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ABSTRACT 

Radiation effects on free convection MHD Couette flow started exponentially with variable wall temperature in the 
presence of heat generation have been studied. The governing equations are solved analytically using the Laplace 
transform technique. The variations of velocity and fluid temperature are presented graphically. It is observed that the 
velocity decreases with an increase in either magnetic parameter or radiation parameter or Prandtl number. It is also 
observed that the velocity increases with an increase in either heat generation parameter or Grashof number or acceler-
ated parameter or time. An increase in either radiation parameter or Prandtl number leads to fall in the fluid temperature. 
It is seen that the fluid temperature increases with an increase in either heat generation parameter or time. Further, it is 
seen that the shear stress at the moving plate decreases with an increase in either magnetic parameter or radiation pa-
rameter while it increases with an increase in either heat generation parameter or Prandtl number. The rate of heat 
transfer increases with an increase in either Prandtl number or time whereas it decreases with an increase in heat gen-
eration parameter. 
 
Keywords: MHD Couette Flow; Free Convection; Magnetic Parameter; Radiation; Heat Generation; Prandtl Number; 

Grashof Number and Accelerated Parameter 

1. Introduction 

Couette flow is one of the basic flow in fluid dynamics 
that refers to the laminar flow of a viscous fluid in the 
space between two parallel plates, one of which is mov-
ing relative to the other. The flow is driven by virtue of 
viscous drag force acting on the fluid and the applied 
pressure gradient parallel to the plates. Couette flow is 
frequently used in physics and engineering to illustrate 
shear-driven fluid motion. Some important application 
areas of Couette motion are MHD power generators and 
pumps, aerodynamics heating, electrostatic precipitation, 
polymer technology, petroleum industry, purification of 
crude oil etc. In space technology applications and at 
higher operating temperatures, radiation effects can be 
quite significant. Radiative free convection MHD Cou-
ette flows are frequently encountered in many scientific 
and environmental processes, such as astrophysical flows, 
heating and cooling of chambers and solar power tech-
nology. Heat transfer by simultaneous radiation and con- 
vection has applications in numerous technological prob- 
lems including combustion, furnace design, the design of 
high temperature gas cooled nuclear reactors, nuclear  

reactor safety, fluidized bed heat exchanger, fire spreads, 
solar fans, solar collectors natural convection in cavities, 
turbid water bodies, photo chemical reactors and many 
others. Free convection in channels formed by vertical 
plates has received attention among the researchers in 
last few decades due to it’s widespread importance in 
engineering applications like cooling of electronic equip- 
ments, design of passive solar systems for energy con-
version, design of heat exchangers, human comfort in 
buildings, thermal regulation processes and many more. 
Researchers in this field such as Singh [1], Singh et al. 
[2], Jha et al. [3], Joshi [4], Miyatake et al. [5], Tanaka et 
al. [6], Mohanty [7]. Jha [8] have studied the natural 
Convection in unsteady MHD Couette flow. The radia-
tive heat transfer to magnetohydrodynamic Couette flow 
with variable wall temperature have been investigated by 
Ogulu and Motsa [9]. Chaudhary and Jain [10] have 
analyzed the exact solutions of incompressible Couette 
flow with constant temperature and constant heat flux on 
walls in the presence of radiation. The radiation effects 
on MHD Couette flow with heat transfer between two 
parallel plates have been examined by Mebine [11]. Jha 
and Ajibade [12] have discussed the free convective flow 
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of heat generating fluid between vertical porous plates 
with periodic heat input. Jha and Ajibade [13] have stud-
ied the unsteady free convective Couette flow of heat 
generating/absorbing fluid. MHD oscillatory Couette flow 
of a radiating viscous fluid in a porous medium with pe-
riodic wall temperature have been investigated by Israel- 
Cookey et al. [14]. The effects of thermal radiation and 
free convection currents on the unsteady Couette flow 
between two vertical parallel plates with constant heat 
flux at one boundary have been studied by Narahari [15]. 
Unsteady free convective Couette flow of heat generat-
ing/absorbing fluid in porous medium has been investi-
gated by Deka and Bhattacharya [16]. Kumar and Varma 
[17] have studied the radiation effects on MHD flow past 
an impulsively started exponentially accelerated vertical 
plate with variable temperature in the presence of heat 
generation. 

