free-electron laser beams and for any particle, 
whether entangled or not. This new continuous wave 
group describes their evolution in time and space toge- 
ther, whether in vacuo or in dispersive media. The equa- 
tion applies universally in electromagnetism and likewise 
in probability amplitudes of free particles. 

8. Further Significance 

The foundations of quantum mechanics have been dis-
cussed by the previous generation of physicists and logi-
cians. There are claims and counter claims regarding 
circularity in the postulates and in the conclusions of the 
Copenhagen interpretation. Bohm & Bub, for example, 
summarized the two basic postulates as [3]: 

“1) The state of a quantum mechanical system is defined 
by a continuous single-valued wave function, (x,t), 
which obeys a deterministic equation of motion, Schrod-
inger’s equation: 

 i Ht                (12) 

2) The wave function determines the probabilities of 
the possible results of any measurement on the system.  
Equivalently, the average expectation value for an en-
semble of measurements of any observable R is derived 
from  through the algorithm: 

       * d,,R R xx x i xR          (13) 

where R  is the operator corresponding to the observ-
able R.” 

This is the interpretation applied in Equation (6). The 

equation is defined by mean values of frequency and 
wave vector that are measurable to precisions that de-
pend on the sizes of ensemble samples. It is impossible to 
prevent science from progressing by selective applica-
tions of postulates that are independent of the consis-
tency or completeness of the logic employed. Neverthe-
less, hidden variables, with hidden constraints, have the 
potential for transforming probabilistic measurements 
into those that become determined. 

Typically, discussion has taken examples from the 
measurement of spin and magnetic moment. Typically 
also, plane waves are employed in the elucidation of the-
ory in diffraction or imaging of particles [28], without 
detailed complications of wave packets or groups. In this 
paper we have taken the magnetic part of the wave func-
tion to be separable and we leave that topic to a later in-
clusion of magnetism with the vector potential. Now our 
concern is with the spatial part. Using Equation (6) we 
show how the Uncertainty principle can be derived from 
an elementary treatment that contains hidden variables 
such as phase velocity and, of course, phase itself. Then 
the temporal and spatial parts are interdependent even 
though the operators commute and the variables are in-
dependently measurable. We follow multiple commonal-
ities in the theories of optics and electron optics. The 
model is electromagnetism and Maxwell’s equations, 
though the probability amplitude in particles is funda-
mentally and mysteriously different. With the wave 
group described, Heisenberg’s Uncertainty postulates are 
written as a theorem in Schroedinger’s interpretation. 
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