In this present paper, we have investigated the radia-
tion effects on free convection MHD Couette flow of a 
viscous incompressible heat generating fluid in the pres-
ence of variable temperature. It is observed that the ve-
locity 1  decreases with an increase in either magnetic 
parameter 

u
2M  or radiation parameter  or Prandtl 

number . It is also observed that the velocity 1u  
increases with an increase in either heat generation pa-
rameter or Grashof number  or accelerated parame-
ter  or time 

R
Pr

Gr
a  . An increase in either radiation pa-

rameter  or Prandtl number  leads to fall in the 
fluid temperature 

R Pr
 . It is seen that the fluid temperature 

  increases with an increase in either heat generation 
parameter   or time  . Further, it is seen that the 
shear stress at the moving plate x  decreases with an 
increase in either magnetic parameter or radiation pa-
rameter while it increases with an increase in either heat 
generation parameter or Prandtl number. The rate of heat 
transfer  increases with an increase in either 
Prandtl number Pr or time 

0  
  whereas it decreases with 

an increase in heat generation parameter . 

2. Formulation of the Problem and Its  
Solutions 

Consider the unsteady free convection MHD Couette 
flow of a viscous incompressible radiative heat generat-
ing fluid between two infinite vertical parallel walls 
separated by a distance . The flow is set up by the 
buoyancy force arising from the temperature gradient 
occurring as a result of asymmetric heating of the parallel 
plates as well as constant motion of one of the plates. 
Choose a cartesian co-ordinates system with the x-axis 
along one of the plates in the vertically upward direction 
and the y-axis normal to the plates (See Figure 1). Ini-
tially, at time , both the plates and the fluid are 
assumed to be at the same temperature  and station-  

h

0t 
hT

 

Figure 1. Geometry of the problem 

ary. At time , the plate at  starts moving in 
its own plane with a velocity  and is heated with  

> 0t = 0y

0
a tu e 

temperature  0
0

h h

t
T T T

t
   whereas the plate at  

=y h

t

 is stationary and maintained at a constant tem-
perature h , where 0  and  are constants. A uni-
form magnetic field of strength 0  is imposed perpen-
dicular to the plates. It is also assumed that the radiative 
heat flux in the x-direction is negligible as compared to 
that in the y-direction. As the plates are infinitely long, 
the velocity and temperature fields are functions of  
and  only. 

T u a
B

y

The Boussinesq approximation is assumed to hold and 
for the evaluation of the gravitational body force, the 
density is assumed to depend on the temperature accor- 
ding to the equation of state  

0 0= 1 hT T       ,           (1) 

where  is the fluid temperature, T   the fluid density, 
  the coefficient of thermal expansion and 0  the 
density at the entrance of the channel. 
For the fully developed flow, the governing equations are  

 
22
0

2

1
= h

Bu p u
g T T u

t x y


 

 
  

    
  

,  (2) 


2

02
= r p h

qT T
c k Q T T

t yy


 
  

 
,        (3) 

where  is the velocity in the u x -direction, g  the 
acceleration due to gravity,   the kinematic coefficient 
of viscosity,  the thermal conductivity, k pc  the 
specific heat at constant pressure,  the radiative heat 
flux and  a constant. 

rq

0

The initial and the boundary conditions for velocity 
and temperature distribution are as follows:  

Q

 0 0
0

0,  for 0  and 0,

,  at 0 for > 0,

0,  at  for > 0.

h

a t
h h

h

u T T y h t

t
u u e T T T T y t

t

u T T y h t



    

    

  

 (4) 

It has been shown by Cogley et al. [13] that in the 
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optically thin limit for a non-gray gas near equilibrium, 
the following relation holds  

 
0

4 dpr
h h

h

eq
T T K

y T


 
  

   
   ,      (5) 

where K  is the absorption coefficient,   is the wave 
length, pe  is the Plank's function and subscript ‘ ’ 
indicates that all quantities have been evaluated at the 
temperature h  which is the temperature of the plate at 
time . Thus our study is limited to small difference 
of plate temperature to the fluid temperature. 

h

T
0t

On the use of the Equation (5), Equation (3) becomes  

  
2

02
4 p h h

T T
c k T T I Q T T

t y
  

    
 

,   (6) 

where  

0

p

h
h

e
I K

T


 d
  

   
 .           (7) 

Greif et al. [18] showed that, for an optically thin limit, 
the fluid does not absorb its own emitted radiation, this 
means that there is no self-absorption, but the fluid does 
absorb radiation emitted by the boundaries. 

Using condition at , Equation (2) yields  y h

1
= 0

p

x





.               (8) 

On the use of (8), Equation (2) becomes  

 
22
0

2h

Bu u
g T T u

t y


 


 

   
 

.      (9) 

Introducing non-dimensional variables  

y

h
  , 

2

t

h

  , 1
0

u
u

u
 , 

0

h

h

T T

T T






,   (10) 

Equations (9) and (6) become  
2

21 1
12

u u
Gr M u

 
 

  
 

,        (11) 

2

2
Pr R

   
 
 

  
 

,          (12) 

where 
2 2

2 0B h
M




  is the magnetic parameter,  

24I h
R

k
  the radiation parameter, 

2
0Q h

k
   the heat 

generation parameter, 
2

0

0

( )hg T T h
Gr

u





  the Grashof 

number and pc
Pr

k


  the Prandtl number. 

The corresponding initial and boundary conditions for 

 and 1u   are  

1

1

1

0, 0 for 0 1 and 0,

,  at 0 for > 0,

0,      0 at 1 for > 0,

a

u

u e

u



  
   
  

    
  
  

   (13) 

where 
2a h

a



  is the accelerated parameter. 

Taking Laplace transformation, the Equations (11) and 
(12) become  

2
21

1 12

d

d

u
su Gr M


   u          (14) 

2

2

d

d
Prs R

  


             (15) 

where  

   

   
1 10

0

, , d

and , , d .

s

s

u s u s e

s s e





  

   

 

 







 
      (16) 

The corresponding boundary conditions for 1u  and 
  are  

   

   

1 2

1

1 1
0, ,    0, ,

1, 0,    1, 0.

u s s
s a s

u s s








 


     (17) 

The solutions of the Equations (15) and (14) subject to 
the boundary conditions (17) are easily obtained and are 
given by  

 
   

 2

sinh 11
,

sinh

Pr s
s

s Pr s

 
 



 



,            (18) 

   
 

  

     
 

2

1 2

2

2

2

sinh 11
,

sinh

 
1

sinh 1sinh 1
 

sinhsinh

s M
u s

s a s M
Gr

Pr s b s

Pr ss M

Pr ss M




 



 


 


 

   
  
  

 (19) 

where =
R

Pr

 
 and 

2

=
1

Pr M
b

Pr

 


 

The inverse transforms of (18) and (19) give the 
temperature and the velocity field distributions as  

    1 1
=0

, ,
n

F c Pr F d Pr ,    

    ,       (20) 

        

        

1 2 2
=0

3 3 4 4

, , ,
1

, , , ,

n

Gr
u F c F d

Pr

F c F d F c Pr F d Pr

   

   

 
  




    



(21) 
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where 2 ,  2 2c n d n       

 

     

 
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2
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1
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
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   

 
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2
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c
2

1
              erfc erfc

2 2 2

              erfc erfc ,
2 2 2

1
, erfc

2 4 2

Mz Mz
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b
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b
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
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
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
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 
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
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      (22) 

and erfc is the complementary error function. 
      

        

1 2 2 2
=0

5 5 1 1

( , ) , ,

         , , , ,

n

Gr
u F c F d

M

F c F d F c F d

   


   

 
  
 


   




. (26) 

2.1. Solution for Prandtl number Pr = 1 

As the Prandtl number is a measure of the relative 
importance of the viscosity and thermal conductivity of 
the fluid, the case  corresponds to those fluids 
whose momentum and thermal boundary layer thick- 
nesses are of the same order of magnitude. Thus, the 
solution for the velocity field has to be re-derived when 
Prandtl number . The solution of the Equations 
(15) and (14) subject to the boundary conditions (17) are 
easily obtained and are given by  

1Pr 

1Pr

where  

 5 , erfc
2 4 2

                erfc
2 4 2
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Mz

z z
F z e M

M

z z
e M

M
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

 




      
   

      
   

 (27) 

and  1 ,F z   and  2 ,F z   are given by (22). 
   

2

sinh 11
,

sinh

s
s

s s

 
 



 
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
,        (23) 

3. Results and Discussion 
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 
    
  

   

,

We have presented the non-dimensional velocity and 
temperature for several values of magnetic parameter 

2M , radiation parameter , heat generation parameter R
 , Prandtl number , Grashof number , accele- 
rated parameter  and time 

Pr Gr
a   in Figures 2-12. Fig- 

ures 2-8 represent the velocity 1u  against   for 
several values of 2M , R ,  , Pr Gr a and , , ,  . t 
is seen from Figure 2 that the velocity 1u  decreases 
with an increase in magnetic parameter 

 

 

(24) 

The inverse transforms of (23) and (24) give the 
temperature and velocity distributions as  

     1 1
=0

, ,
n

F c F d    


   ,      (25) 

I

2M . The 
application of the transverse magnetic field plays the role 
of a resistive type force (Lorentz force) similar to drag 
orce (that acts in the opposite direction of the fluid  f    
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Figure 2. Velocity profiles for M2 when R = 12,  = 4, Gr = 5, Pr = 0.71, a = 0.5 and τ = 0.5.  

 

Figure 3. Velocity profiles for R when M2 = 5,  = 4, Gr = 5, Pr = 0.71, a = 0.5 and τ = 0.5. 

motion) which tends to resist the flow thereby reducing 
its velocity. Figure 3 reveals that the velocity  de- 
creases with an increase in radiation parameter . This 
shows that there is a fall in velocity in the presence of 
high radiation. It is seen from Figure 4 that the velocity 

 increases with an increase in heat generation para- 
meter 

1u
R

1u
 . As   increases, heat generating capacity of 

the fluid increases which increases fluid temperature and 
hence the fluid velocity. Figure 5 shows that the velocity 

 decreases with an increase in Prandtl number . 
Physically, this is true because the increase in the Prandtl 
number is due to increase in the viscosity of the fluid 
which makes the fluid thick and hence causes a decrease 
in the velocity of the fluid. It is observed from Figure 6 

that an increase in  leads to rise in the values of 
velocity . An increase in Grashof number leads to an 
increase in velocity, this is because, increase in Grashof 
number means more heating and less density. It is seen 
from Figures 7, 8 that the velocity  increases with an 
increase in either accelerated parameter a or time 

1u Pr

Gr

1u

1u
  . t 

is seen from Figure 9 that the temperature 
 I

  decreas  
as the radiation parameter R  increase . This result qua- 
litatively agrees with expectations, since the effect of 
radiation is to decrease the rate of energy transport to the 
fluid, thereby decreasing the temperature of the fluid. It 
is seen from Figure 10 that the temperature 

es
s

  increases 
as the heat generation parameter   increases. This result 
agrees with pectations, as ex   increases, heat genera-    
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Figure 4. Velocity profiles for  when M2 = 5, R = 12, Gr = 5, Pr = 0.71, a = 0.5 τ = 0.5.  and 

 

Figure 5. Velocity profiles for Pr when M2 = 5, R = 12, Gr = 5,  = 4, a = 0.5 and τ = 0.5. 

ting capacity of the fluid increases and hence the fluid 
temperature increases. It is observed from Figure 11 that 
the temperature   decreases with an increase in Prandtl 
number Pr . Th  implies that an increase in Prandtl 
number l s to fall the thermal boundary layer flow. 
This is because fluids with large Pr  have low thermal 
diffusivity which causes low heat p tration resulting in 
reduced thermal boundary layer. Figure 12 reveals that 
the temperature 

is
ead

ene

  increases with an increase in time  . 
The trend shows that the temperature increases with   

increasing time. It is observed from  that Figures 9-12
temperature decreases gradually from highest value on 
the moving plate to a zero value on the stationary plate. 

The rate of heat transfer at the moving plate ( 0  ) is 
given by  

     1 1
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(28) 
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Figure 6. Velocity profiles for Gr when M2 = 5, R = 12,  = 4, Pr = 0.71, a = 0.5 and τ = 0.5. 

 

Figure 7. Velocity profiles for a when M2 = 5, R = 12, Gr = 5,  = 4, Pr = 0.71 and τ = 0.5. 

Numerical results of the rate of heat transfer  0   explained by the fact that frictional forces become 
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Figure 8. Velocity profiles for τ when M2 = 5, R = 12, Gr = 5,  = 4, a = 0.5 and Pr = 0.71. 

 

Figure 9. Temperature profiles for R when Pr = 0.71,  = 4 and τ = 0.5. 

Table 1. Rate of heat transfer –10–1θ′(0) at the moving plate η = 0 with a = 0.5. 

 Pr τ 
R 

2 3 4 0.71 2 7 0.3 0.4 0.5 

8 

10 

12 

14 

1.36959 

1.53971 

1.69340 

1.83453 

1.27657 

1.45

1.76535 

1.17686 

1.69340 

1.36959 

1.83453 

1.62291 

2.01991 

2.40040 

2.66810 

0.87900 

1.14169 

12448 

1.25683 

37716 

1.48812 

1.36959 

1.53971 

1.69340 

1.83453 

702 1.36959 1.53971 1.76369 2.49186 0.97383 

1.61833 1.53971 1.69340 1.89559 2.58105 1.06088 1.

1.
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Figure 10. Temperature profiles for  when R = 12, Pr = 0.71 and τ = 0.5. 

 

Figure 11. Temperature profiles for Pr when R = 12,  = 4 and τ = 0.2. 

 

Figure 12. Temperature profiles for τ when Pr = 0.71, R = 12 and  = 4. 
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For , the non-dimensional shear stress at the moving plate (1Pr  0  ) is given by  

               2 2 5 5 6 62
=0

, , , , , ,x
n

Gr
G c G d G c G d G c G d

M
      



  
           
  

        (32) 

where  

 

2
2

5

4

1
,

4 2 4

1
   erfc

4 2 42

   erfc  ,
π2

Mz

z
M

Mz

z
G z M

M M

z z
e M M

M M

z
e M e












 
     

        
                

 
   

 

 (33) 

and  1 ,G z   

 
is given by (29)  

2

6

4

   ,

1
erfczz z

e  
24 4 2

1
   erfc

24 4 2

   .
π

z

z

G z

z z
e

e








  

 
  



 
   
 

    
    

       
    



 

and 



    
       

 2 ,G z  ,  3 ,G z   and  4 ,G z   are given by 

(31). 
Numerical results of the non-dimensional shear stress 

x  at the moving plate ( 0  ) are presented in Figures 
18 against Grashof for various values of 
gnetic parameter 

13-
ma

number 
2

Gr  
M , radiation parameter , heat 

ration paramete
R

gene r  , Prandtl number time Pr  and 
 . 
Gras

Figures 13 and at for the fi ue of 
hof number ss 

14
, th

 show th
e shear

xed val
Gr  stre x  decreas

2
es with 

rease inan inc  either magnetic parameter M  or 
crea

2

radia- 
on parameter  w se in 

hof num  
ti
Gras

R  a
Gr

nd
 fo

 it increa
r the fi

ses
xed

ith
valu

 an in
 of ber es M  and 

at the R . These resu t with
 inc crease i ile it 

decreases 

lts are in agreem

cr

en

eithe

 th
n

r 

e 
Gr

2

fact th
 whvelocity reases with an in

eases in 
 

with an in M  or 
e

R . It is 
seen from at theFigures 15 and 16 th  sh ar stress x  

eneration increases 
eter 

with an increase in either heat g
param   or

hof
the shea s

 Pra
Gr

ndtl
. 

 number 
Figures

Pr
 an

 fo
d 

r fixed
  

 value of 
hat Gras  num

r stres
ber 

 
 17 18 reveal t

x  
e

dec
ter a

reases 
 or 

with an increase in either 
accelerated param time   for fixed value of 
Gras    

hof number Gr  



S. DAS  ET  AL. 24 

 

 

12,  = 4, Pr = 0.71, a = 0.5 and τ = 0.5. Figure 13. Shear stress τx for M2 when R = 

 

Figure 14. Shear stress τx for R when M2 = 5,  = 2, Pr = 0.71, a = 0.5 and τ = 0.5. 

 

Figure 15. Shear stress τx for  when M2 = 5, R = 12, Pr = 0.71, a = 0.5 and τ = 0.5. 
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Figure 16. Shear stress τx for Pr when M2 = 5, R = 12,  = 4, a = 0.5 and τ = 0.5. 

 

Figure 17. Shear stress τx for a when M2 = 5, R = 12,  = 4, Pr = 0.71 and τ = 0.5. 

4. Single Vertical Plate 

In the limit , that is, when one of the plates  h 
( 1 
is reduce

) is an infinite distance, then the problem 
d past a vertical plate started 

exponentially accelerated with variable temperature in  

the presence of heat generation. In this case, on taking 
limits  and 

placed at 
 to the flow 

0d  , 0n  c  , the Equations (20) 
and (21) become  

   1, ,F Pr     ,          (34) 
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Figure 18. Shear stress τx for τ when M2 = 5, R = 12,  = 4, a = 0.5 and Pr = 0.71. 
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Equations (34) and (35) are identical with the Equa- 

ma [17]. For tions (9) and (10) of Kumar and Var 1Pr  , 
the solutions (25) and (26) for the temperature and 
velocity distribut ield  ions y
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   ,   

(39) 
 1 ,F z  ,  2 ,F z   and  3 ,F z   are given by 

(36) and  5 ,F z   is given by (27). 
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5. Conclusion 

The radiation effects on free convection MHD Couette 
flow started exponentially accelerated with variable tem- 
perature in the presence of heat generation have been 
studied. The dimensionless governing equations are solved 
by the usual Laplace transform technique.It is observed 
that the velocity  decreases with an increase in either 
magnetic param

 1u
eter 2M  

. It is also 
with an increase 

or radiation parameter  or 
Prandtl number observed that the vel city 

increases in either heat gene n 
eter 

R
o

ratio
Pr

1u  
param   or f number  or acc

eter  or 
 G
tim

rasho
e 

Gr elerated 
param a  . 

ndtl n
An increase in either radiation 

eter umber leads to 
fluid temp
param R  

erature
or Pra

 
Pr  fall in the 

 . It is seen that the fluid temperature 
  
param

incr ease  heat gene n 
eter 
eases with an incr in either ratio

  
 m

or tim
ng

e
 plate 

. Further, it is seen that the shear 
stress at the ovi x  with an inc ease 
in either 

decreases r
2M  o

creases 
r r

 incr
adiation parameter R  while it in- 

either heat generation para- with an ease in 
meter   

0 
ber 

or Pr
 
 or 

a of he
se in either Prandtl 

ndtl n
increase

tim

umb
s with a
e 

er Pr
n in

. The rate 
a

at trans- 
fer 
num

  cre
Pr   

ration 
whe
pa

r
ram

eas it 
eter 

decreases with an 
increase in t hea  gene  . 
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